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Introduction: To understand brain function in natural real-world settings, it

is crucial to acquire brain activity data in noisy environments with diverse

artifacts. Electroencephalography (EEG), while susceptible to environmental

and physiological artifacts, can be cleaned using advanced signal processing

techniques like Artifact Subspace Reconstruction (ASR) and Independent

Component Analysis (ICA). This study aims to demonstrate that ASR and ICA

can e�ectively extract brain activity from the substantial artifacts occurring while

skateboarding on a half-pipe ramp.

Methods: A dual-task paradigm was used, where subjects were presented with

auditory stimuli during skateboarding and rest conditions. The e�ectiveness of

ASR and ICA in cleaning artifacts was evaluated using a support vector machine

to classify the presence or absence of a sound stimulus in single-trial EEG data.

The study evaluated the e�ectiveness of ASR and ICA in artifact cleaning using

five di�erent pipelines: (1) Minimal cleaning (bandpass filtering), (2) ASR only, (3)

ICA only, (4) ICA followed by ASR (ICAASR), and (5) ASR preceding ICA (ASRICA).

Three skateboarders participated in the experiment.

Results: Results showed that all ICA-containing pipelines, especially ASRICA

(69%, 68%, 63%), outperformed minimal cleaning (55%, 52%, 50%) in single-trial

classification during skateboarding. The ASRICA pipeline performed significantly

better than other pipelines containing ICA for two of the three subjects, with

no other pipeline performing better than ASRICA. The superior performance of

ASRICA likely results from ASR removing non-stationary artifacts, enhancing ICA

decomposition. Evidenced by ASRICA identifying more brain components via

ICLabel than ICA alone or ICAASR for all subjects. For the rest condition, with

fewer artifacts, the ASRICA pipeline (71%, 82%, 75%) showed slight improvement

over minimal cleaning (73%, 70%, 72%), performing significantly better for two

subjects.

Discussion: This study demonstrates that ASRICA can e�ectively clean artifacts

to extract single-trial brain activity during skateboarding. These findings a�rm

the feasibility of recording brain activity during physically demanding tasks

involving substantial body movement, laying the groundwork for future research

into the neural processes governing complex and coordinated bodymovements.

KEYWORDS

EEG, auditory evoked potential, artifact, machine learning, ASR, Independent
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Introduction

It was once widely maintained that successful brain recording

using head mounted EEG was only possible under very strict

laboratory conditions that included recording while sitting still

with very little head and body movement within an electrically

shielded and acoustically attenuated room (Luck, 2014). With the

advent of more portable EEG hardware and the development

of sophisticated artifact cleaning signal processing methods,

neuroergonomic research has been conducted during such real-

world activities as walking (Gwin et al., 2010; Kline et al., 2015;

Jacobsen et al., 2020), running (Gwin et al., 2010; Gorjan et al.,

2022), playing the guitar (Muller et al., 2013; Sasaki et al., 2019);

cycling (Zink et al., 2016; Scanlon et al., 2019), driving in cars

(Zhang et al., 2015), and flying in airplanes (Callan et al., 2015,

2018).

The goal of this study is to objectively assess the extent

to which brain related electroencephalography EEG can be

successfully recorded during sports activity requiring considerable

body movement. In this case we are particularly interested in

skateboarding on a half-pipe ramp. This research is important

in establishing EEG based methodology that can be used for

neuroergonomic investigation of brain function in natural real-

world settings. To better understand how the brain functions it

is critically important to move outside of the laboratory setting

and investigate it in natural real-world environments and situations

(Parasuraman and Rizzo, 2008; Makeig et al., 2009; Gramann et al.,

2014, 2021; Ladouce et al., 2017; Callan and Dehais, 2018; Dehais

et al., 2020; Fairclough and Lotte, 2020).

ASR and ICA are two artifact cleaning pre-processing methods

that have been shown to improve brain related EEG signal in

numerous experiments (Mullen et al., 2013; Callan et al., 2015;

Kothe and Jung, 2015; Chang et al., 2020; Gorjan et al., 2022).

Humanmovement related artifacts (in the case of gait) are complex

and difficult to detect and cannot be removed by simple artifact

cleaning methods such as band-pass filtering (Kline et al., 2015;

Gorjan et al., 2022). ASR (Artifact Subspace Reconstruction) is

an automatic method designed for the removal of non-stationary

components from multi-channel EEG data (Mullen et al., 2013;

Kothe and Jung, 2015; Chang et al., 2020; Gorjan et al., 2022). The

technique involves employing a sliding window on the EEG data

and applying PCA (Principal Component Analysis) decomposition

to each window. ASR automatically detects and utilizes clean

segments of data to establish thresholds for rejecting components

with large variance. Subsequently, the channel data is reconstructed

from the components that are retained (Chang et al., 2020;

Gorjan et al., 2022). Independent Component Analysis (ICA)

in the context of EEG refers to a signal processing technique

used to automatically separate a multichannel EEG recording

into “maximally” temporally independent and spatially stationary

sources each representing a different underlying physiological

activity and/or artifact (Makeig et al., 1996, 2004; Onton and

Makeig, 2006; Artoni et al., 2018; Gorjan et al., 2022). This allows

for the isolation and identification of various brain-related and

non-brain-related signals, such as physiological artifacts (e.g., eye

movement and muscle activity), motion artifacts, and specific

brain related activities, contributing to the overall EEG recording.

Combining ASR and ICA is thought to improve overall artifact

cleaning of the EEG signal for extraction of brain related activity

(Gorjan et al., 2022). This is partly a result of ASR being able

to remove non-stationary transient artifacts from the EEG data.

Non-stationary artifacts in EEG can arise from such things as

impedance changes due to headset motions as well as transients

caused by abrupt movement, impact, or other physiological or

environmental factors (Hsu et al., 2016; Chang et al., 2020). These

types of transient artifacts are expected in real-world conditions

characteristic of sports in general. Non-stationary transient artifacts

are often problematic for ICA decomposition because they violate

ICA’s assumption of spatiotemporal stationarity of the data making

it difficult for decomposition to converge which may cause greater

mixing of underlying brain sources and artifacts into single

components. As a consequence of ASR’s preceding removal of

transient non-stationary artifacts from the EEG data, there is an

enhancement in the effectiveness of ICA decomposition (Chang

et al., 2020). It should be noted that there are variants of ICA that

are better able to deal with non-stationarities in the EEG data such

as ORICA (Hsu et al., 2016) and AMICA (Palmer et al., 2007). The

combination of ASR and ICA has been used successfully to extract

relevant brain activity in many EEG studies (Callan et al., 2015,

2018, 2023; Sasaki et al., 2019; Gorjan et al., 2022).

Before utilizing EEG for a new experimental paradigm (in

this case skateboarding on a half-pipe ramp), it is important to

validate artifact cleaning methods using a dual task paradigm for

which characteristic brain activity is known while concurrently

performing the new task that lacks ground truth for distinguishing

between noisy and clean samples. The dual-task paradigm has

been used in several studies to validate that extraction of brain

related activity is possible in real-world situations including

walking/running (Gwin et al., 2010), cycling (Zink et al., 2016;

Scanlon et al., 2019), electric skateboarding (Robles et al., 2021),

and flying airplanes (Callan et al., 2015). All of these studies

used evaluation of the event-related potential to auditory or visual

stimuli for validating the presence of brain related EEG activity. The

method employed in the Callan et al. (2015) study is unique in that

it employed the use of machine learning to evaluate EEG cleaning

performance at the single trial level unlike the other studies that

required averaging over multiple trials.

The Callan et al. (2015) study demonstrated that by utilizing

ASR and ICA to clean the EEG data that single trial auditory

responses could be classified (presence or absence of an auditory

stimuli) using machine learning techniques while piloting an open

cockpit biplane (Callan et al., 2015). The classification performance

while piloting on the single trial EEG data was greatly improved

by utilizing ASR and ICA (77.3%) compared to minimal artifact

cleaning using band-pass filtering (66.1%). The control condition,

in which the subject sat in the biplane on the ground with the

engine and avionics off, showed that classification performance was

relatively good both with minimal artifact cleaning (77.4%) as well

as with artifact cleaning using ASR and ICA (78.5%) (Callan et al.,

2015). The results of the Callan et al. (2015) study demonstrate

that it is possible (at least for the subject under investigation and

likely extrapolates to others as well) to extract brain related EEG

activity at a single trial (or continuous) level by utilizing ASR and

ICA artifact cleaning methods.
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In this study, we utilize this same dual task paradigm (Callan

et al., 2015) to determine if it is possible to extract brain

related single trial EEG during skateboarding on a half-pipe

ramp by using machine learning methods to assess classification

performance of detecting the presence vs. the absence of a sound

stimuli at the single trial level. Skateboarding is likely to be

particularly challenging for artifact cleaning as there is likely to be

considerable artifacts resulting from motion of the body, muscle

activity, and impact of the board on the ramp (resulting in non-

stationary transient artifacts). The experiment consists of two task

conditions skateboarding on the ramp and resting (sitting still)

while listening to auditory stimuli. Five different artifact cleaning

pipeline conditions were tested (minimal cleaning, ASR alone, ICA

alone, ICA with ASR after, and ASR before ICA) to assess the

contribution of the use of ASR and ICA alone as well as the ordering

of the processing steps. Based on the ability of ASR to remove

non stationarities in EEG that facilitates ICA decomposition, it

is predicted that ASR prior to ICA should show the best artifact

cleaning performance.

Methods

Subjects

Three male subjects with expert level skateboarding skill

participated in this experiment. The ages of the subjects were as

follows: Subject 1 = 23 years; Subject 2 = 25 years; Subject 3

= 29 years. All of the subjects reported having normal vision

and normal hearing. Two of the subjects are right-handed (as

determined by Edinburgh handedness questionnaire) and one of

the subjects (Subject 1) reported left-handed for writing, drawing,

and scissors, but right dominance for throwing and kicking

during skateboarding. The Subjects have 12, 17, and 11 years

of experience respectively for half pipe ramp skateboarding. The

experimental procedures were approved by the ATR Human

Subject Review Committee (ethics approval number 158) and were

carried out in accordance with the principles expressed in the

WMA Declaration of Helsinki. The confidentiality rights of all

participants were observed.

Experimental procedure

The experiment consisted of an auditory listening task and

a skateboarding task. The auditory task consisted of listening to

two chirp sounds (sweep up from 2 to 4 kHz and sweep down

from 4 to 2 kHz with a 0.1 s duration). The auditory task was to

passively listen to the chirp sounds. The sounds were played at

the maximum comfortable audio level each subject reported they

could tolerate for the duration of the entire experiment which

lasted around 40min. The audio stimuli were presented to the

subjects using the low latency EPOS GTW 270 Bluetooth earbuds

together with the aptX Bluetooth transmitter. Two cables were

connected from the computer’s audio output. One cable was linked

to the low-latency aptX Bluetooth transmitter, while the other was

connected to the Cognionics Trigger Box (sending trigger marker

to EEG recording). The trigger box’s threshold was adjusted to

detect the initiation of audio stimuli. There was an ∼45ms delay

in the presentation of the sound stimuli to the subject that was not

adjusted in this experiment. See Callan et al., 2015, 2018, 2023 for

experiments using similar stimuli and methods.

The skateboarding task consisted of performing pumping (up

and down motion of the body on the skateboard to accelerate up

the ramp) and frontside (turn made with front facing the ramp)

and backside (turn made with back facing the ramp) kickturn

maneuvers on a half-pipe skateboard ramp (Skateboard Ramp at

ATR Robot Laboratory, Figure 1A). The direction and location on

the ramp of the kickturn (to the right or left) was determined by

a bank of LED lights. A red light signaled to turn to the right,

whereas, a green light signaled to turn to the left. The onset of the

LED light was triggered when the skateboarder passed through a

laser at the opposite end of the skateboard ramp. The kickturns

occurred on the LED side of the ramp and the pumping occurred

on the opposite side of the ramp.

The experiment switched between sets of rest and

skateboarding during which the auditory task was carried

out. Each set lasted ∼100 s. For the skateboarding task each set

consisted of continuously skateboarding on the ramp completing

20 kickturns on the LED side of the ramp (equal number of

frontside and backside kickturns to the left and right pseudo

randomly determined) and 20 pumping maneuvers on the

opposite side of the ramp. For the auditory task the two chirp

sounds were presented 20 times each with an interstimulus interval

of 1.5–2 s randomly determined. The presentation of the two chirp

sounds was pseudo randomly determined such that the number

of stimuli was equal. In total there were 10 resting sets and 10

skateboarding sets for a total of 400 sound presentations for each

the resting and skateboarding conditions throughout the total

40-min experimental duration.

EEG data collection and preprocessing

The EEG data was recorded using the Cognionics 72 channel

active electrode wireless mobile EEG system (CGX Mobile-72,

500Hz sampling rate, 24-bit simultaneous sampling analog-to-

digital converters, Bluetooth Wireless Range: 10m). The CGX

Mobile-72 was custom made without the electrode holders so that

it was thin enough to wear a skateboard helmet on top of it. The

breakout box with the wireless module was worn on a harness on

the back (see Figure 1B). The EEG data was recorded continuously

for two ∼20-min sessions each composing of five resting and

five skateboarding sets. The following pipeline, employing the

EEGLAB toolbox (Delorme and Makeig, 2004), was utilized for

the preprocessing of the EEG data (for similar pipelines also see

Bigdely-Shamlo et al., 2015; Callan et al., 2015, 2018, 2023; Sasaki

et al., 2019).

EEG processing stages

1. The raw EEG data underwent band-pass filtering within

the 3–100Hz range utilizing a Hamming windowed Sinc

FIR filter. The two sessions were filtered separately then
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FIGURE 1

(A) Skateboard Half-pipe ramp at ATR robot laboratory. The dimensions of the ramp and position of the laser trigger and LED light strip are also given

in the figure. (B) The CGX Mobile-72 high density EEG system on the skateboarder. The breakout box with the wireless module is shown attached to

a harness on the back of the skateboarder. A helmet is worn over the EEG cap during the entire experiment.

combined for all further analyses. A somewhat high high-

pass filter was selected based on what has worked best in

other experiments we conducted in mobile environments

(Callan et al., 2018, 2023) in terms of ICA decomposition

but no systematic analysis was conducted to confirm this.

The study by Klug and Gramann (2021) suggests that higher

high-pass filters show better ICA decomposition in mobile

environments with higher numbers of channels requiring a

higher cutoff frequency (recommended 1.5–2Hz). However,

Tanner et al. (2015) suggests that high-pass filters above 0.3Hz

may produce artifactual effects. pop_eegfiltnew.

2. The Cleanline EEGLAB toolbox (default settings) was

employed to eliminate line noise at 60Hz. pop_cleanline.

3. The automatic rejection of channels relied on a weak

correlation with a robust estimate derived from other channels

(0.8 threshold) and a flat line duration criterion of 5 s

(EEGLAB program Clean Rawdata). pop_clean_rawdata.

4. Non-stationary high-variance signals were removed from

the EEG using Artifact Subspace Reconstruction (ASR)

(using Euclidean distance) [refer to Mullen et al. (2013)

and Kothe and Jung (2015)]. The removal criteria included

a standard deviation cutoff of 20 for burst removal. No

time windows were removed for data that could not be

repaired. pop_clean_rawdata.

5. The rejected channels were interpolated using the “spherical”

method (EEGLAB). pop_interp.

6. Common average referencing of channels was performed

(EEGLAB). To maintain the original rank and prevent a loss

of one rank due to average referencing, an additional channel

with all zeros was introduced. pop_reref.

7. Independent Component Analysis (ICA) with Principal

Component Analysis (PCA) reduction was carried out on

the dataset (EEGLAB extended “infomax” ICA program).

The dimension of the PCA reduction was determined by

the number of rejected channels and was carried out prior

to ICA decomposition. PCA reduction was carried out to

account for the loss of rank resulting from channel removal

and then channel interpolation (failure to account for the

loss of rank may degrade ICA decomposition). However, see

Artoni et al. (2018) which suggests that PCA removal before

ICA may also cause degradation of ICA quality. Interpolation

of electrodes is not possible after ICA, therefore, we opted to

use interpolation followed by average referencing before ICA

with PCA reduction. pop_runica.

8. In this study, ICLabel version 1.4 (Current version at time of

analysis was conducted) was employed to distinguish between

brain-related and artifact-related independent components

(ICs). ICLabel is a toolbox designed for the automated

classification of ICs into seven categories: Brain, Muscle, Eye,

Heart, Line Noise, Channel Noise, and Other, as introduced

by Pion-Tonachini et al. (2019). The categorization process

in ICLabel utilizes IC topomaps, power spectral density

within the 3–100Hz range, and equivalent current dipole

information. Our study specifically considered ICs labeled

as “Brain” when the percentage of “Brain” categorization

exceeded 50%. It is possible that some potential brain

components may have been missed by including the other

category as artifacts. pop_iclabel.

9. Only independent components (ICs) labeled as “brain” were

retained, and all other ICs were excluded from the dataset.

Subsequently, solely brain-related ICs were projected onto the

EEG electrodes.

Five distinct data cleaning approaches were employed to assess

their efficacy in extracting artifacts during skateboarding. It is

important to note that all pipelines used the same number of

channels (72 total), using the same interpolation and average

referencing methods. Additionally, none of the data was removed

for any of the analyses and therefore the exact same trials

were assessed for all the cleaning approaches. The objective
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TABLE 1 Number of Channels and ICs for the three subjects.

Number
channels
removed

Names of removed
channels

Number of ICs Number of brain
ICs w/o ASR

before ICA (ICA)
(ICAASR)

Number of brain
ICs with ASR
before ICA
(ASRICA)

Sub1 4 TP7, TP8, P9, PO9 68 8 14

Sub2 2 P9, 010 70 2 11

Sub3 1 P9 71 5 8

ICLabel was used to identify brain components (threshold >0.5). IC, independent component.

was to discern from single-trial auditory responses whether

presence or absence of an auditory sound stimuli could be

classified (using machine learning methods, see below) from

the channel-level EEG data. These five cleaning pipelines are

as follows:

1. Minimal: incorporated the stages of the pipeline up to and

including the common average referencing of the channels,

excluding the Artifact Subspace Reconstruction (ASR) step.

(stages 1, 2, 3, 5, 6).

2. ASR: incorporated stages (1, 2, 3, 4, 5, 6).

3. ICA: incorporated stages (1, 2, 3, 5, 6, 7, 8, 9).

4. ICAASR: incorporated stages (1, 2, 3, 5, 6, 7, 8, 9, 4).

5. ASRICA: incorporated all stages of the pipeline in the

following order (1, 2, 3, 4, 5, 6, 7, 8, 9).

Classification analysis

A two-class classification problem was analyzed, with

classes sound stimulus present and sound stimulus absent.

All classification analyses used a support vector machine

SVM with a radial basis function kernel and were carried

out in Python, using the open-source library scikit-learn.

The kernel and other SVC parameters are all the scikit-learn

defaults. Since the goal of this study is to show the effect of

pre-processing and that brain activity is recoverable under

“extreme artifacts,” we thought it would be best to use a

simple, out-of-the-box model, without optimizing classification

parameters. Optimizing for classification parameters could lead

to overfitting.

In order to extract the epochs for each class, each EEG trigger

for sound presentation was used as an onset reference time point.

For each trigger, an epoch from onset to 750ms after was extracted

to create a sound trial, while another epoch from −750ms to

onset was extracted to create a sound absent trial. The features

employed for classification via SVM included the amplitude of

the 375 samples within the 750ms trial time period for all 72

channels. Sample amplitude was also used for features in the

Callan et al. (2015) study (discussed above). However, a different

machine learning algorithm and time period was used in that

study. The 750ms time period for trials was selected as it is the

longest duration segment we can have without potential overlap

given the random interstimulus interval from 1.5 to 2 s. Using a

longer time segment allows for better assessment of the potential

artifacts arising from the skateboarding task. Classification was

performed using a 20-fold stratified shuffle split cross-validation

(see the following for more details; https://scikit-learn.org/stable/

modules/cross_validation.html#stratified-shuffle-split), where the

test size of each fold was set to a 20% of the total number of trials.

The same random seed was used for SVM cross-validation for all

the artifact cleaning pipelines. Therefore, all the artifact cleaning

pipelines had the same train/test trials across the 20-fold cross-

validation. This allows for performance of the five artifact cleaning

pipelines to be directly compared. The total number of trials for

each subject were as follows: Subject 1= 780 trials (397 rest and 383

skateboard), Subject 2 = 749 trials (370 rest and 379 skateboard),

Subject 3 = 740 trials (369 rest and 371 skateboard). The dropout

in some of the trials was a result of machine failures with the trigger

delivery system.

The analysis was done separately for two distinct experimental

conditions: rest and skateboarding. In order to test the contribution

of the ASR and ICA to the quality of the resulting signal, we

carried out the SVM classification analysis using the five artifact

cleaning pipelines: minimal, ASR, ICA, ICAASR, and ASRICA.

Classification accuracy for distinguishing sound from silent trials

for each artifact cleaning pipelines were assessed. The proposed

evaluation metric has the advantage of being able to train and test

on the same trials, using the same interpolated channels for all

cleaning pipelines, and can assess single trial performance. Metrics

used in other studies such as using ICLabel decomposition of brain

components (Pion-Tonachini et al., 2019; Chang et al., 2020) will

not work for all pipelines such as minimal cleaning and ASR alone.

Many other studies use averaged evoked potential data in their

metric of assessing performance (Gwin et al., 2010; Zink et al.,

2016; Scanlon et al., 2019; Robles et al., 2021; Delorme, 2023). Our

metric, that works over single trials and does not reject any trials, is

more valid in terms of neuroergonomic applications that often use

machine learning methods.

Results

The results of the EEG channel rejection, as well as the number

of independent components and the number of brain components

for ICA (without ASR before and with ASR before) are given for

each subject in Table 1. Only a few bad channels were removed

for each of the subjects (4, 2, and 1 channel(s) respectively).

Utilizing ASR before ICA resulted in ICLabel identifying more

brain components for all of the subjects (see Table 1).

The results of the classification performance for the rest and

skateboarding conditions for all five artifact cleaning pipelines are

given for the three subjects in Table 2. To assess whether SVM
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TABLE 2 Classification performance for the three subjects for each of the pipeline conditions.

Rest Min Rest ASR Rest ICA Rest
ICAASR

Rest
ASRICA

SB Min SB
ASR

SB ICA SB
ICAASR

SB
ASRICA

Subject 1

M 0.728 0.719 0.681 0.683 0.705 0.547 0.676 0.669 0.668 0.691

SE 0.008 0.008 0.007 0.007 0.006 0.007 0.007 0.007 0.007 0.007

CI 0.712–0.745 0.701–0.737 0.666–0.696 0.668–0.697 0.692–

0.718

0.533–

0.562

0.661–

0.690

0.656–

0.683

0.654–

0.682

0.676–

0.706

T 28.81∗ 25.97∗ 25.57∗ 26.21∗ 33.05∗ 6.77∗ 24.78∗ 25.95∗ 24.81∗ 25.60∗

ES 6.44 5.81 5.72 5.86 7.39 1.51 5.54 5.80 5.55 5.72

HR 0.757 0.759 0.701 0.703 0.727 0.817 0.685 0.664 0.662 0.675

FAR 0.300 0.321 0.339 0.337 0.317 0.722 0.334 0.325 0.326 0.292

d′ 1.220 1.167 0.943 0.952 1.080 0.315 0.911 0.875 0.868 1.000

Subject 2

M 0.696 0.697 0.760 0.760 0.819 0.519 0.539 0.619 0.588 0.680

SE 0.009 0.009 0.008 0.008 0.007 0.009 0.011 0.009 0.008 0.005

CI 0.677–0.715 0.679–0.714 0.741–0.777 0.741–0.777 0.805–

0.833

0.500–

0.537

0.515–

0.563

0.601–

0.638

0.572–

0.605

0.671–

0.691

T 21.83∗ 23.05∗ 30.56∗ 30.56∗ 47.00∗ 2.14∗ 3.44∗ 13.54∗ 11.05∗ 38.79∗

ES 4.88 5.15 6.83 6.83 10.51 0.48 0.77 3.03 2.47 8.67

HR 0.672 0.676 0.745 0.745 0.830 0.579 0.569 0.630 0.572 0.669

FAR 0.279 0.283 0.227 0.227 0.193 0.541 0.491 0.391 0.395 0.307

d′ 1.030 1.031 1.408 1.408 1.824 0.951 0.197 0.608 0.448 0.941

Subject 3

M 0.724 0.722 0.708 0.712 0.746 0.498 0.569 0.638 0.639 0.631

SE 0.008 0.007 0.007 0.008 0.007 0.002 0.008 0.008 0.008 0.008

CI 0.709–0.740 0.708–0.738 0.693–0.724 0.696–0.728 0.732–

0.760

0.495–

0.502

0.553–

0.587

0.622–

0.653

0.623–

0.655

0.614–

0.647

T 30.54∗ 30.58∗ 28.52∗ 27.48∗ 37.15∗ −0.99 8.78∗ 18.32∗ 18.47∗ 16.57∗

ES 6.83 6.84 6.38 6.14 8.31 −0.22 1.96 4.10 4.13 3.71

HR 0.722 0.712 0.674 0.675 0.726 0.542 0.555 0.617 0.616 0.611

FAR 0.273 0.268 0.257 0.251 0.234 0.545 0.417 0.342 0.338 0.349

d′ 1.192 1.180 1.103 1.124 1.326 −0.008 0.349 0.705 0.714 0.669

M, mean accuracy for the 20 folds (correct responses for sound trials and silent trials divided by the total number of trials). T-statistic that performance on the 20 folds is above chance level of

p < 0.5 (denoted by ∗) for presence vs. absence of sound stimuli (p < 0.05 Benjamini–Hochberg correction of the FDR for multiple comparisons, Matlab Multiple Testing Toolbox v1.1.0). ES

= Effect size was measured using Hedge’s g1 appropriate for use with one-sample t-tests (Matlab Toolbox: Measures of Effect Size). Values range from –inf to+inf with effect size considered as

follows: small±0.2, medium±0.5, large±0.8.

HR, hit rate, ratio of sound trials identified as sound trials; FAR, false alarm rate, ratio of sound absent trials identified as sound present trials; d′ , dprime is a sensitivity index; SB, skateboarding

conditions; Min, minimal cleaning; SE, Standard error; CI, 95% confidence interval.

single trial classification performance for detecting presence or

absence of sound was above chance (0.5) a t-test was conducted

across the results of the 20-fold cross-validation test set results.

Multiple comparisons across the 2× 5 conditions (task× pipeline)

were corrected for using the Benjamini–Hochberg correction of the

False Discovery Rate FDR for p < 0.05 (Matlab Multiple Testing

Toolbox v1.1.0). The effect size was measured using Hedge’s g1

that is appropriate for use with one-sample t-tests (Matlab Toolbox:

Measures of Effect Size). Values range from –inf to+inf with effect

size considered as follows: small ±0.2, medium ±0.5, large ±0.8.

For all three subjects (with the exception of the minimal cleaning

pipeline for subject 2), all the artifact cleaning pipelines showed

greater than chance performance for both rest and skateboarding

conditions. The classification results in terms of signal detection

theory are also given in Table 2. Hits are defined as trials that

contained sound stimuli that were classified as such. False alarms

are defined as trials that were absent of sound stimuli that were

none the less classified as containing a sound stimulus. Sensitivity of

the classifier can be measured by d
′

which takes into account both

the hit rate and the false alarm rate (higher d
′

values are better).
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TABLE 3 Rest condition.

Rest
ASR

Rest
ICA

Rest
ICAASR

Rest
ASRICA

Subject 1

Rest

Min

−2.29∗

(−0.25)

−4.69∗

(−1.37)

−4.27∗

(−1.33)

−2.82∗

(−0.71)

Rest

ASR

−3.93∗

(−1.05)

−3.48∗

(−1.02)

−1.41

(−0.41)

Rest

ICA

1.00

(0.05)

6.19∗

(0.78)

Rest

ICAACR

5.79∗

(0.74)

Subject 2

Rest

Min

0.16

(0.01)

7.24∗

(1.56)

7.24∗

(1.56)

12.12∗

(3.35)

Rest

ASR

7.30∗

(1.60)

7.30∗

(1.60)

12.90∗

(3.45)

Rest

ICA

NaN 7.24∗

(1.69)

Rest

ICAACR

7.24∗

(1.69)

Subject 3

Rest

Min

−0.90

(−0.06)

−1.83

(−0.47)

−1.38

(−0.36)

3.28∗

(0.67)

Rest

ASR

−1.61

(−0.41)

−1.19

(−0.30)

3.69∗

(0.74)

Rest

ICA

1.60

(0.10)

5.73∗

(1.17)

Rest

ICAACR

4.76∗

(1.03)

The paired t-tests are the columns – the rows (a negative value means the row is greater).

The T score is given on top and Hedge’s g (effect size: small ±0.2, medium ±0.5, large ±0.8)

is given in parentheses below (Matlab Toolbox: Measures of Effect Size).
∗Denotes significant difference of the paired t-test for the various rest pipeline conditions

across the 20 folds (p < 0.05 Benjamini–Hochberg correction of the FDR for multiple

comparisons, Matlab Multiple Testing Toolbox v1.1.0).

Min, minimal cleaning.

To compare the classification performance of the various

artifact cleaning pipelines a series of paired t-tests were conducted

across the 20-fold cross-validation test set results. Separate series

of analyses were carried out for rest (Table 3) and skateboarding

(Table 4) conditions. The series of paired t-test comparisons

are arranged such that if the value is positive, it means the

column pipeline has greater performance and if the value is

negative, it means the row pipeline has greater performance. The

Benjamnimi–Hochberg correction of the FDR (p < 0.05) for

multiple comparisons was used (Matlab Multiple Testing Toolbox

v1.1.0). The effect size was measured using Hedge
′

s g that is

appropriate for use with paired t-tests (Matlab Toolbox: Measures

of Effect Size). Values range from –inf to +inf with effect size

considered as follows: small±0.2, medium±0.5, large±0.8.

For the rest condition (Table 3) ASR alone did not improve

classification performance over minimal filtering for any of the

three subjects. For subject 1 minimal cleaning was significantly

better than any of the other pipelines using ASR and ICA.

TABLE 4 Skateboarding condition.

SB ASR SB ICA SB
ICAASR

SB
ASRICA

Subject 1

SB

Min

14.33∗

(3.96)

13.70∗

(3.92)

13.30∗

(3.81)

15.97∗

(4.32)

SB

ASR

−0.71

(−0.21)

−0.83

(−0.24)

1.92

(0.47)

SB

ICA

−1.00

(−0.04)

2.74∗

(0.69)

SB ICAACR 2.87∗

(0.71)

Subject 2

SB

Min

1.96

(0.44)

11.08∗

(2.49)

6.84∗

(1.81)

16.50∗

(5.03)

SB

ASR

7.34∗

(1.72)

3.69∗

(1.09)

12.45∗

(3.55)

SB

ICA

−4.80∗

(−0.80)

6.42∗

(1.90)

SB ICAACR 10.26∗

(3.07)

Subject 3

SB

Min

9.15∗

(2.71)

18.28∗

(5.57)

18.57∗

(5.62)

16.57∗

(5.05)

SB

ASR

7.76∗

(1.93)

8.10∗

(1.98)

5.25∗

(1.70)

SB

ICA

1.00

(0.05)

−0.95

(−0.19)

SB

ICAASR

−1.12 (−0.24)

The paired t-tests are the columns – the rows (a negative value means the row is greater).

The T score is given on top and Hedge’s g (effect size: small ±0.2, medium ±0.5, large ±0.8)

is given in parentheses below (Matlab Toolbox: Measures of Effect Size).
∗Denotes significant difference of the paired t-test for the various skateboard pipeline

conditions across the 20 folds (p < 0.05 Benjamini–Hochberg correction of the FDR for

multiple comparisons, Matlab Multiple Testing Toolbox v1.1.0).

SB, Skateboarding conditions; Min, minimal cleaning.

Subject 2 showed significantly better performance for all the

pipelines containing ICA over that of minimal cleaning. Subject

3 only showed significantly better performance for the ASRICA

pipeline over minimal cleaning. For subjects 2 and 3 ASRICA

had significantly greater classification performance than all other

pipeline conditions. Subject 1 also showed greater performance for

the ASRICA pipeline over the ICAASR and the ICA pipelines.

The paired contrasts for the skateboarding condition

(Table 4) showed that pipelines that included ICA had

significantly better performance than minimal cleaning for

all three subjects. ASR alone was better than minimal cleaning

for subjects 1 and 3. The ASRICA pipeline had significantly

better performance than the ICA and ICAASR pipelines for

subjects 1 and 2. There were no pipelines that had significantly

better performance than the ASRICA pipeline for any of

the subjects.

Visualization of the effects of the various cleaning pipelines on

the EEG for the rest and skateboarding conditions for all three
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FIGURE 2

Event related potential (ERP) Image and auditory evoked potential (AEP) for Subject 1 at electrode Cz. The results for both the rest and skateboarding

conditions for the five di�erent cleaning pipelines are shown. The ERPImage displays the single trials on the y axis and time on the x-axis, with the

color denoting the positive and negative amplitude. The AEP is the mean of the single trials displayed in the ERPImage. It should be noted that there

is an ∼45ms constant delay in the Bluetooth delivery of the sound stimuli that has not been adjusted. The apparent lag in the timing of the N100 and

P200 potentials are a result of this delay.
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FIGURE 3

ERPImage and AEP for Subject 2 at electrode Cz.
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FIGURE 4

ERPImage and AEP for Subject 3 at electrode Cz.
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subjects are shown using ERP Image (EEGLAB; see Figures 2–

4). It can clearly be seen that the use of ICA and especially the

combination of ASRICA has a profound effect of extracting the

artifacts from the data over that of the minimal cleaning condition

for the skateboarding condition both in observation of the single

trials and the auditory evoked responses. For the rest condition

the single trials and auditory evoked responses look fairly similar

across the various cleaning pipelines. This is to be expected given

the lower degree of artifacts in the resting condition relative to the

skateboarding condition.

Discussion

Although it was once thought impossible to record brain

related EEG in real world sporting situations, the results of this

experiment demonstrate that extraction of brain related activity

and removal of artifacts resulting from skateboarding on a half-

pipe ramp is possible by using techniques such as ASR and ICA.

This demonstration is of general importance in further research

involved with being able to investigate neural processes underlying

motor gestures during sports. The classification analyses indicate

that single trial performance at detecting presence and absence

of an auditory stimuli is significantly improved by the use of

ASRICA artifact cleaning over minimal artifact cleaning for the

skateboarding condition for all three subjects (Tables 2, 4). The

improvement in classification performance for ASRICA over

minimal cleaning was 14.4%, 16.1%, and 13.3% respectively for the

three subjects (all with enormous effect sizes). Similarly, d
′

values

increased for all three subjects for the skateboarding condition

as a result of ASRICA cleaning over minimal cleaning (Table 2).

It should be noted that all pipelines containing ICA performed

significantly better than minimal cleaning for all three subjects for

the skateboarding condition (Table 4). However, no other artifact

cleaning pipeline performed significantly better than ASRICA for

any of the subjects, and for two of the three subjects ASRICA

was found to perform significantly better than ICA and ICAASR

(with medium level effect sizes for one of the subject and enormous

effect sizes for the other). The reason for the likely improvement

of using ASR before ICA, rather than just ICA or using ASR

after ICA, comes from the ability of ASR to clean non-stationary

transient artifacts allowing for better ICA decomposition (Hsu

et al., 2016; Chang et al., 2020). Evidence that using ASR before

ICA results in better ICA decomposition is evident in the resulting

number of IC brain components identified by ICLabel (Table 1).

For all three subjects there was a substantial increase in the number

of brain components (6, 9, and 3 respectively) for using ASR

before ICA compared to ICA alone or using ASR after ICA (see

Table 1).

In the Delorme (2023) study it was reported that minimal

artifact cleaning using primarily high-pass filtering was better than

most preprocessing pipelines tested for 3 experiments conducted

in laboratory settings. While the combination of ASR and ICA

did slightly better than minimal filtering in the Delorme (2023)

study it was concluded that this improvement may be a confound

of the channel removal and interpolation methods used rather

than from ASR and ICA. Since all the pipelines we investigate

in our study use the same channel removal and interpolation

methods our results do not have this potential confound present

in the Delorme (2023) study. The rest condition in our study

is similar to the conditions present in laboratory settings. For

two of the three subjects there was significant improvement in

classification performance for ASRICA over minimal cleaning

(Subject 2 = 12.3%; Subject 3 = 2.2%; see Tables 1, 3). However,

for subject 1, the minimal cleaning pipeline had significantly

better performance than all other pipelines including ASRICA

(Table 3).

Visual inspection of the ERP Image (Taken at electrode Cz;

Figures 2–4) clearly shows the extent of the massive artifacts

imposed on the EEG signal during skateboarding with only

minimal cleaning performed for all three subjects. For subject 1

(Figure 3) the negative potential (N100) time locked to auditory

stimulus onset can be observed in the single trials to some extent,

however, the AEP cannot be discerned over the considerable noise

that occurs throughout the 1.5 s time course (both before and

after auditory stimulus onset). For subjects 2 and 3 (Figures 3,

4) the artifacts resulting from skateboarding completely saturate

the entire data with no clear pattern in the single trial data time

locked to the onset of the audio stimulus. Furthermore, the AEP

is not present for these subjects for the skateboarding condition

with minimal artifact cleaning (Figures 3, 4). In contrast, for

the rest condition with minimal cleaning the negative potential

(N100) and the positive potential (P200) can be clearly observed

in the single trial data as well as the AEP for all three subjects

(Figures 2–4). Of considerable interest is that after ASRICA

cleaning (as well as other pipelines using ICA) the ERP Image

for the skateboarding condition for all three subjects (Figures 2–

4) show observable negative potential (N100) and the positive

potential (P200) in the single trial data as well as clear AEP. It

is also apparently obvious in these figures for the skateboarding

conditions that the background potential level in the data has

been considerably reduced as a result of pipelines using ICA

cleaning. It can also be observed from the ERP Image in the

rest condition that the use of ASRICA considerably reduces the

background artifacts across the entire time course (Figures 2–4).

As a result of ASRICA (as well as other pipelines using ICA)

cleaning the background potential levels of the ERP Image for the

entire single trial time course are comparatively similar for the

skateboarding and rest conditions for all three subjects (Figures 2–

4). It can also be clearly observed that the single trial responses

and the AEP are greater in magnitude and more apparent in

the Rest than the Skateboarding condition. While, to some extent

this difference may reflect an inability of ASRICA to remove all

artifacts, there are also considerable additional factors that may

be responsible. One difference is that the extra workload imposed

by skateboarding likely reduces attention directed to the auditory

stimuli. It is well known that single trial auditory (and visual)

responses and AEPs (visual ERPs) are attenuated during dual task

paradigms in which attention is toward a different task (Lavie,

2005; Molloy et al., 2015; Callan et al., 2018, 2023; Dehais et al.,

2019; Ladouce et al., 2019). An additional reason why the single

trial responses and the AEP are greater in magnitude and more

apparent in the Rest than the Skateboarding condition may be a

result of the acoustic masking of the auditory stimulus presented

by earphone by the sound generated by the act of skateboarding

on the ramp (mainly the contact and turning of the wheels
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of the skateboard on the ramp) that is not present during the

resting condition.

There has been one previous EEG study conducted during

skateboarding (Robles et al., 2021). In the Robles et al. (2021)

study an electric skateboard was utilized to reduce the amount

of muscle activity and body movement related artifacts. Their

experiment involved a dual task paradigm in which the subject rode

the electric skateboard around a 200m oval track while listening

to auditory stimuli. Attention related auditory evoked potentials

could be detected in their experiment while in motion on the

electric skateboard (Robles et al., 2021). Our study differs from

that of Robles et al. (2021) in many ways. Our study focuses on

the use of ASR and ICA as effective tools for cleaning artifacts

from single trial (continuous) data while performing skateboarding

maneuvers that require considerable whole-body movement and

abrupt motion of the skateboard. In the Robles et al. (2021) study

the electric skateboarding task was selected (going around an oval

track) that reduced the degree of whole-body movement in order

to reduce associated artifacts in the EEG data. Only minimal

cleaning was utilized including band-pass filtering and regression

techniques to remove eye movement and blinks from the EEG data.

Instead of cleaning the EEG data, trials found to have excessive

artifacts were completely removed from the analysis (Robles et al.,

2021). This is in contrast to our study in which no trials were

excluded from the analysis as a result of excessive artifacts. Rather,

it was the goal of our experiment to remove the artifacts from

the underlying brain related EEG by utilizing ASR and ICA. Our

study further demonstrates that while minimal cleaning is not

sufficient for skateboarding tasks requiring considerable motion

(such as doing pumping and kickturns on a half-pipe ramp) with

the use of ASR and ICA brain related EEG showing clear AEPs

can be detected and classified at a single-trial level. Our results

are consistent with other experiments conducted in real-world

situations such as walking, running (Gorjan et al., 2022), playing

the guitar, and piloting airplanes (Callan et al., 2015, 2018) in

which ASR and ICA have been used to clean artifacts from the

EEG data.

This is the first EEG study to look at skateboarding on a

half-pipe ramp in which the skateboarder performs pumping and

kick-turn maneuvers. The results of this experiment are important

in that they strongly suggest that brain related activity can be

successfully extracted from the EEG even in the considerably noisy

situation of skateboarding on a half-pipe ramp by using ASRICA

artifact cleaning. One potential confound may be that auditory

stimuli that are presented during the flat part of skateboarding

(where there are fewer movement related artifacts) may represent

the only responses that were successfully classified. While we did

not formally analyze the results in reference to this potential

confound there are several reasons why thismay not be problematic

for our results. The time course of one single round trip on the half-

pipe ramp is approximately as follows: flat (0.9 s), up and down

the ramp (1.4 s), flat (0.9 s), up and down the ramp (1.4 s), for a

total of about 4.6 s for the round trip. The movement and motion

related artifacts are expected to be greatest on the ramp portion

relative to the flat portion. The ramp portion takes up ∼60% of

the time and the flat part 40%. The duration of the single trials

was 1.5 s divided into auditory present (750ms after stimulus onset)

and auditory absent (750ms before stimulus onset) and randomly

presented every 1.5–2 s. The position at which the auditory sound is

presented will be randomly distributed but will in every trial likely

include samples from the ramp portion where the signal is likely to

have greater artifacts. If the ASRICA was not successful at cleaning

these artifacts it is unlikely that the single trial classification

performance for skateboarding would be more comparable to that

of the rest condition than before cleaning with ASRICA. It should

also be noted that the exact same trials are analyzed for the five

artifact cleaning pipelines so their comparison is not confounded

by the location on the ramp in which the auditory sound

was presented.

Conclusions

The auditory/skateboarding dual task paradigm used in this

experiment demonstrates that brain activity can be extracted

from EEG while doing whole body movements during real-world

sporting activity (in this case skateboarding on a half-pipe ramp)

using ASR and ICA artifact cleaning. EEG pre-processing pipelines

including ASR and ICA were able to significantly clean artifacts

in single trial data to a much greater extent than minimal pre-

processing using primarily just filtering. These results strongly

suggest that artifact cleaning using ASR and ICA could be used

to investigate brain activity during various real-world situations in

which there is considerable body movement, muscle activity, and

motion related artifacts.

Future research can explore the extent to which modifying

various ASR and ICA parameters may enhance cleaning

performance in EEG data collected in real-world conditions

with considerable movement and motion artifacts. The use of

additional methods such as canonical correlation analysis CCA

and different versions of ICA (AMICA, ORICA) as suggested by

Gorjan et al. (2022) may also lead to enhanced artifact cleaning

performance. With regards to our skateboard ramp research, now

that cleaning of EEG data has been validated using ASR and ICA,

the next step to be conducted in a subsequent experiment is to

determine the brain activity related to transition to and initiation

of specific whole-body gestures utilized for the skateboarding

maneuvers (pumping and kick-turns) and ensure the results

are not confounded by artifacts resulting from execution of the

skateboarding maneuver itself.

The proposed artifact cleaning methods using expensive

laboratory grade EEG equipment with a large number of channels

(72 in this case) may limit its widespread use for general

neuroergonomic applications. However, it is unlikely that artifact

removal techniques using low-cost EEG units with few channels

will be sufficient to adequately clean the data to be able to extract

relevant brain activity under athletic like tasks in which there

is considerable body movement. Professional training facilities

and organizations as well as research institutes interested in

understanding and enhancing neural processes underlying elite

athletic performance would certainly be able to afford laboratory

grade EEG equipment necessary for the proposed artifact cleaning

methods to be employed.

It is often necessary to be able to record brain activity in

the natural setting, not just in the laboratory or specialized

training facilities. Many of the new laboratory grade EEG systems
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(with 64 or more channels) are extremely portable and can

readily be used in real-world situations (Wascher et al., 2023).

As have been demonstrated in use in airplanes in flight (Callan

et al., 2015, 2018). In real-world environments that consist of

considerable motion andmovement related artifacts a combination

of ASR and ICA will facilitate cleaning and extraction of brain

related activity. It is generally recommended to have a greater

number of channels (≥64 for high intensity movement) as it

is related to the number of independent brain and artifact

components that can be decomposed (Klug and Gramann, 2021;

Gorjan et al., 2022). Additionally, if one is interested in source

localization of brain activity it is also recommended to use

high density (≥64 channels) especially in real-world situations

(Klug and Gramann, 2021; Gorjan et al., 2022). One drawback

of utilizing ICA for artifact cleaning in real-world settings is

that it takes a considerable amount of processing time, such

that, utilization of brain-computer-interfaces to give real-time

feedback and/or manipulate devices is extremely challenging.

However, it may be possible to use pretrained ICA weights,

and/or utilize different versions of ICA (ORICA: Online Recursive

Independent Component Analysis) (Hsu et al., 2016) that can be

used with brain-computer-interfaces for real-time neuroergonomic

applications. While one aspect of neuroergonomics focuses on

the application of brain-based technology to improve human

factors in real-world situations, it is also important to also realize

that an additional goal of neuroergonomics is to understand

how the brain functions in real-world situations such as while

participating in athletics or other physically demanding activities

in which real-time feedback and/or processing of the data is

not necessary.
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