
TYPE Mini Review

PUBLISHED 21 February 2024

DOI 10.3389/fnrgo.2024.1341790

OPEN ACCESS

EDITED BY

David Perpetuini,

University of Studies G. d’Annunzio Chieti and

Pescara, Italy

REVIEWED BY

Federica Gioia,

University of Pisa, Italy

Sergio Rinella,

University of Catania, Italy

*CORRESPONDENCE

Marc Welter

marc.welter@inria.fr

RECEIVED 20 November 2023

ACCEPTED 19 January 2024

PUBLISHED 21 February 2024

CITATION

Welter M and Lotte F (2024) Ecological

decoding of visual aesthetic preference with

oscillatory electroencephalogram features—A

mini-review. Front. Neuroergon. 5:1341790.

doi: 10.3389/fnrgo.2024.1341790

COPYRIGHT

© 2024 Welter and Lotte. This is an

open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Ecological decoding of visual
aesthetic preference with
oscillatory
electroencephalogram
features—A mini-review

Marc Welter* and Fabien Lotte

Inria Center at the University of Bordeaux/LaBRI, Talence, France

In today’s digital information age, human exposure to visual artifacts has reached

an unprecedented quasi-omnipresence. Some of these cultural artifacts are

elevated to the status of artworks which indicates a special appreciation of

these objects. For many persons, the perception of such artworks coincides with

aesthetic experiences (AE) that can positively a�ect health and wellbeing. AEs are

composed of complex cognitive and a�ective mental and physiological states.

More profound scientific understanding of the neural dynamics behind AEs

would allow the development of passive Brain-Computer-Interfaces (BCI) that

o�er personalized art presentation to improve AEwithout the necessity of explicit

user feedback. However, previous empirical research in visual neuroaesthetics

predominantly investigated functional Magnetic Resonance Imaging and Event-

Related-Potentials correlates of AE in unnaturalistic laboratory conditions which

might not be the best features for practical neuroaesthetic BCIs. Furthermore,

AE has, until recently, largely been framed as the experience of beauty or

pleasantness. Yet, these concepts do not encompass all types of AE. Thus,

the scope of these concepts is too narrow to allow personalized and optimal

art experience across individuals and cultures. This narrative mini-review

summarizes the state-of-the-art in oscillatory Electroencephalography (EEG)

based visual neuroaesthetics and paints a road map toward the development

of ecologically valid neuroaesthetic passive BCI systems that could optimize

AEs, as well as their beneficial consequences. We detail reported oscillatory EEG

correlates of AEs, as well as machine learning approaches to classify AE. We also

highlight current limitations in neuroaesthetics and suggest future directions to

improve EEG decoding of AE.

KEYWORDS
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1 Introduction

Modern humans live in environments in which we are almost constantly confronted

with artifacts. Many of these artifacts primarily serve instrumental purposes, i.e., they

are designed to fulfill specific practical goals. Although, the design of many of these

artifacts also take aesthetic considerations into account, a subset of artifacts are especially

appreciated for their aesthetic qualities and designated with the label “art” or “artwork”.

The field of neuroaesthetics studies the neural correlates of aesthetic experience (AE)

(Vessel, 2022). While some of this research looks at aesthetics from the lens of economics
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and aims to discover sensory objects feature that increase economic

interests such as product sales (Costa-Feito et al., 2019), an

increasing number of studies report positive correlations between

AEs and health and wellbeing (e.g., Fancourt and Finn, 2019;

see Skov and Nadal, 2023, for a critique of such reports). With

the internet and social media, many humans have now an

unprecedented access to artworks. The abundance of available

digital art together with advances in machine learning could

allow for the personalization of AE with brain-computer-interfaces

(BCI), and thus increase a kind of user experience that might

positively affect human existence. BCIs are systems that allow

direct communication between computers and brain signals (Vidal,

1973). For example, BCIs that decode correlates of AE could

be used in combination with recommender systems that curate

personalized art exhibitions in virtual museums in order to

optimize visitor satisfaction. Although, the personalization of AE

based on behavioral data already exists in digital spaces such as

social media, such personalization algorithms often require explicit

user feedback which can interrupt AE and thereby diminish user

experience.

In order to alleviate this current limitation of AE

personalization, the development of human-machine-interfaces

that implicitly measure individual AE in real time offers a

promising lead. One type of human-machine-interface that seems

particularly suited to this endeavor are passive non-invasive

BCI such as those based on Electroencephalography (EEG).

Previous neuroimaging during AEs focused mostly on correlating

beauty/pleasantness ratings with functional Magnetic Resonance

Imaging (fMRI) signals (Vessel, 2022) and EEG Event-Related-

Potentials (ERPs) (Jacobsen and Klein, 2022) in unecological lab

conditions. While fMRI cannot be used in ecological conditions,

EEG is used in many environments, even real museums (King

and Parada, 2021). However, aesthetic preference does not

necessarily arise time-locked to stimulus onset and might develop

over larger timescales (Carbon, 2023). Thus, in addition to

ERPs, EEG oscillatory features can contain information about

aesthetic preference (Strijbosch et al., 2022). Therefore, EEG

oscillatory features could be promising for aesthetic passive BCIs in

ecological conditions outside the lab. However, the neuro-cognitive

mechanisms of art experience in general and art preference in

particular, remain unclear and more empirical research on neuro-

aesthetics is required. This article summarizes the state-of-the-art

in aesthetic preference decoding based on oscillatory EEG features

and develops a road map toward the development of ecologically

valid passive EEG-based BCI systems that could personalize user

AE.

2 Aesthetic experience and art
preference

AE can be defined as “a perceptual experience that is evaluative,

affectively absorbing and engages comprehension (meaning)

processes” (Vessel, 2022). This definition corresponds to the

Aesthetic Triad Model (Chatterjee and Vartanian, 2014) which,

based mostly on experimental aesthetics fMRI research, considers

AE emerging from the interaction of three brain systems: sensory-

motor, emotion-valuation, and knowledge-meaning. Similarly,

Schaeffer (2015) postulates three main components of AE:

attention, affect, and reward. To be precise, Schaeffer uses the

French word “emotion” instead of “affect,” but following the

definitory framework proposed by Schiller et al. (2023), we use

the more general term “affect” composed of valence, arousal,

and motivation. In this framework, “emotions” are considered a

subset of conscious affects. Although, AEs are often related to the

perception of artworks, the definitions above remains neutral with

regards to the categorical status of the perceived objects, and it

seems plausible that non-art objects, e.g., natural landscapes, can

evoke similar AEs to art-related AEs. Nonetheless, the scope of

this mini-review is constrained to the decoding of AEs during art

watching which seems the most practical condition for improving

AE with a BCI.

It seems evident that attentional information regulation is

needed for any kind of experience. And indeed, works of art often

invite attention. However, attentional EEG markers alone might

not be ideal or sufficient features for AE decoding. Both negatively

and positively valenced stimuli draw high amounts of attention

due to the evolutionary significance of searching rewards and

avoiding threats (Karim et al., 2017). Furthermore, both internally

and externally oriented attentional mechanisms are involved in the

processing of visual AE (Ansorge et al., 2022).

AEs cover a vast spectrum of different affective experiences

(Menninghaus et al., 2018) which makes it very difficult to train

a machine learning model to discriminate between all different

classes of AE (Mühl et al., 2014). However, as we are primarily

concerned with improving AE of art watching, we can simplify the

problem to decoding and ranking aesthetic preference for various

art stimuli.

Many neuroaesthetic fMRI studies reported activation of

reward and pleasure processing areas in the brain during aesthetic

experiences (Chuan-Peng et al., 2019). In the aesthetic literature,

“pleasantness” often refers to objective stimulus features related

to beauty (e.g., harmony, symmetry) (e.g., Babiloni et al., 2013).

We, on the other hand, define “pleasantness” as related to an

activation of hedonic brain systems that might be independent

of objective stimulus properties. As Berridge and Kringelbach

(2015) show, the reward system of the human brain consists of

two major independent pathways, one related to pleasure and

“liking” generated by opioids and endocannabinoids, and another

one related to motivation and “wanting” produced by dopamine.

Furthermore, activation of these reward circuits may not lead

to the conscious experience of “liking” or “wanting” (Berridge

and Winkielman, 2010). These types of experiences are difficult

to decode, because training labels come from subjective aesthetic

ratings. Therefore, preferring one aesthetic stimulus over another

aesthetic stimulus is not reducible to feeling a higher amount of

pleasure while perceiving this stimulus compared to the other

one. Nor is beautiful art always liked more than non-beautiful

art (Muth et al., 2020). The independence of these two reward

systems has led scientists in the tradition of Kantian aesthetics

(Kant, 1983) to affirm the nature of aesthetic appreciation as

inherently disinterested (e.g Sarasso et al., 2020). Indeed, empirical

data suggest that aesthetic pleasure does not need to be correlated

with extrinsic motivations such as the desire to own or control

the appreciated aesthetic object (Chatterjee and Vartanian, 2016).

However, from this it does not follow that aesthetic appreciation
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is essentially disinterested, because even though the aesthetic

object might not be perceived in an instrumental fashion to fulfill

an external goal, beholders might be intrinsically motivated and

therefore interested to interact with an aesthetic object, because

they will experience intrinsic rewards through this interaction.

It has been shown that motor activity can be suppressed during

AEs such as the perception of beauty (Kawabata and Zeki, 2004).

When Sarasso et al. (2020) interpret this phenomenon as evidence

for aesthetic disinterest, they miss that movement is often a

constitutional part of AE and that moments of stillness can lead

to further motor interaction with an artwork (Kühnapfel et al.,

2023). Because AEs are intrinsically rewarding, they motivate to

prolong the AE and to search for more AEs in the future (Reeves,

1989). Still, the exact role of rewards in AE remains controversial.

Some scientists claim that aesthetic appreciation can be reduced to

the valuation of sensory objects (Skov and Nadal, 2020), whereas

others disagree with this reduction (Vessel, 2022). Nonetheless,

we hypothesize that EEG correlates related to reward processing

should be discriminative for aesthetic preferences.

3 Oscillatory EEG correlates of visual
aesthetic preference

As many Machine Learning classification algorithms require

hand-crafted features, the following section will describe oscillatory

EEG correlates of visual aesthetic preference that could constitute

informative features.We conducted a literature review by searching

public databases, as well as references in the neuroaesthetic

literature. The search query was: “+aesthetic ∗ |art ∗ |paint ∗

+EEG|brain|neur ∗ +oscillat ∗ |wav ∗ |frequen ∗ |rhythm.” We

only included studies reporting oscillatory EEG correlates of AE

for static visual art stimuli in naturalistic conditions. These findings

are discussed as potential correlates of attention, affect and reward

during AE (see Table 1 for a summary).

3.1 Attention

Although correlates of visual attention are widely studied

with EEG and harnessed in BCI (Nam et al., 2018), to our

knowledge only Rawls et al. (2021) report rhythm modulations

commonly associated with visual attention that were informative

of art preference. Instructing 44 subjects to give preference ratings

to binarized Jackson Pollock paintings and computer generated

cantor fractals after 4s viewing time, they found a suppression of

the parietal alpha rhythm correlated with art preference. Parietal

alpha modulations have been implicated in attentional processing

(Peylo et al., 2021) and the Default Mode Network (DMN) which

has been linked to aesthetically moving art watching (Vessel et al.,

2012, 2013). However, the authors noted that it might be related to

stimulus properties such as visual complexity and not necessarily

be related to preference. Another brain rhythm associated with

the DMN, the theta rhythm, was investigated by Strijbosch et al.

(2022) during aesthetically moving art watching, but they found no

relation between theta modulations and AE.

3.2 A�ect

Many of the brain areas involved in affective processing are

located subcortically which makes it difficult to measure their

activity with EEG (Mühl et al., 2014). Nonetheless, beta suppression

has been reported during empathy and affective processing in

general (Schubring and Schupp, 2019). Herrera-Arcos et al. (2017)

conducted a mobile EEG study (#subjects = 25) during an Otto

Dix exhibition in a real museum with a commercial Muse EEG.

Their analyses show a correlation between beta suppression and

artwork preference. This beta suppression was interpreted as

related to emotional engagement by the authors. However, it is

also possible that the measured beta suppression was generated

by motor activity, especially under mobile recording conditions

(Pope et al., 2022). Still, motor activity could potentially be related

to affective processing and informative of aesthetic preference

(Kühnapfel et al., 2023).

3.3 Reward

fMRI scans during AEs often report activation of brain areas

involved in reward processing (e.g., Kawabata and Zeki, 2004).

Unfortunately, similarly to affective processing, many reward

related areas in the brain are also subcortical and hard to

measure. Still, reward related-signals in the frontal cortex could

be measurable by frontal EEG electrode, an hypothesis which is

strengthened by a multitude of experimental reports of a relation

between frontal alpha asymmetry (FAA) in the EEG and reward

processing across different reward modalities (see Sabu et al., 2022

for a review). Although, FAA has been linked to pleasure and

liking, some suggest that it is generated by motivational dopamine

release (Wacker et al., 2013). Babiloni et al. (2013) collected

mobile EEG data (#subjects = 25) during a Dutch Golden Age

exhibition in a museum and found a correlation between FAA and

beauty/pleasantness ratings. Babiloni et al. (2015) reproduced this

correlation during a Titian exhibition (#subjects = 27). Cheung

et al. (2019) also reported a link between FAA and beauty ratings

(#subjects = 20) for Western art displayed on a screen. Therefore,

FAA could be a good marker for an AE that motivates to prolong

the AE or to reproduce it in the future. However, one has to

keep in mind that FAA is related to motivational processing in

general and not limited to a particular valence (Lacey and Gable,

2022). Thus, artworks that evoke anger or other negatively valenced

approach-motivation related experiences could also generate FAA.

3.4 Mixed component

Strijbosch et al. (2022) studied the neural dynamics

during aesthetically moving experiences with EEG. Showing

35 participants a wide range of diverse artworks for 6 s, they

reported a gamma increase 1 s after stimulus presentation until the

end of the trial. This was interpreted as a correlate of savoring, a

process of up-regulation of positive affect by sustaining attention

on an experience. Similar gamma modulations were found with

regards to other types of positively affecting AE, such as enjoying
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TABLE 1 This table summarizes EEG rhythmmodulations correlated to attentional, a�ective and reward components of AE.

EEG markers Attention A�ect Reward Modulation Mental correlates

Frontal alpha

asymmetry

x x ↑ Motivation (Wacker et al., 2013)

Pleasure (Babiloni et al., 2013)

Occipital/parietal

alpha

x ↓ Attention (Peylo et al., 2021)

DMN (Vessel et al., 2012)

Pleasure (Rawls et al., 2021)

Frontal beta x x ↓ Engagement (Herrera-Arcos et al., 2017)

Empathy (Schubring and Schupp, 2019)

Centroparietal

gamma

x x x ↑ Savoring (Strijbosch et al., 2022)

“x” denotes hypothesized links between EEG markers and components of AE, whereas “↑” and “↓” correspond to the directions of oscillatory modulations, i.e., “↑” indicates that this EEG

marker’s value increases for preferred artworks. The last column lists possible mental correlates related to these modulations.

the taste of chocolate (Berk et al., 2016; Silver et al., 2018). EEG

gamma rhythms are often contaminated by muscle artifacts and

are, therefore, commonly filtered out in EEG analysis (Jeunet et al.,

2018). And although, Strijbosch et al. (2022) followed a rigorous

artifact removal protocol, muscle contamination remains possible.

Now that we have reviewed potential oscillatory EEG markers

of aesthetic preference, we will discuss their use as features for

machine learning classification of AE.

4 Classification of aesthetic
preference based on oscillatory EEG
markers

Almost no publications reporting aesthetic preference

classification results based on EEG signals exist to our knowledge.

Fraiwan et al. (2023) reported an aesthetic enjoyment classification

accuracy above 98% using a deep neural network and Multiscale

Entropy features on a mobile data set from Cruz-Garza et al.

(2017) (#subjects = 28). EEG Entropy measure have been shown

to contain meaningful information for emotion decoding (Patel

et al., 2021) and decoding of aesthetical preference of music

(Carpentier et al., 2019). However, EEG classification almost never

yields such high performance in practice and we should remain

skeptical (Jeunet et al., 2018). The data could contain informative

muscular artifacts, as the authors do not report any artifact removal

protocol or the trained model could have been overfitted on the

data, as deep learning models often are (Goodfellow et al., 2016).

Nonetheless, brain entropy measures could be useful for visual

aesthetic preference decoding.

Mazzacane et al. (2023) used a novel classification algorithm

based on temporal decision trees (Sciavicco and Stan, 2020)

to extract symbolic rules ralating EEG amplitudes of specific

frequency bands and electrode locations to aesthetic liking or

disliking in an ecological museum context (#subjects = 16). The

authors report high classification performance using features from

beta and gamma bands that could be related to affective and

reward processing. However, we remain skeptical to their claim

that their temporal decision tree classification algorithm makes

muscle artifact removal unnecessary and hypothesize that the beta

and gamma activity used by the classifier could be generated by

muscular and movement artifacts since they were not controlled

for, cleaned nor removed.

Surprisingly, more established EEG classification algorithms

(see Lotte et al., 2018, for a review) have not been applied to

AE decoding to our knowledge, and should be explored in the

neuroaesthetic domain. Deep learning classifiers (e.g., Lawhern

et al., 2016; Schirrmeister et al., 2017) might be worth investigating

as well, because our theoretical and empirical knowledge about

which EEG features contain discriminant information for AE

decoding is lacking. However, large public datasets required to

benchmark decoding algorithms of AE are missing (Jayaram and

Barachant, 2018). For now, BCI classification algorithms based on

Riemannian Geometry seem to work best and often outperform

deep learning methods (Congedo et al., 2017; Roy et al., 2022)

which is why some state-of-the-art EEG BCI decoding implements

Riemmanian Geometry in deep neural network architectures (e.g.,

Kobler et al., 2022).

5 Discussion

Our literature search yielded six publications that investigated

oscillatory EEG markers of AE that reported EEG modulations in

alpha, beta and gamma frequency bands. This variability could be

explainable by different experimental protocols, e.g., artworks used

and aesthetic ratings. Thus, robust EEG features to decode aesthetic

preference that generalize to all types of AE remain unclear.

5.1 Pitfalls

We related specific EEG frequency bands with attentional,

affective and reward-related components of AE, however neural

rhythms can not be one-to-one mapped to mental states (Brouwer

et al., 2015). Furthermore, EEG measurements suffer from high

variability within and between subjects and even data from the

same subject might be very different if recorded at different times

(Fairclough and Lotte, 2020). Additionally, it has been shown

that context influences AE, and AEs in laboratory conditions are

quite different from AE in the wild (Carbon, 2020). As such,

we do not know whether correlates of AE discovered during a

laboratory experiment will generalize to natural contexts outside

the laboratory. To our knowledge, only FAA has been reported
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in both conditions. However, in experimental conditions, even in

real museum settings, subjects often have to look at an affective

stimulus, even if they would prefer not to, which influences FAA

(Lacey and Gable, 2022).

Due to the need of a preference groundtruth, and without direct

access to reward processing information in the brain, aesthetic

preference decoding has to rely on explicit rating tasks that assign a

subjective value to an artwork. This explicit aesthetic judgment task

can introduce confounds, as shown by ERPs that only appear with

aesthetic rating tasks (Höfel and Jacobsen, 2017). Similarly, some

EEG oscillations might be related to aesthetic judgment and not AE

per se. Therefore, these might not appear in natural art watching

conditions.

Different artworks might evoke very different AEs and

consequently different EEG signals. Additionally, various visual

stimulus features are known to affect the EEG signal such as

luminance (Eroğlu et al., 2020) or complexity (Rawls et al., 2021).

Therefore, it remains unclear, whether empirical results gathered

with one type of art stimuli will generalize to other types of art.

Last, but not least, natural visual AE is an embodied experience that

involves motor processes such as eye movements. Therefore, EEG

data of such experiences should be subjected to similar rigorous

artifact removal protocols as other mobile EEG imaging scenarios

(Gorjan et al., 2022).

5.2 Future work

It was mentioned before that the subcortical location of many

reward and affect processing areas involved in aesthetic processing

makes EEG decoding difficult. Nonetheless, their activity can

be estimated using computational modeling. Singer et al. (2023)

used fMRI-informed EEG models of reward processing to decode

activity from the ventral striatum using EEG and demonstrated

good model performance across aesthetic and non aesthetic

domains, as well as across subjects. Another possibility that

could improve decoding of aesthetic appreciation would be to

use EEG source localization algorithms with realistic headmodels

and define reward areas as regions of interest. Although EEG

source localization is limited in its accuracy, empirical results have

shown that extracting information from source localized regions

of interest can improve classification performance (Edelman

et al., 2019). One limitation of this approach is that source

localization algorithms are computationally expensive. Potentially,

investigating functional connectivity of EEG electrodes (Gonzalez-

Astudillo et al., 2022), might be an alternative and/or a complement

to anatomical source space feature extraction. Brain networks such

as the DMN are activated during AE (Vessel, 2022). Kontson et al.

(2015) reported increased functional connectivity between frontal

and parieto-occipital EEG electrodes during art watching compared

to a baseline. However, they did not investigate functional

connectivity for different aesthetic preference levels.

Finally, AE is not exhausted by attention, affect, and reward,

but also includes semantic and motor processes. While decoding

semantic content in EEG signals is very difficult (e.g., Gifford

et al., 2022), EEG motor correlates are relatively well studied in

BCI (Yuan and He, 2014). Neuroaesthetic research has shown

that art watching can activate motor related brain areas which

could be related to motor simulation (e.g., Umiltá et al., 2012)

and empathy (Gallese, 2017). Unfortunately, the link between

embodied cognition and art appreciation has not been shown using

neuroimaging. However, correlations between motor priming and

art appreciation have been reported (e.g., Ticini et al., 2014). We

hypothesize that EEG correlates of motor control such as mu

rhythm modulation could, therefore, be informative of AE.

6 Concluding remarks

Neuroaesthetic research on AE decoding is still in its infancy.

We reviewed sparse and inconsistent reports of EEG oscillatory

correlates of AE. Although, we focused on AE of visual art here,

empirical data suggests that other AEs are not fundamentally

different (Vessel, 2022). Thus, some of the neural correlates of

art preference reviewed here could generalize to other types of

preference. Still, our focus on EEG for AE decoding constitutes

a limitation. Other physiological signals, e.g., heart rate and skin

conductance, are informative of affective states in general (Shu

et al., 2018; Rinella et al., 2022) and of AE in particular (Kühnapfel

et al., 2023). Indeed, combining EEGwith these signals can improve

mental state classification (Hogervorst et al., 2014) and should

be explored for AE decoding. Overall, there remain a number

of challenges to solve before BCI could reliably and rigorously

decode AE from EEG, for different artworks and different contexts.

We hope this mini-review modestly contributed to identify these

challenges and to propose relevant directions for future works.
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