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A recent development in deep learning techniques has attracted attention to

the decoding and classification of electroencephalogram (EEG) signals. Despite

several e�orts to utilize di�erent features in EEG signals, a significant research

challenge is using time-dependent features in combination with local and

global features. Several attempts have been made to remodel the deep learning

convolution neural networks (CNNs) to capture time-dependency information.

These features are usually either handcrafted features, such as power ratios, or

splitting data into smaller-sized windows related to specific properties, such as

a peak at 300 ms. However, these approaches partially solve the problem but

simultaneously hinder CNNs’ capability to learn from unknown information that

might be present in the data. Other approaches, like recurrent neural networks,

are very suitable for learning time-dependent information from EEG signals in

the presence of unrelated sequential data. To solve this, we have proposed

an encoding kernel (EnK), a novel time-encoding approach, which uniquely

introduces time decomposition information during the vertical convolution

operation in CNNs. The encoded information lets CNNs learn time-dependent

features in addition to local and global features. We performed extensive

experiments on several EEG data sets—physical human-robot collaborations,

P300 visual-evoked potentials, motor imagery, movement-related cortical

potentials, and the Dataset for Emotion Analysis Using Physiological Signals.

The EnK outperforms the state of the art with an up to 6.5% reduction in

mean squared error (MSE) and a 9.5% improvement in F1-scores compared to

the average for all data sets together compared to base models. These results

support our approach and show a high potential to improve the performance of

physiological and non-physiological data. Moreover, the EnK can be applied to

virtually any deep learning architecture with minimal e�ort.

KEYWORDS

convolution neural network, electroencephalogram, temporal information, encoding,

brain computer interaction (BCI)

1 Introduction

Electroencephalogram (EEG) is widely used in research involving neural engineering,

cognitive neuroscience, neurotechnology, and brain-computer interface (BCI). EEG

signals are non-invasive, relatively cheaper to run, and provide high temporal

resolution compared to other brain imaging techniques. However, EEG signals

suffer from artifacts (eye, muscle, electrical noises, and broken sensors), non-

stationarity, and inter- and intra-user variability. In a typical scenario, the researcher

is required to process the acquired EEG signals to remove artifacts, extract

features (time-frequency domain, spectrograms, and power ratios), and classify

for specific tasks. No doubt, such work requires extensive domain knowledge
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and labor on top of the work needed to conduct an experiment

and acquire EEG signals. Therefore, automating the whole process

is essential, particularly with respect to real-time BCI applications

such as diagnosis, supporting people with mobility disabilities, and

entertainment. A recent development in deep learning techniques

has attracted attention among EEG researchers, and the race has

begun to develop a technique for better and more robust BCI.

Despite several efforts to utilize different features of EEG signals

in an automatic fashion, a significant research challenge is using

unprocessed (raw) EEG data. It is to be noted that processed

EEG data may or may not contain time-dependent information,

which depends on the type of processing and the knowledge of the

researcher. However, the raw EEG data naturally come with time-

dependent features. Such features are highly crucial for decoding

and classifying EEG signals.

Moreover, learning directly from time-dependent features

diminishes the need for manual signal processing and feature

extraction tasks and opens the possibility of extracting information

previously unknown. An example of time-dependent features in the

EEG signal is time-frequency information. Frequency information

of an EEG signal alone can be seen as a feature. As shown in

Figure 1A, the frequency of two signals is peaking at ∼10 Hz,

followed by similar but with smaller peaks at ∼20 and 35 Hz due

to the presented stimuli. What if we combined the frequency with

time? To do that, we have converted two signals from Figure 1A

into frequency over time (Figure 1B), also popularly known as an

event-related spectral perturbation (ERSP) in the EEG community.

The transformed information is full of features that cannot be

reflected by the two signals alone in Figure 1A. This example clearly

shows the importance of time-dependent features in EEG signals.

There has been significant research to EEG (Bashivan et al.,

2015; Zhang et al., 2019; Li et al., 2020; Peng et al., 2024) to

combine the time-dependency feature while learning local and

global features. Despite that, the approaches are useful but often

come with the cost of dedicated architecture to a specific task, are

computationally expensive, and cannot be generalized to different

tasks. This is another problem that hinders researchers’ ability to

apply developed models from one task to another. To solve these

problems, we introduce the encoding kernel (EnK), a kernel-based

approach for convolution operation. The EnK is a generalized

approach to encode time information into the raw EEG signals

while performing the horizontal convolution operation. Therefore,

regardless of the task, the EnK creates a feature space for time-

dependent information that is generalized to any architecture and

interoperable with any EEG task. We have evaluated the efficacy

and generability of the ENK with different EEG data sets collected

from different tasks—cognitive conflict (Singh et al., 2018), physical

human-robot collaboration (pHRC; Singh et al., 2020), P300 (Luck,

2014), and movement-related cortical potential (MRCP; Shibasaki

et al., 1980). These data sets have been collected from different

settings and environments and vary in the quality of signals, the

number of EEG channels, the size of the data sets, and the number

of participants. The main contributions of the EnK are as follows:

• The EnK is a novel approach to encode the time information

in the data, with inspiration taken from traditional time-

decomposition approaches for time series.

• The EnK does not require any domain-specific knowledge

or handcrafted features; it therefore automates the time-

dependent feature extraction process.

• The EnK is task-independent and architecture-independent;

therefore, it can be applied to any new deep learning

architectures.

1.1 Related work

The past few years have seen an increased number of

deep learning applications in understanding and classifying EEG

signals (Craik et al., 2019; Hossain et al., 2023). Deep learning

has already shown a high number of successful applications in

the field of natural language processing and computer vision, text

classification, and action recognition (LeCun et al., 2015; Deng and

Liu, 2018; Zhang et al., 2023).

A property of deep learning is to learn valuable information

from raw data without manual labor (Chai et al., 2017), which

is very useful in the case of EEG signals. Convolutional neural

networks (CNNs) are one of the most popular methods in the

field of deep learning and have proved effective in several EEG-

based applications, such as epilepsy/seizures prediction (Emami

et al., 2019; Lu and Triesch, 2019), the detection of visual-evoked

responses (Du et al., 2023) and emotion recognition (Wang et al.,

2023) and motor imagery (MI) classification (Tayeb et al., 2019;

Dang et al., 2024).

Although deep learning can learn from raw EEG data,

preprocessing of EEG signals is still required to reach optimal

performance. These preprocessing methods highly depend on the

type of data sets and expert knowledge such as filtering, channel

referencing, and artifact removal methods. Furthermore, such

preprocessed EEG signals also hinder deep learning models’ ability

to learn other relevant features, which might present in the data.

A model that can learn from raw EEG data without handcrafted

preprocessing and feature extraction is highly desirable, particularly

for BCI applications.

There have been efforts to learn time-dependency information

using CNNs. Liang and Hu (2015) utilized a recurrent CNN

(RCNN) to learn dependencies in context and learn the

context in neighboring information and showed an improved

performance. Inspired by RCNN, Bashivan et al. (2015)

trained EEG signals of mental workload using an RCNN.

The authors showed that RCNNs could learn spatial, spectral, and

temporal features from EEG signals and improve classification

performance.

Cui et al. (2016) proposed a multiscale CNN (MCNN) model

for time-series data. An MCNN automatically extracts features

from identity mapping, downsampling, and spectrograms and

locally convolve them. The convolved output is then followed by

concatenation into a full convolution to predict time-series data.

Lea et al. (2016) presented a temporal convolution model (TCN)

that learned video-based action first by learning an individual

frame of video using a CNN followed by an RNN. Although

MCNNs and TCNs are promising approaches for capturing time-

dependency features, they do not promise a similar performance

for EEG signals.
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FIGURE 1

An example of time-dependent features of two EEG signals based on Aldini et al. (2019) at two di�erent time points taken from the frontal region of

the brain. (A) Power spectral density (PSD); (B) event-related spectral perturbation for PSD shown in blue (left) and red (right) signal.

Following the trend in the recurrent and convolution models,

Zhang et al. (2019) proposed a convolution recurrent attention

model (CRAM) for EEG signal analysis. A CRAM utilizes CNNs

to learn high-level representation in EEG signals, while recurrent

attention mechanisms are used to learn temporal features in EEG

signals. The model showed a significant improvement in classifying

the MI-based EEG signals. Recently, Li et al. (2020) proposed

another approach based on a unified temporal-spectral features

utilizing a group convolution squeeze-and-excitation network to

detect epileptic seizures in EEG signals. Similarly, recently Ma et al.

(2023) and Sharma et al. (2023) also presented a CNN model

to learn from temporal-dependent features for motor imaging

decoding and classification. It is claimed that this model can learn

both spectral and temporal information from the epileptic seizure-

and MI-based EEG signals but was only dedicated to specific EEG

tasks. Therefore, it does not perform well for other EEG tasks or

data sets.

Inspired by the progress in CNN models in the BCI

community, Schirrmeister et al. (2017) proposed a very deep

CNN model called DeepConvNet inspired from Visual Geometry

Group (VGG) (Simonyan and Zisserman, 2014) for EEG signals.

DeepConvNet demonstrated that it could learn different kinds of

information related to EEG signals when decoding tasks. Themodel

shows promising results, but it greatly depends on the size of input

data to sufficiently converge and learn features.

Although several models have been proposed to learn time-

dependency features primarily by combining recurrent and

convolution networks, they are always dependent on the specific

type of tasks to collect EEG signals. On the contrary, using

a convolution network alone without any recurrent model has

shown better success with decoding and classifying various tasks

in EEG signals. Recently, there was a more generalized model

demonstrated by Lawhern et al. (2018), called EEGNet. The

EEGNet is focused on a compact CNN model utilizing the

depthwise and separable CNN (Chollet, 2017) approaches. The

EEGNet model has shown optimal performance from a variety of

paradigms with EEG signals. The authors also showed that the

EEGNet is very useful to generalizing on different EEG signals.

Although the EEGNet is generalized for various EEG tasks, it does

not utilize any specific deep learning module to learn temporal

features. It is highly reliant on the CNN approach, which is well-

known for learning local and global features only.

While the body of literature clearly shows an attempt to design

and develop techniques to learn features like time-dependent

information from EEG signals, they face the problems of (1)

using fabricated and handcrafted features and (2) being highly

customized or dedicated to very specific EEG tasks, for example,

motor imagery (MI), emotions, event-related potentials (ERPs),

and so on. It is to be noted that our goal is not to propose a new

model or architecture of deep learning for EEG signal analysis.
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Instead, we have developed a novel technique to represent time-

dependent information in EEG signals, which can be applied as

a module to any existing deep learning model and significantly

reduce the need for fabricated or handcrafted features while

enhancing the applicability of approaches, that is, generalizing

models for a variety of EEG tasks.

2 EnK: time-encoding approach

The EnK has been designed considering the classical theory

of time decomposition (Das, 1994). The time-decomposition

theory suggests that any given time-series signal comprises three

components: a trend cycle, a seasonal component, and a remainder

component. These components could be additive or multiplicative

depending on the property of variance of signals. In general, EEG

signals have high variance over time, but such variance in EEG

signals can be reduced by slicing the data into smaller windows.

The EnK also utilizes the smaller window of data at a time

for convolution; therefore, a variance for such size was assumed

to be zero. Following the time-decomposition theory for signals

with no variance, we have considered an additive form of time

decomposition rather than amultiplicative one.We have defined an

EEG signal as comprising the following three major components.

2.1 Periodic component

EEG signals result from neuron excitation at different

intervals, which creates periodic information. Most of this

periodic information is in the combination of 0.1–100 Hz cycles,

representingmost brain activity in the delta (1–3.5 Hz), theta (3.5–8

Hz), alpha (8–13Hz), beta (13–35Hz), and gamma (35+Hz) ranges

related to any task including BCI (Deuschl, 1999).

To represent the periodic component in EEG signals, we have

used sine functions (Vaswani et al., 2017). Consider EEG signals

collected from n number of channels and defined as

Xn = x1, x2, x3, ..., xn (1)

Using the EEG signal represented by Equation (1), a periodic

component can be represented as follows:

Pt = F(wt ∗ Xn,t + bt), (2)

where F is sine function and wt and bt are weights and bias at time

t for signal X.

2.2 Seasonal component

EEG signals have high temporal resolution, and it is challenging

to evaluate seasonal variation for a short time recording like any

other time series. However, EEG signals varied for inter- and intra-

users. For example, intra-variability is due to EEG signals being

recorded at different times of the day for different users, and

inter-variability occurs when EEG signals are recorded in different

mental states of the users.

The seasonal components are independent for each user and

cannot be separated as an independent feature. It is required to

learn for each user to generalize over a population. We have

represented the seasonal component as follows:

St = (wt ∗ Xn,t + bt) ∗ Pt , (3)

where Pt is periodic component from Equation (2) and wt and bt
are weights and bias at time t for signal X. Pt component as the

multiplicative component is used to give the property of variance,

which is not constant between periodic and seasonal components.

2.3 Artifacts

EEG signals suffer significantly from artifacts that arose from

muscle, eye blinks, electrical inference, broken sensors, faulty

equipment, and other unknown factors. These components

usually distort the signals and reduce the signal to ratio.

Most of these artifacts are found in very low frequency (<1

Hz) and high frequency (>45 Hz). One of the simplest and

most effective methods used to reduce noise is filtering the

EEG signals without distorting the phase. To do so, a band-

pass filter is usually applied; however, it is well-known that

a convolution also shares the property of band-pass filtering.

Using convolution not only removes the artifact but also

significantly reduces the complexity overhead from the EnK.

Convolution has also been effective in similar practices as

image as denoiser (Jain and Seung, 2008). In addition to the

convolution filtering property, they also allow a weighted

average of itself and its nearby neighbors’ signals, which

further reduces non-stationarity in the signals, therefore

noisy values.

For EEG signal X, filtering and/or resampling using

convolution can be defined as follows:

A =

l
∑

j=1

m
∑

i=1

xi,j ∗ ki,j, (4)

where A is artifact component and x is a signal filtered using kernel

k with dimensions l andm.

2.4 EnK

Following the assumption that EEG comprises periodic,

seasonal, and artifact components, we proposed the EnK, an

approach to decompose the EEG signal into three components to

encode time-dependent information better.

The periodic, seasonal, and artifact components of an EEG

signal X at time t can be represented as

Xt = Pt + St + At , (5)

where the signals Pt , St , and At are the periodic (Equation 2),

seasonal (Equation 3), and artifact components (Equation 4),

respectively, at time t.
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Using Equation (5), we can define enk as follows:

enk(X) =

{

w ∗ Xn + b, if t = 0,

Pt + St + At , if 0 ≤ t ≤ k,
(6)

where k is the number of time points (samples) in a given EEG

signal X with n number of channels.

3 Data description

We have used eight EEG data sets to evaluate our approach,

comprising a mix of EEG tasks that generally induce features in the

temporal, oscillatory, and temporal-oscillatory space. The data set

description is shown in Table 1.

3.1 pHRC

The cognitive conflict is an ERP elicited due to unexpected

visual stimuli in EEG data. The visual stimuli are repeatedly

presented to participants and asked to perform a certain task,

and then a sudden change in expected behavior happens. Due to

this, a negative deflection occurs 150–250 ms in the brain’s frontal

region, known as prediction error negativity, generally known to

be found in the 4–13-Hz (theta and alpha) range. In the task, a

participant performs the task in a real-world environment with

ANBOT (Singh et al., 2020). The goal is to classify conflict with

non-conflict conditions.

3.2 P300

The P300 is an ERP elicited due to visual stimuli in EEG data.

The visual stimuli are based on an oddball visual paradigm. In

this paradigm, participants were shown a non-frequent “target”

with frequent “non-target.” The P300 waveform is a large positive

deflection at ∼250–350 ms on the parietal cortex whenever the

target appears generally known to be found in the lower 01–4-Hz

(delta and theta) frequency range. The EEG data used here have

been taken from BCI Competition III (Dataset II; Blankertz et al.,

2005). The goal here is to classify EEG signals into the target with

non-targets.

3.3 MI and MRCP

Some neural activities contain both an ERP and an oscillatory

component. One particular example of this is the MRCP, which

can be elicited by voluntary movements of the hands, with features

embedded in the 0.05–10-Hz frequency range (Jia et al., 2022,

2023). It is observable through EEG signals along the central and

midline regions, contralateral to the hand or foot movement. The

MRCP has been used previously to develop motor control BCIs

for both healthy and physically disabled patients. The MRCP data

used here are taken fromBCI Competition II (Dataset IV; Blankertz

et al., 2004). The goal here is to classify the four voluntary

TABLE 1 Data description.

Data sets Channels SR Classes Dimension

P300 64 240 2 64× 240× 340

MI 22 250 2 22× 750× 1,296

pHRC 32 1,000 2 32× 1,200× 4,895

MRCP 28 1,000 4 28× 500× 316

DEAP 40 128 2 40× 4,032× 1,280

SR, sampling rate; P300, P300 visual-evoked potential; MI, motor imagery; pHRC, physical

human-robot collaboration; MRCP, movement-related cortical potential; DEAP, Dataset for

Emotion Analysis Using Physiological Signals.

movements from hand and feet. Following similar oscillatory

components due to imagined limb movement, we have also used

other data from BCI Competition IV (Dataset 2a; Naeem et al.,

2006). It contains four classes of limb movement. However, due to

limited data, we have focused on two classification classes.

3.4 Dataset for Emotion Analysis Using
Physiological Signals

The Dataset for Emotion Analysis Using Physiological Signals

(DEAP; Koelstra et al., 2011) is based on EEG, Electromyography

(EMG), respiration belt, plethysmograph, and temperature signals

while participants are watching the 1-minute-long music video

to induce four emotions (valences, arousals, like/dislike, and

dominance). We have used the same dataset for different labels of

four emotions (low/high). Therefore, four classification tasks were

performed for each emotion.

4 Baseline methods

We have used four baseline models. These baseline models

have been shown to generalize to different tasks in EEG signals

with optimal performance in decoding and classification. The EnK

approach has been used with these baseline models by adding a

layer after the first convolution layer (see Figure 2).

1. EEGNet (Lawhern et al., 2018) is a compact CNN architecture

and contains an input block, two convolutional blocks, and a

classification block. EEGNet replaces the traditional convolution

operation with a depthwise separable convolution inspired by

Xception (Chollet, 2017).

2. DeepConvNet (Schirrmeister et al., 2017) is deeper and hence

has many more parameters. It consists of four convolutional

blocks and a classification block. The first convolutional block

is specially designed to handle EEG inputs, and the other three

are standard convolution ones.

3. ShallowConvNet (Schirrmeister et al., 2017) is a shallow version

of DeepConvCNN, inspired by filter bank common spatial

patterns. Its first block is similar to the first convolutional block

of DeepConvNet, but with a larger kernel, a different activation

function, a different pooling approach, and a classification block.
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FIGURE 2

Illustration of uses of the encoding kernel with baseline models.

4. The RCNN, inspired by Liang and Hu (2015) contains five

recurrent convolution layers to learn temporal features from the

provided signals with a classification block.

4.1 Evaluation metrics and parameters
settings

The performance of the EnK is compared to EEGNet,

ShallowConvNet, DeepConvNet, and the RCNN. To compare, we

have updated the same model with and without enabling the EnK

layer and evaluated the mean squared error (MSE) and F1-score.

For the binary class, F1-score is calculated as absolute values,

but for the multiclass, the F1-score is the weighted average for

all labels. We have also compared the gradient-weighted class

visualization map (Grad-CAM; Selvaraju et al., 2017) of the

EnK after the first convolution with the first-layer output of the

baseline models for P300, MI, pHRC, MRCP, and DEAP data sets

(four conditions). It is noted that we have used the output of

DeepConvNet only for comparisons.

For the statistical analysis, we used IBM SPSS (IBM

Corporation, USA) to repeated measure analysis of covariance

followed by a post-hoc analysis for paired comparison using a

one-sample t-test.

The proposed model is fitted using the Adam optimization

algorithm with default parameters as defined by Schirrmeister

et al. (2017) and Lawhern et al. (2018). We ran a maximum of

200 training epochs with batch sizes ranging from 2 to 16 and

dropout ranging from 15 to 75% for all data sets with early stopping

after patience of 20 epochs. For all models, the learning rate was

default set to be 0.001. The input data have been divided 60, 20,

and 20%, respectively, for training, validation, and testing using

stratified sampling. We trained the model with baseline models

with the original structures and mostly original hyper-parameters

and compared them with the enabled structure after the first

convolution layer.

Each trained model has been saved together with the best

weights, validation/training loss, and validation/training accuracy.

All models were trained on amachine powered by NVIDIAQuadro

P5000 Graphics Processing Unit, Org: Original (GPU), with CUDA

9 and cuDNN v7, and developed using Keras.1

1 Keras: https://keras.io/.

5 Results and discussion

5.1 Performance comparison with and
without EnK

As shown in Table 2, we have compared the effect of the

EnK with standard EEGNet, ShallowConvNet, DeepConvNet, and

RCNN models. The results clearly showed that the EnK approach

significantly improvesMSE, F(1, 22)= 20.326, p= 0.000, compared

to the baseline models. In the post-hoc analysis to compare

the paired models with and without EnK, it was found the

EnK is significantly improved MSE from EEGNet (p = 0.030),

ShallowConvNet (p = 0.045), DeepConvNet (p = 0.048), and

RCNN (p= 0.026). However, as shown in Table 2, it can be seen the

EnK does not always improve the RCNN, and in some cases, such as

in the dominance and liking data sets, performance is comparable,

while for P300 and MI, it is significantly low. One potential reason

for the RCNN to work better than the EnK for some data sets is the

ability to learn recurrent information from data sets over several

layers. At the same time, the EnK module works only as one layer.

As a better measure, we also looked at the F1-score to better

understand how well the EnK improved performance compared

to baseline models. As it can be seen from Table 3 that the F1-

score significantly increases, F(1, 22) = 28.421, p = 0.000), for the

EnK compared to all baseline models. In the post-hoc analysis,

it was found that the EnK significantly improved from EEGNet

(p = 0.040) and ShallowConvNet (p = 0.006); however, there

is an increase in F1-score but statistically not significant for

DeepConvNet (p= 0.061) and RCNN (p= 0.056). It is to be noted

that given that very few sets of data sets are used for comparison,

there is always a possibility of not reaching enough statistical power

to provide statistical significance, although there are differences.

5.2 Grad-CAM data analysis

Out of curiosity, to learn and understand the behavior of

the EnK, we have also analyzed the gradient discovered for our

data set compared to baseline models. For simplicity, the raw

data (line graph from an EEG signal) has been overlayed in

Figure 3 (last column). It can be seen from Figure 3 (last column)

that EnK is successfully able to introduce time information in

the data as assumed. This information can be seen as vertical

lines representing the main features learned. For example, the

Frontiers inNeuroergonomics 06 frontiersin.org

https://doi.org/10.3389/fnrgo.2024.1287794
https://keras.io/
https://www.frontiersin.org/journals/neuroergonomics
https://www.frontiersin.org


Singh and Bianchi 10.3389/fnrgo.2024.1287794

TABLE 2 The MSE EEGNet, ShallowConvNet, DeepConvNet, and RCNN with and without EnK after the first convolution for P300, MI, pHRC, MRCP, and

DEAP (four categories) data sets. Except MRCP, all data sets have four classes.

EEGNet ShallowConvNet DeepConvNet RCNN

Data sets Org EnK Org EnK Org EnK Org EnK

P300 0.074 0.059 0.074 0.059 0.059 0.059 0.044 0.500

MI 0.485 0.369 0.231 0.458 0.481 0.431 0.192 0.500

pHRC 0.209 0.328 0.209 0.377 0.209 0.092 0.209 0.209

MRCP 0.438 0.438 0.453 0.422 0.391 0.344 0.422 0.438

Valence 0.406 0.244 0.430 0.450 0.402 0.450 0.566 0.434

Arousal 0.410 0.402 0.410 0.410 0.410 0.410 0.590 0.410

Dominance 0.371 0.379 0.379 0.379 0.379 0.379 0.621 0.621

Liking 0.332 0.332 0.336 0.324 0.332 0.328 0.332 0.332

Mean± SD 0.341± 0.14 0.319 ± 0.12 0.315 ± 0.13 0.36± 0.13 0.333± 0.14 0.312 ± 0.15 0.372 ± 0.21 0.43± 0.12

EEGNet ShallowConvNet DeepConvNet RCNN

Data sets Org EnK Org EnK Org EnK Org EnK

P300 0.074 0.059 0.074 0.059 0.059 0.059 0.044 0.500

MI 0.485 0.369 0.231 0.458 0.481 0.431 0.192 0.500

pHRC 0.209 0.328 0.209 0.377 0.209 0.092 0.209 0.209

MRCP 0.438 0.438 0.453 0.422 0.391 0.344 0.422 0.438

Valence 0.406 0.244 0.430 0.450 0.402 0.450 0.566 0.434

Arousal 0.410 0.402 0.410 0.410 0.410 0.410 0.590 0.410

Dominance 0.371 0.379 0.379 0.379 0.379 0.379 0.621 0.621

Liking 0.332 0.332 0.336 0.324 0.332 0.328 0.332 0.332

Mean± SD 0.341± 0.14 0.319 ± 0.12 0.315 ± 0.13 0.36± 0.13 0.333± 0.14 0.312 ± 0.15 0.372 ± 0.21 0.43± 0.12

MSE, mean squared error; RCNN, recurrent neural network; Org,; Enk, encoding kernel; P300, P300 visual-evoked potential; MI, motor imagery; pHRC, physical human-robot collaboration;

MRCP, movement-related cortical potential.; DEAP, Dataset for Emotion Analysis Using Physiological Signals. Best performance/value is highlighted in bold.

TABLE 3 The F1-score from EEGNet, ShallowConvNet, DeepConvNet, and RCNNwith/without EnK after the first convolution for P300, MI, pHRC, MRCP,

and DEAP (four categories) data sets. Except MRCP, all data sets have four classes.

EEGNet ShallowConvNet DeepConvNet RCNN

Data sets Org EnK Org EnK Org EnK Org EnK

P300 0.923 0.941 0.925 0.941 0.941 0.939 0.956 0.500

MI 0.663 0.662 0.785 0.667 0.638 0.670 0.808 0.500

pHRC 0.883 0.772 0.883 0.761 0.883 0.925 0.791 0.791

MRCP 0.563 0.546 0.544 0.573 0.601 0.651 0.578 0.563

Valence 0.409 0.742 0.587 0.621 0.605 0.621 0.434 0.566

Arousal 0.196 0.400 0.483 0.582 0.422 0.582 0.410 0.590

Dominance 0.272 0.199 0.271 0.550 0.229 0.550 0.379 0.379

Liking 0.078 0.095 0.271 0.499 0.075 0.023 0.668 0.668

Mean± SD 0.498± 0.31 0.545 ± 0.29 0.594± 0.25 0.649 ± 0.14 0.549± 0.3 0.62 ± 0.28 0.628 ± 0.21 0.57± 0.12

EEGNet ShallowConvNet DeepConvNet RCNN

Data sets Org EnK Org EnK Org EnK Org EnK

P300 0.923 0.941 0.925 0.941 0.941 0.939 0.956 0.500

MI 0.663 0.662 0.785 0.667 0.638 0.670 0.808 0.500

pHRC 0.883 0.772 0.883 0.761 0.883 0.925 0.791 0.791

MRCP 0.563 0.546 0.544 0.573 0.601 0.651 0.578 0.563

Valence 0.409 0.742 0.587 0.621 0.605 0.621 0.434 0.566

Arousal 0.196 0.400 0.483 0.582 0.422 0.582 0.410 0.590

Dominance 0.272 0.199 0.271 0.550 0.229 0.550 0.379 0.379

Liking 0.078 0.095 0.271 0.499 0.075 0.023 0.668 0.668

Mean± SD 0.498± 0.31 0.545 ± 0.29 0.594± 0.25 0.649 ± 0.14 0.549± 0.3 0.62 ± 0.28 0.628 ± 0.21 0.57± 0.12

RCNN, recurrent neural network; Org,; Enk, encoding kernel; P300, P300 visual-evoked potential; MI, motor imagery; pHRC, physical human-robot collaboration; MRCP, movement-related

cortical potential; DEAP, Dataset for Emotion Analysis Using Physiological Signals. Best performance/value is highlighted in bold.

last column for the P300 data set shows vertical lines, which,

according according to Blankertz et al. (2005), represent a

positive peak at 300 ms, that is, commonly known as P300

in the ERP data. This result clearly indicates that EnK can

enhance P300 time-bounded information in data, which results

in significant improvement in performance. Similarly, seeing

the last column of MI data set shows that there are certain

phenomena at several time points over the trial. All of them

have been picked up by the EnK compared to the baseline

models. However, the case of dominance and pHRC is an open

question to be investigated from a neuroscience point of view.

Something is happening that is highly related to the labeled

information, but there is no clear literature to explain it. On

the contrary, these gradient results could be used to further

understand the phenomenon happening in the brain concerning

the presented stimuli.

5.3 EnK approach and implications

These results clearly show that the EnK performs better than

other comparable models, primarily due to its unique approach of

encoding temporal information directly into the CNN architecture,

as hypothesized. Existing CNNs typically focus on learning spatial

and temporal features, but they struggle to extract information

from time-dependent features, which are crucial for analyzing EEG

signals. EnK addresses this limitation by decomposing the EEG

signal into periodic, seasonal, and artifact components during the

vertical convolution operation, enabling the CNN to learn both

local and global time-dependent features effectively.

In addition to better performance, another significant

advantage of the EnK is its ability to integrate temporal

encoding into any existing CNN architecture without requiring

domain-specific knowledge or handcrafted features. This
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FIGURE 3

Grad-CAM from the original model (first column), with EnK (second column), and their di�erence (third column) for all datasets (P300, MI, pHRC,

MCR, and DEAP data sets). The first and second columns are Grad-CAM output and therefore do not seem to have any value. However, the last

column is overlayed with the original data (line graph) used to produce Grad-Cam results. The red box in the last column indicates the importance of

the feature identified by the EnK, which is generally found in neuroscience literature. Grad-CAM, gradient-weighted class activation mapping; Enk,

encoding kernel; P300, P300 visual-evoked potential; MI, motor imagery; pHRC, physical human-robot collaboration; MRCP, movement-related

cortical potential; DEAP, Dataset for Emotion Analysis Using Physiological Signals.

generalizability makes it applicable across various EEG tasks and

data sets.

The EnK could be applied in real-world scenarios, such as BCI

applications, to significantly enhance performance. For example,

in BCI applications for assistive technologies, the EnK’s improved

performance can lead to more reliable and efficient systems for

people with disabilities. Additionally, the ability to automate the

extraction of time-dependent features makes it more accessible and

practical for broader use cases. The EnK has also shown potential

as a tool for further investigating new or existing phenomena in

cognitive neuroscience and potentially beyond.

6 Conclusion and future work

In this work, we have introduced the EnK approach, which

encodes time information in CNNs. The EnK presents the data’s

time information by decomposing the signals into periodic,

seasonal, and artifact components in an additive form before

the model learns features. The EnK has been evaluated using

various EEG data sets from different paradigms with varying sizes,

channels, and sampling rates. Our results clearly show that the

EnK is a promising approach compared to the state-of-the-art

models because it leverages time-dependent features. In addition,

the EnK shows a potential use case to explore new features and

phenomena in EEG signals. Besides several advantages, the EnK

can be used with any existing model and is independent of its

architecture. We plan to introduce further refinements in the

EnK approach and further explore various time-series signals in

future work.
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