
TYPE Hypothesis and Theory

PUBLISHED 28 May 2024

DOI 10.3389/fnrgo.2024.1375913

OPEN ACCESS

EDITED BY

Raphalle N. Roy,

Université de Toulouse, France

REVIEWED BY

Michael B. Steinborn,

Julius Maximilian University of Wrzburg,

Germany

Immanuel Babu Henry Samuel,

University of Florida, United States

*CORRESPONDENCE

Lorraine Borghetti

lorraine.borghetti.2@us.af.mil

RECEIVED 24 January 2024

ACCEPTED 23 April 2024

PUBLISHED 28 May 2024

CITATION

Borghetti L, Curley T, Rhodes LJ, Morris MB

and Veksler BZ (2024) Hybrid framework of

fatigue: connecting motivational control and

computational moderators to gamma

oscillations. Front. Neuroergon. 5:1375913.

doi: 10.3389/fnrgo.2024.1375913

COPYRIGHT

© 2024 Borghetti, Curley, Rhodes, Morris and

Veksler. This is an open-access article

distributed under the terms of the Creative

Commons Attribution License (CC BY). The

use, distribution or reproduction in other

forums is permitted, provided the original

author(s) and the copyright owner(s) are

credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted

which does not comply with these terms.

Hybrid framework of fatigue:
connecting motivational control
and computational moderators
to gamma oscillations

Lorraine Borghetti1,2*, Taylor Curley1, L. Jack Rhodes3,

Megan B. Morris1 and Bella Z. Veksler4

1Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH, United States, 2ORISE at

Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH, United States, 3BAE

System at Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH, United States,
4Tier1 Performance Solutions at Air Force Research Laboratory, Wright-Patterson Air Force Base,

Dayton, OH, United States

Introduction: There is a need to develop a comprehensive account of

time-on-task fatigue e�ects on performance (i.e., the vigilance decrement)

to increase predictive accuracy. We address this need by integrating three

independent accounts into a novel hybrid framework. This framework unites

(1) a motivational system balancing goal and comfort drives as described by an

influential cognitive-energetic theory with (2) accumulating microlapses from

a recent computational model of fatigue, and (3) frontal gamma oscillations

indexing fluctuations in motivational control. Moreover, the hybrid framework

formally links brief lapses (occurring over milliseconds) to the dynamics of the

motivational system at a temporal scale not otherwise described in the fatigue

literature.

Methods: EEG and behavioral data was collected from a brief vigilance task.

High frequency gamma oscillations were assayed, indexing e�ortful controlled

processes with motivation as a latent factor. Binned and single-trial gamma

power was evaluated for changes in real- and lagged-time and correlated

with behavior. Functional connectivity analyses assessed the directionality of

gamma power in frontal-parietal communication across time-on-task. As a

high-resolution representation of latent motivation, gamma power was scaled

by fatigue moderators in two computational models. Microlapses modulated

transitions from an e�ortful controlled state to a minimal-e�ort default state.

The hybrid models were compared to a computational microlapse-only model

for goodness-of-fit with simulated data.

Results: Findings suggested real-time high gamma power exhibited properties

consistent with e�ortful motivational control. However, gamma power

failed to correlate with increases in response times over time, indicating

electrophysiology and behavior relations are insu�cient in capturing the full

range of fatigue e�ects. Directional connectivity a�rmed the dominance of

frontal gamma activity in controlled processes in the frontal-parietal network.

Parameterizing high frontal gamma power, as an index of fluctuating relative

motivational control, produced results that are as accurate or superior to a

previous microlapse-only computational model.

Discussion: The hybrid framework views fatigue as a function of a energetical

motivational system, managing the trade-space between controlled processes

and competing wellbeing needs. Two gamma computational models provided
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compelling and parsimonious support for this framework, which can potentially

be applied to fatigue intervention technologies and related e�ectiveness

measures.

KEYWORDS

vigilance, fatigue, motivational control, microlapses, computational modeling, high

frequency gamma oscillations

1 Introduction

Vigilance is the ability to sustain attention and remain alert

to avoid performance errors on monotonous tasks over time

periods ranging from minutes to hours. Air traffic controllers,

fire command center personnel, cyber analysts, and airport

baggage screeners, among others, routinely engage in monotonous

tasks in which performance declines can lead to undesirable

personal consequences (e.g., lost productivity) or deleterious

organizational outcomes (e.g., industrial accidents or delayed

emergency responses). Other empirical findings (e.g., increased

performance variability, slowing response times) putatively share

the same underlying processes as real world effects (Parasuraman

and Davies, 1977; Doran et al., 2001; Dorrian and Dinges,

2004). Such performance declines, i.e., the vigilance decrement,

can be traced to an increasingly fatigued cognitive state (Davies

and Parasuraman, 1982; Warm et al., 1996). Following Boksem

and Tops (2008), we define mental fatigue (hereafter simply

referred to as fatigue) as the subjectively experienced feeling,

often characterized by tiredness, aversion, and cognitive decline,

during or after prolonged periods of cognitive activity. Moreover,

mechanisms explaining effects of extended time-on-task have also

been linked to sleep loss (Hockey, 1997; Gunzelmann and Veksler,

2018; Veksler and Gunzelmann, 2018), emphasizing the need for

comprehensive theories of fatigue given the sleep-challenged pace

of modern life (e.g., Webb and Herzog, 2017).

Though the precise causal factors remain under investigation,

fatigue ostensibly emerges from interactions between complex

cognitive processes taxing information processing, motivation,

and affective state (Hockey, 1997; Boksem and Tops, 2008). This

complexity becomes apparent when considering the myriad of

observed and theorized fatigue effects including: induced stress

and aversion to further task investment (Warm et al., 2008),

deterioration in cognitive function, e.g., sustaining attention,

planning, strategy adaptation (Boksem and Tops, 2008), reduced

alertness and increasing lapses in central cognition (Gunzelmann

et al., 2009b; Veksler and Gunzelmann, 2018), and compensatory

costs such as increased mental effort and sympathetic dominance

characterized by physiological discomfort and affective strain

(Hockey, 1997, 2011).

A prominent set of theoretical perspectives, collectively

known as resource theories, attribute fatigue effects to the

depletion of cognitive resources (Caggiano and Parasuraman,

2004). Accordingly, time-on-task drains resources implementing

basic information processing functions (e.g., attention, working

memory, etc.) which cannot be replenished in the remaining

time available (Warm et al., 2008). However, critics argue the

mechanisms instantiating a finite pool of resources remain vague

and underspecified (Thomson et al., 2015; Inzlicht et al., 2018).

Alternatively, cognitive-energetic frameworks view fatigue effects

as a function of central control, i.e., the active regulation of basic

information processing in the service of goal accomplishment

(Hockey, 1997, 2011; Langner and Eickhoff, 2013; Unsworth et al.,

2020; Kok, 2022; Schumann et al., 2022). Of particular relevance

to the present work, an influential energetical-control theory,

the compensatory control model (CCM), implements control as

a function of a dynamic motivational system balancing goal-

orientation with a competing state of wellbeing (Hockey, 1997,

2011).

While the CCM examines motivation in-depth, the cumulative

effects of fatigue on control remain underspecified. By comparison,

a recent computational model of fatigue (CMF)—developed in

the cognitive architecture Adaptive Control of Thought-Rational

(ACT-R; Anderson, 2007)—implements cumulative effects

through computational moderators (Veksler and Gunzelmann,

2018). Specifically, increasing time-on-task results in disruptions

to central control and related break-downs in goal-oriented

processing. With fatigue, gaps known as microlapses increasingly

occur during information processing, slowing cognition and

impairing performance. However, the CMF ascribes motivation

a composite role in the vigilance decrement, without regard to

competing wellbeing needs.

Though the CCM and CMF, respectively, provide well-

specified and empirically validated accounts of fatigue, their

differences exemplify dissociations between theoretical frameworks

and computational explanations. Computational models of fatigue

rarely parameterize motivation explicitly, and cognitive-energetical

theories lack specificity with respect to accumulating fatigue.

Moreover, neurophysiological evidence supports the energetical

perspective but is seldom interpreted in light of specific

theoretical models or computational mechanisms, generating

additional dissociations between explanations of neural behavior

and psychological processes. To resolve these dissociations, we

developed a hybrid framework of fatigue which connects the

CCM’s theoretical perspective with the CMF’s computational

moderators and changes in neural activity over time. To affirm

the framework, we incorporate high frequency gamma oscillations

(∼70–100 Hz) as the neural representation of a latent (unobserved)

factor, i.e., motivational control, in an adapted computational

model of fatigue. Ultimately, converging such diverse accounts

of fatigue can deepen our knowledge of time-on-tasks effects—

beyond treating each perspective as competitive or sui generis

(Gunzelmann, 2019)—to establish a comprehensive account of the

vigilance decrement.
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2 Components of the hybrid
framework of fatigue

2.1 Motivation and the compensatory
control model

A central claim of the CCM (Hockey, 1997, 2011) is that the

motivational system balances competing human needs to regulate

performance when experiencing stress or under high workload.

Here, stress arises from a mismatch between task-required and

extant cognitive states. While the original theory (Hockey, 1997)

does not specify exact relations between stress and fatigue, other

theories view the latter as an antecedent of former (Hancock,

1989; Warm et al., 2008). Indeed, the CCM’s motivational structure

maps coherently to fluctuations in performance observed during

continuous effort. More recently, Hockey (2011) acknowledged the

theory can be understood as an account of task management from

the perspective of fatigue. Consequently, the hybrid framework

draws heavily upon CCM’s core motivational premises and

applicability to the cognitive state when strained by time-on-task.

In the context of task completion under stress, the cognitive

state strategically prioritizes goal-oriented performance through

the energization of effort but at the expense of a state defined

by biological comfort and related positive affect, resulting in

trade-offs between on- and off-task states. Consistent with other

models of control (Jongman, 1998; Carver and Scheier, 2002;

Lord et al., 2010), the CCM attributes purposeful behavior and

maintenance of active goals to reliance upon a regulatory system

referencing internal standards or set points (Hockey, 1997). Such

self-regulation manifests as a latent dual-purpose motivational

system. Goal-oriented motivation modulates the on-task state

through central control, described by Hockey as motivational

control, while the motivation to remain unencumbered manages

the off-task state.

When activated, goal-orientedmotivation orients and energizes

control given prospective rewards and costs (Hockey, 1997, 2011).

While rewards can be extrinsic (e.g., monetary gain), the CCM

refers to intrinsic rewards derived from satisfaction in achieving

a goal. From this perspective, goal-oriented motivation aligns

with innate needs for competence, autonomy, and interpersonal

relatedness (Deci and Ryan, 2013). The energizing process

intensifies one or more basic cognitive functions, realized as

increased effort, a key predictor of performance outcomes

(Boksem and Tops, 2008; Kok, 2022). We interpret effort

mobilization as a function of motivation as implied by the CCM’s

compensatory process and consistent with Inzlicht et al. (2018),

a phenomenological (experienced) rather than an expressed state

(Kurzban, 2016; Schumann et al., 2022). However, effort is costly

and accompanied by biological activation and subjective strain.

Consequently, feelings of stress and aversion evoked in the on-

task state conflict with the motivation to be in a leisure and

unstressed state. With prolonged time-on-task, the motivational

system’s control vs. biological and affective functions compete for

dominance. Effort must be continually activated, or energized, in

order to overcome disruptions from powerful leisure motivations

as fatigue sets in.

The CCM conceptualizes motivational control as a

compensatory strategy for maintaining task performance in

the face of adverse conditions, to include fatigue (Hockey, 1997,

2011). Tensions between the two motivational drives emerge

within a control system with lower and upper loops. The lower

loop represents the default implementation of well-learned skills

aligned with task-relevant performance goals. Effort occurs without

appreciable costs and consequently the state remains free from

distress. As performance falls below internal reference points

for task goals, a problem detecting “effort monitor” determines

whether or not to shift control to the higher loop requiring

more effort. At this point, the motivational system can either (1)

compensate and energize effort, allowing task goals to be protected

but at cost of increasing strain and discomfort, or (2) reduce goal

aspiration, maintaining wellbeing but accepting a reduction in

performance. Both strategies reduce discrepancy between goals

and the current state but differentially advantage performance vs.

biological comfort. Accordingly, the cognitive system subjectively

shifts between the on-task state driven by goal-oriented motivation

and the off-task state accommodating wellbeing needs.

The original CCM (Hockey, 1997) does not specify how

mechanisms implementing motivational system tensions interact

with time-on-task; however, the later version (Hockey, 2011)

suggests disruptions to continuous task performance can be viewed

as breaks, e.g., blocks, gaps, or lapses. Importantly, breaks from

the aversive on-task state refresh effortful control to mitigate

performance impairment, even though a build up could occur over

time. However, while effects of explicit rests and task changes enjoy

considerable attention in the text, the effects of fatigue without

these interventions is underexplored.

Related research provides insights into the effects of breaks

on cognition and performance over time. A recent review of rest-

break literature identifies micro-breaks (<3 min) as brief pauses

during continuous cognitive activity allowing for recovery and

resulting in performance gains (Schumann et al., 2022). However,

absent is an analysis of the extent contexts and processes differ

between longer micro-break durations (e.g., 1–3 min) and those

consistent with shorter micro-lapses (milliseconds) assumed to

accumulate with time-on-task (Gunzelmann et al., 2009a; Veksler

and Gunzelmann, 2018). Relatedly, seminal fatigue researcher Bills

(1931) theorized about “mental blocks” during extended periods of

cognitive work, operationalized as slow reactions more than twice

as long as the average across a series. While mental blocks were

construed as enforced (i.e., controlled) rests intended to alleviate

fatigue and maintain performance over time—consistent with the

CCM—the operationalization falls short of accounting for observed

performance instability and overall declines in response time in

laboratory studies (Parasuraman and Davies, 1977; Dinges and

Powell, 1985; Doran et al., 2001). This is conceptually important

as microlapse implementation in responses at much shorter time-

scales exemplifies the predictive quality of the CMF and the family

of models preceding it.

2.2 The computational model of fatigue

The CMF implements the accumulating effect of fatigue

through well-specified dynamic moderators within the ACT-R

architecture (Veksler and Gunzelmann, 2018; see computational

model section for technical and mathematical details). These

Frontiers inNeuroergonomics 03 frontiersin.org

https://doi.org/10.3389/fnrgo.2024.1375913
https://www.frontiersin.org/journals/neuroergonomics
https://www.frontiersin.org


Borghetti et al. 10.3389/fnrgo.2024.1375913

moderators apply time-on-task penalties to the model’s current

state approximating central control. Unlike its prominence in the

CCM, motivation plays a supporting role in the CMF and is

parameterized as a composite factor. Motivation, along with other

latent factors, such as sleep loss and arousal, are absorbed into an

initial expected utility value, i.e., the perceived value of a particular

action. After task onset, the utility value modulates on/off-task

states and degrades as a function of time-on-task and resultant

microlapses, i.e., breakdowns in the capacity for focused, goal-

directed control. A threshold delineating on-task vs. off-task states

simultaneously declines over time as a compensatory strategy to

minimize microlapse occurrence and maintain performance.

Historically, vigilance and fatigue have been similarly modeled

latent factors as moderators but with less precision. The latent

moderator is conceptualized as a state regulator reflecting an

individual’s goals and affect. These, in turn, change the utility of an

action. Importantly, while the latent moderators ostensibly index

both arousal and motivation, these terms are neither explicitly

defined nor directly connected to psychological theory (Sternberg,

1969; Jongman, 1998).

More recently, earlier CMF versions incorporated models

of physiological and psychological fatigue due to sleep loss

to modulate latent moderators. An initial line of research by

Gunzelmann et al. (2009a; 2009b; 2011; 2015) included the

moderator “altertness” directly connected to biomathematical

models of circadian dynamics. Here, alertness—the overall

readiness of the cognitive system—is estimated from two-process

theories of circadian dynamics positing that the human arousal

system consists of circadian and sleep homeostatic components

(Jewett and Kronauer, 1999; Hursh et al., 2004; Van Dongen, 2004).

The circadian component oscillates across the day, typically with

an asymptotic maximum during daylight hours and a minimum

during the night. Conversely, the sleep homeostatic component acts

as a reservoir that is drained during long periods of wakefulness

and is replenished with sleep. These two components interact to

generate estimates of alertness that generally decrease during the

night and with sleep loss, and increase in daylight hours and with

adequate rest.

Such sleep/wake dynamics motivated the conceptualization

of fatigue-related microlapses. For example, Doran et al. (2001)

theorized that sleep loss led to an unstable cognitive state

fluctuating between wakefulness and sleep. Increased sleep loss

resulted in lapses in the alert on-task state, where lapses represent

a sleepy off-task state. Gunzelmann et al. (2009b) extended

this idea to fatigue but recast lapses as briefer microlapses,

occurring over tens of milliseconds rather than seconds, minutes,

or hours. Microlapses accumulate over time, imposing a penalty

on control, resulting in longer off-task duration and diminished

performance that cannot be fully overcome by the compensatory

threshold mechanism. In data from a simple-reaction task modeled

by Veksler and Gunzelmann (2018), microlapse accumulation

increased the percentage of slow reactions (defined as longer

than 500 ms) from 1% early in the task to over 5% by the end.

Here, CMF predictions provided excellent fits to the data. To

test generalizability, the model’s fatigue mechanisms were further

evaluated for a traditional vigilance task as well as for 24 hours of

sleep loss with similarly good fits (Gunzelmann and Veksler, 2018;

Veksler and Gunzelmann, 2018).

2.3 Connecting concepts and mechanisms

Connecting diverse explanations requires new interpretations

and instantiations especially for models implemented at different

levels of abstraction (CCM, theoretical; CMF, computational).

Before doing so, it is important to identify existing convergences

between the models: both view fatigue as a function of central

control and as a self-regulatory factor rather than a resource, and

construe compensatory mechanisms as biologically inspired. These

similarities are straightforward and anchor the hybrid framework.

By contrast, interpretations of motivation and fatigue

interactions diverge considerably. The hybrid framework

reconciles these differences in two ways. First, CMF’s alertness

fluctuations are interpreted to approximate energetical effort

defined by the CCM. This conceptualization aligns with the view

that effort can be mobilized by goal-oriented motivation (Inzlicht

et al., 2018) while retaining the dynamics of alertness assumed

by computational models leveraging biomathematical accounts

of fatigue and sleep loss (Gunzelmann et al., 2009a, 2011; Walsh

et al., 2014; Veksler and Gunzelmann, 2018). Second, goal-oriented

motivation acts as the antecedent of control, providing a latent

causal factor for on-task behavior absent in the CMF. When

combined in the hybrid framework, we expect motivational

control to exhibit properties consistent with cost (aversiveness)

vs. benefit (intrinsic achievement) trade-offs of mobilizing effort

(Kurzban, 2016; Inzlicht et al., 2018). From the phenomenological

perspective, such trade-offs are state dependent, orienting toward

homeostatic adaptive behavior, e.g., goal achievement, until after

some point in time the cost of persistence (controlled effort)

orients the state toward things personally rewarding, e.g., a state

of wellbeing or leisure (Kurzban, 2016). Consequently, across

time-on-task, we expect an indicator of motivational control

to exhibit a relative reduction in influence over the state in

comparison to off-task states. Specifically, the utility of effortful

control scales according to the accumulation of microlapses.

Similar relative value indicators represent dynamic trade-offs,

for example, in utilized vs. spare capacity (Steinborn et al., 2017;

Schumann et al., 2022) and engaged vs. inattentive states (Mikulka

et al., 2002).

Relative fatigue-induced shifts in motivational control can be

understood by connecting CMF’s microlapses (gaps in control) and

CCM’s unstressed off-task states. Here, microlapses approximate

an off-task state of wellbeing consistent with the default state,

where task-unrelated brain activity intrudes upon controlled

processes (Langner and Eickhoff, 2013). Similar conceptualizations

have emerged in other models, with Unsworth et al. (2020)

proposing that moment-to-moment lapses in attention result

in brief disengagements from the task that accumulate over

the course of a task. Mind-wandering, an off-task phenomenon

which increases over time, has been linked to the default state

(Kool and Botvinick, 2014; Thomson et al., 2015). In the CMF,

transitions to a microlapsed state occur when the cumulative

adverse effects of time-on-task impose a penalty on control,

resulting in failures to exceed the utility value thresholdmodulating

performance. From the hybrid framework perspective, the CMF’s

fatigue moderators perform a function analogous to the CCM’s

“effort monitor” which manages transitions between on- and off-

task states. This interpretation allows for the accumulating effect
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BOX 1 Key concepts of the hybrid framework of fatigue.

Fatigue: a subjectively experienced feeling, often characterized by tiredness,

aversion, and cognitive decline, during or after prolonged periods of cognitive

activity; refers to the mental state.

Motivation: dynamic self-regulatory system balancing goal-oriented and

achievement desires with default needs for affective and biophysical wellbeing;

drives energetical control; also referred to as a latent (unobserved) factor in

cognition.

Control: active regulation of basic information processing functions (e.g.,

attention, working memory, inhibition, discrimination) in the service of goal-

oriented task accomplishment; also referred to as cognitive control, executive

control, and central cognition.

Energetical: the intensification, via control, of one or more basic information

processing functions in meeting some goal; instantiated as brief modulations

(milliseconds) within brain networks associated with motivation and control.

Effort: the realization of energetical intensification of a basic cognitive

function in performance outcomes.

Microlapses: brief (tens of milliseconds) breakdowns in focused, goal-

directed control; accumulate with time-on-task; analogous to rest/leisure and

default states.

Engagement: effortful investment in the service of task or cognitive goals; a

component of motivation.

Alertness: the dynamic cognitive readiness to respond to external

information.

Compensatory control: attempt to maintain a particular task state under

stress; balances goal-directed states with comfortable default states.

Relative motivational control: index of effort energized by goal-oriented

motivation scaled by microlapses accumulating across increasing time-on-

task; implemented as the utility parameter in the gamma computational

models.

High gamma oscillations: transient high frequency neural oscillations (∼70–

80 Hz) instantiating intrinsic top-down processes consistent with goal and

motivational states.

of fatigue on control, the decreasing efficacy of compensatory

processes, and dynamic tensions within the dual motivational

system.

Assumptions about the dynamical function of control are

less easily reconciled. In the CCM, transitions between on- and

off-task states reflect adaptive and strategic trade-offs between

costs and benefits (Hockey, 1997, 2011). By comparison, the

CMF treats fluctuations over time as a general property of

cognitive readiness, i.e., alertness (Veksler and Gunzelmann,

2018). While a noise component instantiates alertness fluctuations,

the fatigue moderators impose a non-monotonic effect on

cognition without regard to strategic intent. Given the efficacy

of energetical control as a function of goal-oriented—hence

intentional—motivation, the hybrid framework incorporates the

CCM’s perspective. Here, we use neural data associated with

motivation (see next section) to directly model motivational system

behavior under fatigue. Through a set of computational models,

we demonstrate that parameterizing high frequency gamma

oscillations plausibly indexes relative motivational control (i.e.,

effort) with respect to competing off-task states (i.e., microlapses)

and priority shifts over time. Our approach—explicitly modeling

motivational control with relevant and temporally-precise neural

data—offers a formal means to coalesce previously disparate

theoretical perspectives, computational mechanisms, and neural

evidence into our hybrid framework of fatigue, as summarized in

Box 1.

3 Neurological basis of the hybrid
framework

Electroencephalography (EEG), assaying oscillatory activity at

the millisecond level, enjoys a temporal resolution well-suited

to realizing dynamic motivational control. For example, recent

work found non-monotonic activity in event-related potentials

(ERPs) aggregated across experimental blocks, reflecting pacing

and end-spurt effects (Morris et al., 2020) interpretable as a coarse

representation of energetical effort over time. Unsurprisingly, non-

monotonicity emerged in the frontal N1 ERP associated with

controlled attentional orientation, while the parietal P3 ERP,

indexing context processing, also exhibited a similar pattern.

Other research also demonstrated that non-monotonic ERP activity

across diverse vigilance tasks were dominated by frontal ERP

components, though energetical activity was also observed in

parietal P3 components (Morris et al., 2023). These findings

provide converging evidence for the energetical control of basic

functions but are less conclusive with respect to cortical orientation

and the role of motivation.

In particular, gamma oscillations extracted from EEG data

consistently indicate a frontal cortical orientation for energetical

control and the involvement of latent motivation. For example,

frontal gamma power corresponded to the recruitment of control

to maintain goal-oriented cognition (Martel et al., 2019), predicted

high engagement in achievement-oriented tasks (Halderman et al.,

2021), indexed intentional actions (Karch et al., 2016), and

identified maximally alert states (Oken et al., 2006). These

findings align with the broader view of frontal gamma as an

instantiation of intrinsic high-level (top-down) neural oscillation

modulating selective attention and temporal expectancy consistent

with motivational states (Engel et al., 2001). Additionally, gamma

oscillations have been associated with denser affective networks

(Bosman et al., 2014) where motivation is viewed as an affective

state (Kool and Botvinick, 2013; Botvinick et al., 2015; Inzlicht et al.,

2015).

High-frequency gamma oscillations (∼70–80Hz), in particular,

exhibit properties consistent with the motivational system

incorporated into our hybrid framework of fatigue. Notably,

Assem et al. (2023) recently demonstrated that higher (vs. lower)

gamma oscillations increased in the fronto-parietal network (FPN)

and decreased in the default mode network during engagement

in a cognitively demanding task. In light of our framework, this

can be interpreted as the tension between motivation for control

and wellbeing needs when the former is intensified. Analogous

high gamma effects were observed in other recent studies, with

frontal-oriented high gamma power exhibiting non-monotonicity

across five consecutive time periods during a brief vigilance task

(Borghetti et al., 2021). Drawing from the CMF (Veksler and

Gunzelmann, 2018), this dynamic activity was interpreted as

a representation of centrally-controlled sustained attention. By

contrast, slower frontal beta oscillations (15–30 Hz) increased

monotonically across the task, a putative compensatory shift

boosting central control (Tran et al., 2020). While increasing power

in frontal beta, theta (3–8 Hz), and alpha (9–14 Hz) activity is most

frequently linked to compensatory processes, fluctuations in frontal

gamma power suggest compensation can separately emerge in the
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energetical form described by the CCM (Hockey, 1997, 2011). A

follow-up study found that gamma connectivity flowed from the

frontal to the parietal region as part of a FPN that weakened with

time-on-task (Borghetti et al., 2022). Such network attenuation

corresponds to the accumulation of microlapses in control

consistent with the computational moderators incorporated into

our framework.

3.1 The hybrid framework and high gamma
predictions

Our hybrid framework of fatigue unites the explanatory

advantage of a renowned theoretical perspective with the

rigorous formalism of a computational model harnessing related

neurophysiological data. Specifically, the hybrid framework

integrates the CCM’s concept of trade-offs between motivational

control as a driver of energetical effortful on-task states and

unstressed off-task states with the CMF’s instantiation of

microlapses as a function of aversion to centrally-controlled

effort. These processes are viewed as dynamic (fluctuating over

time due to competing motivations), compensatory (boosts

in effort in response to fatigue effects), and vulnerable to the

build-up of time-on-task effects (an increasing desire to remain

in an off-task state). We connect these conceptualizations by

parameterizing high gamma oscillatory activity to index effortful

motivational control in our computational models. To compute

relative motivational control under fatigue—reflecting the CCM’s

cost-benefit dynamics—we adapt the utility parameter from the

CMF to moderate goal-oriented motivation. Here, utility values

scale the gamma parameter by microlapse accumulation to capture

the behavior of competing motivational drives over time.

Before introducing our computational model, we evaluate

the extent to which gamma power is associated with changes

in behavior. Specifically, computational moderators only become

necessary when key observed indicators of fatigue, i.e., gamma

activity and response time (RT), do not systemically account for

the range of the time-on-task effects. In this case, parameterizing

latent variables within computational models can offer a more

comprehensive and testable account of underlying processes.

Alternatively, computational mechanisms are not needed when

expected decrements in RTs across time correspond with changes in

related neural activity over time. Using data collected from the PVT,

a well-validated simple reaction-time task (see Method section for

details), we inspect RTs for decrements with a special emphasis

on cumulative distributions and the slowest percentiles, given

their heightened sensitivity to time-on-task (Robison et al., 2021;

Schumann et al., 2022). To evaluate temporal relations between

neural activity and behavior, we correlate gamma power with RTs.

To rule out potential confounds to time-on-task effects, we also

examine lagged activity and context provided by foreperiods. In

other work, lagged, or sequential effects (i.e., enhanced gamma

power in a previous trial) predicted improved performance in the

next trial (Weissman et al., 2006). We also examine interactions

between foreperiod and RTs, as the length of time preceding a

stimulus can effect underlying cognitive processes (Langner et al.,

2010; Steinborn et al., 2017). Finally, we extend an earlier analysis

of FPN dynamics (Borghetti et al., 2022) to investigate potential

energetical patterns in the network over time as well as examine

relations between network strength, performance, and frontal

gamma power.

4 Method

4.1 Procedure and materials

4.1.1 Participants
Thirty-four individuals (Mage = 22.60; SDage = 4.08) from a

midwestern university and surrounding community participated

in the study for monetary compensation. The study was approved

by the institutional review boards of the Air Force Research

Laboratory and University of Dayton. All participants provided

written informed consent in accordance with the Declaration of

Helsinki.

4.1.2 Psychomotor Vigilance Test
The 10-min Psychomotor Vigilance Test, or PVT (Dinges and

Powell, 1985), is a simple reaction-time task measuring changes

in attention to a visual stimulus over time. The PVT is the gold

standard for measuring sustained attention changes from sleep

deprivation/restriction and circadian misalignment (Basner et al.,

2018), but also shows time-on-task fatigue effects (Gunzelmann

et al., 2010). In the current study, participants monitored a screen

with a 5 × 1 cm white, centered box for a visual stimulus, a white

numeric millisecond (ms) counter (see Figure 1). At the beginning

of each trial, the count started at 1 ms. Participants pressed the “J”

key as soon as the count was detected. An interstimulus interval

(ISI) (after pressing key) was randomized at discrete second levels

between 2 and 10 for each trial. If participants pressed the key

before the stimulus, it was recorded as a false start. If participants

did not press the key within 30 s after stimulus appearance,

it was noted as a time-out [i.e., a sleep attack (Dorrian et al.,

2004)]. Because only a response for target detection is required,

the PVT avoids confounds for gamma activity potentially present

in more complex tasks. For example, the task’s low cognitive

load constrains gamma to representing controlled attention (Kim

et al., 2017). Further, since gamma oscillations exhibit sensitivity to

discrimination (Herrmann et al., 2010), using the same stimuli (the

counter) in every trial eliminates issues with dissociating sustained

attention from target vs. non-target processing.

4.1.3 Data collection and processing
Participants were fitted with a BioSemi ActiveTwo system

(BioSemi, Amsterdam, Netherlands, Europe) EEG cap containing

64 Ag-AgCl sintered electrodes following the 10-20 system, with

two additional flat, unlinked electrodes applied to the mastoids.

Voltage offsets were reduced to <4± 40 mV and noisy channels

were re-gelled and re-applied. Scalp activity was re-referenced

online to the linked CMS (common mode sense) and DRL (driven

right leg) electrodes circuit during recording on a 64 bit Dell PC

(AMD Phenom 2.3 GHz processor, 2 GB RAM, Windows 7).
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FIGURE 1

Psychomotor Vigilance Test (PVT). Participants press a

pre-designated keyboard button as soon as the numeric counter

(center) is detected.

Next, data were cleaned and processed with in-house scripts in

MATLAB (version R2019, Mathworks, Massachusetts, USA) and

the EEGLAB toolbox 2019.1 (Delorme and Makeig, 2004). Data

were downsampled to 512 Hz as needed. A 1.0 Hz high pass

filter was applied and the data was re-referenced to the common

average. The default EEGLAB independent components analysis

(runica) was used to identify and remove artifacts due to eye

blinks/movement, myogenic noise, and other non-neural signals.

Continuous data were epoched into segments ± 1,500 ms with

respect to stimulus onset.

4.2 Data analysis approach

Gamma power and RTs were analyzed at the aggregate block

and single-trial levels. For the block analysis, data were divided into

five 2-minute time bins: 0–2 min Bin 1), 2–4 min (Bin 2), 4–6 min

(Bin 3), 6–8 min (Bin 4), 8–10 min (Bin 5). Linear mixed-model

and correlational analyses were performed using R (R Core Team,

2021). For Tukey contrasts with the holm method, we used the

multicomp package (Hothorn et al., 2008). Given the potential for

sequential effects, we performed a cross-correlation analysis on the

single-trial data using the funtimes package (Lyubchich et al., 2023).

The package’s ccf_boot function estimates Pearson correlation

coefficients for lagged gamma power (k-1) and current trial RTs

(k) which indicates the extent increases in energy in previous trials

predict better performance in subsequent trials. To account for

potential autocorrelation, the data is bootstrapped 1,000 times.

Cumulative probability distributions were computed using base R’s

ecdf function.

4.2.1 Response time
For the statistical analysis, RTs were sorted by response

type based on historical use of the PVT (Dorrian et al., 2004;

Gunzelmann et al., 2009b): alert responses (150–500 ms; 94.3%

of responses), false starts (2 instances), and lapsed responses

(longer than 500 ms; 5.6% of total responses). In comparison

to lapsed responses, alert responses reflect state variability that

fluctuates within tens of milliseconds—consistent with microlapses

(Gunzelmann et al., 2009b) rather than seconds characteristic of

break-rest cycles (Schumann et al., 2022)—to gradually stretch

RT distributions to the right. For the time bin analysis, RTs

were reduced to a single mean data point for each time bin and

aggregated for analysis. To reduce the skew inherent to mean RT

distributions, an inverse transformation was applied (1/RT× 1,000;

Ratcliff, 1993). RT distributions were examined by rank-ordering

each participant’s RTs, apportioning them into quintiles from fastest

to slowest percentiles (Robison et al., 2021), and then comparing

performance across time and quintile.

4.2.2 Gamma power spectral density estimates
Gamma power spectral density (PSD), or power, was estimated

in MATLAB. We assayed high gamma power (70–80 Hz) within a

window from −300 to 800 ms from the larger epochs at canonical

frontal (Fz) and parietal (Pz) sensor locations. The resulting 1100

ms windows were divided into overlapping segments using periodic

367 ms Hamming windows with 25% overlap. Spectral power was

next estimated using the pwelch function over the range 0–256

Hz across 2,560 linearly spaced values. Total power was computed

by summing single-trial gamma power across subjects within each

time bin. To meet the normality assumption, gamma power was

log transformed prior to statistical analysis. Consistent with the

CMF implementation (Veksler and Gunzelmann, 2018), gamma

power data from all trials not rejected for excessive noise in EEG

preprocessing were included in our computational models.

4.2.3 Directional connectivity
Here we extend the time Bin 1 vs. Bin 4 Granger Prediction

(GP) connectivity findings presented in a recent conference

paper (Borghetti et al., 2022) through aggregating all trials in

Bin 1 through Bin 5, thus increasing statistical power (at the

expense of temporal resolution across time bins), yielding broad

though robust differential patterns of frontal ↔ posterior gamma

connectivity.
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GP, also known as Granger Causality (Granger, 1967), is a

neuroscience tool for predicting activity at a given sensor (sensor

X) from previous activity at sensors X and Y. The strength

of this method is based upon the previous states of X and Y

having greater predictive power for the current state of X than

does the previous state of X alone (e.g., Seth et al., 2015). Any

non-zero GP value suggests correlated activity (i.e., directional

communication network) between X and Y. Importantly, GP

cannot imply causality in a strict sense between activity at sensors

X and Y (hence the preferred use of “Granger Prediction” over

“Granger Causality”), GP is often used to infer causal relations in

directional brain networks (e.g., Seth et al., 2015; Winkler et al.,

2015).

To investigate frontal ↔ posterior gamma connectivity

networks, we used the same single frontal (Fz) and parietal (Pz)

sensors as in the power analyses. Frontal → posterior (Fz →
Pz) network communication was assessed separately from the

posterior → frontal (Pz → Fz) network according to Cohen’s

(2014) method implemented as described in Borghetti et al.

(2022). We calculated GP for Fz → Pz and Pz → Fz for

each subject, using EEG data from all trials in Bin 1 through

Bin 5. The GP model time window was set to 300 ms with

an order parameter of 27 ms, and GP was calculated across

41 log-spaced bins covering 35–100 Hz, and from 250 ms

prior to stimulus onset through 1,250 ms after stimulus onset.

Specific time windows (early, 0–150 ms after stimulus onset

associated with perceptual gating; late, 200–400 ms indexing

central cognition) and frequencies (70–80 Hz) of interest were

derived from inspection of single-subject and aggregate data from

the full time/frequency range described above. Each subject’s

data was reduced to a single data point (the mean) for each

time/frequency window. Further, to explore any brain-behavior

linkage between GP and RTs, we examined correlations between

these factors separately for each time window and connectivity

direction (Fz→ Pz, Pz→ Fz).

5 Results

5.1 Gamma power and response time
analysis

Behavioral data and neural activity were evaluated for

sensitivity to time-on-task as well as interactions with foreperiod,

changes in slowest-to-fastest RTs, and correlations in real-time and

lagged-time. While anticipating changes across time, systematic

temporal associations between the two variables were not expected

to emerge. An obvious difference is apparent in Figure 2. The

non-monotonic pattern of mean gamma power by bin over

time can be visually observed in Figure 2A. These differences

were evaluated through a linear mixed model analysis, with a

significant effect of bin observed for gamma power, F(4,2525)
= 4.125, p = 0.002, R2 = 0.77. However, only differences

between Bins 2 and 4 vs. Bin 5 survived holm correction

for multiple contrasts. The distinct monotonically increasing

pattern of RTs across bins in Figure 2A was also significant,

F(4,2525) = 28.14, p < 0.001, R2 = 0.291. After holm correction,

significant contrasts were observed between all bins except Bins

3 vs. 4 and Bins 4 vs. 5, largely consistent with the expected

decrement.

A linear-mixed model analysis was performed to evaluate

interactions between time-on-task and foreperiod context (i.e., 2–

10 s ITIs) on RTs. The ITI-only model was significant, F(9,2,520) =

28.44, p < 0.001, R2 = 0.33. The ITI + time-on-task model without

the interaction was also significant for foreperiod, F(9,2,516) = 29.97,

p < 0.001, and time bin, F(4,2,516) = 34.78, p < 0.001, with total R2

= 0.37. However, the interaction model was not significant, F(36,

2,480) = 0.957, p = 0.573, R2 = 0.37. The three models were then

evaluated for goodness of fit with the data. The fit for the ITI +

time-on-task model was improved over the ITI-only model, χ2 (4,

N = 2,563) = 138.893, p < 0.001; however, the interaction model

did not improve fit, χ2 (36, N = 2,563) = 34.818, p = 0.547. The

results indicate that context provided by varying foreperiod lengths

was additive though did not alter the influence of time-on-task

on RTs. We do not believe the absence of interaction effects was

due to the 10-min duration of the task as the same results were

obtained (but not reported in the manuscript) in a study using a

30-min PVT (personal communication, Veksler and Gunzelmann,

2018).

We evaluated change in percentiles over time as fatigue effects

have been observed most frequently in the slowest RT percentiles

(Robison et al., 2021; Schumann et al., 2022). First, CDF percentiles

were divided into quintiles (fastest to slowest) for each participant,

then counts for each quintile were computed for each time bin

and aggregated. The resulting pattern showed a demonstrative

increase in slow responses (Q4, Q5) with time-on-task whereas the

number of fastest responses (Q1) declined (see Figure 3; Table 1).

Chi-square analysis revealed the change in RT quintile counts

over the five time bins was significant, χ2 (16, N = 2,563) =

91.502, p < 0.001. The results provide fine-grained by-participant

evidence of a vigilance decrement. Moreover, the decrease in

slowest responses from Q4 to Q5 corresponds to endspurt behavior

observed in other fatigue and vigilance tasks (Morris et al., 2020,

2022).

Correlations between gamma power and RTs were

not expected to sufficiently account for motivation and

performance. As predicted, correlation at the binned

data level was not significant, r(3) = −0.286, 95% CI =

(−0.932, 0.798), p = 0.64. Similarly, a significant correlation

coefficient failed to emerge across subjects and single-

trials, r(2,561) = −0.002, 95% CI = (−0.037, 0.04), p =

0.94 (see Figure 2B). Individual correlations were normally

distributed and largely insignificant; however, significant

correlations were observed in a small number of subjects

(4/34, 11.8%).

A lagged Pearson’s cross-correlation analysis was performed

on the single-trial data for gamma power at time (k-1) and

RTs at time (k) to evaluate sequential effects. Group-level cross-

correlations were not significant, r(2,561) = 0.017, 95% bootstrap

CI = (−0.068, 0.068). Individual cross-correlation estimates were

normally distributed and clustered around zero, r = (−0.317,

0.374), 95% bootstrap CI: lower(−0.282, −0.204), upper (−0.282,

0.204), though coefficients for four subjects (11.8%) exceeded

CI boundaries. Notably, these participants differed from those

reported above.
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FIGURE 2

Patterns in gamma power (blue solid line) and RT (black dotted line) over time: (A) across the five 2-min time bins (error bars omitted for clarity); (B)

across single trials. No significant correlations emerged at either timescale.

FIGURE 3

Stacked aggregate counts of fastest (Q1) to slowest (Q5) response time quintiles computed per participant across the five time bins during the

10-min PVT task. Consistent with the vigilance decrement, frequency of the fastest quintile decreases as frequency of slowest quintile increases with

time-on-task.

5.2 Directional gamma connectivity

We theorized directional connectivity might exhibit a time-

on-task pattern consistent with energetical control for frontal →
parietal (Fz→ Pz) gamma but not for parietal→ frontal (Pz→ Fz)

gamma. However, no significant across-bin (over time) GP changes

were observed for early or late window Fz→ Pz or Pz→ Fz.

We expected connectivity Fz→ Pz gamma to be stronger than

Pz → Fz gamma. Indeed, as depicted in Figure 4, we observed

greater Fz → Pz than Pz → Fz gamma connectivity in Bins

1, 2, 3, and 5 in the early time window, though there was

no difference in Bin 4. Fz → Pz gamma connectivity trended

toward being greater than Pz → Fz in Bins 1, 2, and 3 for

the late time window and differed significantly in Bins 4 and

5. Table 2 reports t and p values as well as mean (SD) GP by

bin and connectivity direction for each time window. The results

provide evidence for frontally dominated cognition consistent with

energetical control.
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TABLE 1 RT Quintile Frequency Counts.

Time
bin

Q1 Q2 Q3 Q4 Q5

0–2 min 155 139 100 86 72

2–4 min 117 95 103 100 89

4–6 min 92 103 115 91 115

6–8 min 85 83 93 106 128

8–10 min 64 93 102 159 108

Frequency of quintile counts of fastest (Q1) to slowest (Q5) response time percentiles provide

a per-participant account of time-on-task effects. Increases in Q4 and Q5 counts with time

are consistent with the vigilance decrement. The modest decrease in counts from Q4 to Q5

corresponds to the endspurt phenomenon.

5.3 GP correlations with RT and gamma
power

As with gamma power, a direct association between GP and

performance was not expected. A Pearson’s correlation revealed

only a marginally significant relation between GP and RT for Fz

→ Pz connectivity for Bin 1 in the late time window. All other

correlations were nonsignificant.

Alternatively, we expected frontal gamma power to exhibit a

positive relationship with Fz → Pz GP but not for Pz → Fz GP.

As listed in Table 3, correlations between Fz → Pz GP and frontal

gamma power were significant in the early time window at Bins 4

and 5. In the late time window, these correlations for Fz→ Pz were

significant at Bins 2, 3, 4, and 5, though Bin 1 was nonsignificant.

All correlations between Pz → Fz GP and frontal gamma power

were nonsignificant.

5.4 Summary of data analysis results

Our analysis largely supports our hypothesis that high gamma

activity, as a representation of motivational control, does not

sufficiently associate with behavioral performance to fully account

for accumulating latent motivational tensions. A detailed analysis

of RT dynamics provides evidence for time-on-task effects beyond

foreperiod influences, and validates the increased frequency of

participant slowest responses later in the task consistent with

the vigilance decrement and end-spurt phenomenon. The absence

of bin-level and single-trial correlations indicates the need for

additional mechanisms to explain fatigue effects. Sequential effects

were also not observed, removing a potential confound for

interpreting the moment-to-moment interactions. That a small

number of individuals’ data was correlated, potentially reflect

performance differences indexed by gamma oscillations in previous

research (Herrmann et al., 2010; Kim et al., 2017; Borghetti et al.,

2021).

The GP analyses provided evidence that neural communication

over time maintains a frontal-orientation consistent with a FPN

associated with central control. However, in contrast to gamma

power, an energetical pattern was not observed in GP between

bins. Even so, correlations between oscillatory power and the FPN

indicate the suitability of frontal high gamma as a latent driver

of information processes necessary to maintain task performance.

By contrast, the absence of RT and connectivity further supports

the notion that a multitude of cognitive factors contribute to the

vigilance decrement (Boksem and Tops, 2008).

Collectively, the findings provide compelling but insufficient

evidence for the hybrid framework of fatigue. Frontal high

gamma oscillations exhibit an energetical pattern and connectivity

corresponding to central control but do not directly map to

observed performance declines. Consequently, we feel confident in

using gamma power as an index of the motivational system in our

computational model.

6 Computational model of the hybrid
framework

We demonstrate the efficacy of our hybrid framework of

fatigue through representing components in a computational

model and then testing the model’s ability to describe and predict

performance. Computational models of human cognition are a

common method of mapping empirical observations to theory,

where latent psychological constructs are translated into free

parameters and fit to empirical data (Pitt and Myung, 2002;

Farrell and Lewandowsky, 2018). By managing multiple dynamic

interacting components and processes, computational models can

handle complex systems, i.e., regulatory control in the human

mind, that are challenging to analyze using analytical methods

alone.

We introduce two computational models that test the

hypothesized relationship between energetical motivational control

and accumulating microlapses in a simulated vigilance task. We

first present earlier versions of CMF for the PVT and then extend

the model to integrate gamma PSD, i.e., high gamma power, as

a representation of motivationally-driven control. Motivational

trade-offs due to fatigue are captured through utility values

computed by scaling gamma PSD by fatigue moderators (time,

microlapses). The models are written using ACT-R (Anderson

et al., 2004)—a goal-directed, time-dependent architecture with a

long history of simulating sustained attention (Gunzelmann et al.,

2009a,b; Walsh et al., 2017; Veksler and Gunzelmann, 2018).

6.1 ACT-R theory

The ACT-R architecture conceptualizes behavior as arising

from interactions between stored knowledge and actions that are

used to execute behaviors. In models of simple reaction time tasks,

most behavior is related to the selection and execution of specific

pieces of procedural knowledge, e.g., goals, which are referred to

as “productions” approximating central control (Anderson et al.,

2004). The ACT-R architecture conceptualizes behavior as arising

from interactions between stored knowledge and actions that

are used to execute behaviors. These interactions emerge from a

series of if/then rules that govern which actions are appropriate

in a given situation. In models of simple reaction time tasks,

most behavior is related to the selection and execution of specific

pieces of procedural knowledge, e.g., goals, which are referred to

as “productions” approximating central control (Anderson et al.,

2004).
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FIGURE 4

Between-bin high gamma GP for Fz → Pz (black) and Pz → Fz (blue) for an early window (0–150 ms) after stimulus onset associated with perceptual

gating and later window (200–400 ms) indexing central cognition; *p ≤ 0.10, **p ≤ 0.05, ns, not significant. Means (SDs) are listed in Table 2.

ACT-R selects the production with the greatest estimated utility

value U, a value that reflects the strength and appropriateness

(via partial matching and similarity) of a given behavior at a

given time, to execute (or “fire”) when an action takes place.

Conflict resolution refers to the process of selecting from the set

of possible productions. The probability of selecting a production

is directly related to the estimated utilities of the productions held

in procedural memory, noise on these values (σ 2), and a threshold

(UT) that filters out productions with low U values. Utility noise

σ 2 is selected from a logistic distribution with mean 0 and variance
π
3 · s2 (where s is a free parameter that controls the magnitude of

the variance component) and produces stochasticity in selecting

production i which is represented mathematically using Luce’s

(1977) choice axiom as shown in Equation 1:

Pr[Ui] =
eUi/

√
2s

∑

J e
Uj/

√
2s
, (1)

where the denominator sums the utilities for matching above-

threshold productions of length J.

6.2 Simulations of vigilance and motivation

This goal-directed production system has proven useful for

simulations of vigilant performance for a number of reasons. First,
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TABLE 2 Within-bin GP by direction, bin, and time window.

Fz → Pz Pz → Fz

Bin t(66) p M (SD) M (SD)

Early window

Bin 1 2.21 0.03 0.010 (0.012) 0.005 (0.005)

Bin 2 2.15 0.04 0.010 (0.012) 0.005 (0.004)

Bin 3 2.13 0.04 0.009 (0.011) 0.005 (0.004)

Bin 4 1.15 0.25 0.009 (0.009) 0.007 (0.006)

Bin 5 2.24 0.03 0.010 (0.012) 0.005 (0.004)

Late window

Bin 1 1.90 0.06 0.011 (0.012) 0.006 (0.007)

Bin 2 1.78 0.08 0.010 (0.011) 0.006 (0.007)

Bin 3 1.74 0.09 0.011 (0.012) 0.006 (0.008)

Bin 4 2.11 0.04 0.010 (0.009) 0.006 (0.005)

Bin 5 2.17 0.04 0.010 (0.010) 0.006 (0.005)

TABLE 3 Correlations between GP and frontal gamma spectral power by

direction, time window, and bin.

Fz → Pz Pz → Fz

Early window

Bin 1 r = 0.31, p = 0.08 r =−0.07, p = 0.68

Bin 2 r = 0.30, p = 0.08 r =−0.04, p = 0.81

Bin 3 r = 0.31, p = 0.08 r = 0.01, p = 0.97

Bin 4 r = 0.56, p < 0.01 r = 0.08, p = 0.67

Bin 5 r = 0.40, p = 0.02 r = 0.19, p = 0.28

Late window

Bin 1 r = 0.24, p = 0.17 r =−0.02, p = 0.92

Bin 2 r = 0.37, p = 0.03 r =−0.04, p = 0.82

Bin 3 r = 0.35, p = 0.04 r =−0.02, p = 0.90

Bin 4 r = 0.57, p < 0.01 r = 0.03, p = 0.89

Bin 5 r = 0.64, p < 0.01 r =−0.01, p = 0.95

it comports with the dynamics of well-known vigilance tasks,

such as the PVT and the Mackworth Clock Task (Mackworth,

1948), where participants transition between discrete states in

accordance with the task, e.g., “waiting” before a stimulus appears

and “responding” after a stimulus has been presented. These

transitions are imperfect and are subject to change, as participants

show variability in their decisions to withhold or produce a

response, particularly as a function of changes in internal (e.g.,

fatigue, motivation) or external (e.g., visual noise) influences across

time. In this way, sustained attention tasks, and cognitive models of

such tasks, can be considered time-inhomogeneous semi-Markov

processes (c.f., Weaver, 2008; Fisher et al., 2022). This characteristic

relates to the second reason, that changes in state transition

probabilities (via production utilities) can be easily modeled using a

small number of parameters. This can be accomplished either using

methods built into the ACT-R architecture, such as production

reinforcement (e.g., Lovett and Anderson, 1996), or for the CMF,

incorporating a fatigue module (i.e., the fatigue moderators) that

directly influences the parameters of the model.

In earlier computational models of fatigue, estimates of

alertness were integrated into ACT-R in a way similar to

other PVT models (Jongman, 1998; Belavkin, 2001); namely,

estimated alertness modulated the expected utility values of

relevant productions in the model, where lower alertness estimates

resulted in lower utility values and, in return, lower probabilities

of a given production occurring (Gunzelmann et al., 2009a). To

help characterize performance, more recent models introduced:

(1) microlapses, e.g., effects of brief lapses in control, and (2)

compensatory efforts to help offset lowered production utility

values. Microlapses occur during moments when no model

productions exceed the utility threshold (e.g., during states of

aversiveness) and result in a short penalty to processing time

(∼50 ms). Microlapses also result in decreases in production

utility values, leading to even more microlapses. Compensatory

efforts, on the other hand, are not tied to utility values, and

instead affect utility thresholds by lowering them with increased

fatigue. This reduces the chance that no productions are selected

to fire (resulting in the model “getting stuck”) but increases the

probability of the model firing inappropriate productions, such

as responding before the stimulus is presented (false alarm) or

withholding a response in the presence of the stimulus (lapse).

Earlier models connected decreases in performance across time-

on-task to time awake primarily using biomathematical models

of arousal based on circadian dynamics, such as SAFTE (Hursh

et al., 2004; Gunzelmann et al., 2009a,b, 2011; Walsh et al.,

2014); however, these effects can be generalized using time-on-task

penalties (Veksler and Gunzelmann, 2018).

The most recent version of the CMF models effects of fatigue

on performance in short (10–30 min) PVT tasks (Veksler and

Gunzelmann, 2018). In the model, the state transitions between

“waiting,” “attending,” or “responding” (see Figure 5).

Here, alertness is not estimated from biomathematical models

of fatigue; instead, it is assumed that alertness decreases as a

function of fatigue moderators—time-on-task and microlapses—

which approximate the cost of performance at shorter time-scales

(i.e., minutes vs. hours and days). Specifically, the authors estimate

(Equation 2) the utility of a production U by imposing a penalty

on the initial production utility value (υ) as a function of both the

number of microlapses (Nml) and the time spent on the experiment

(t):

U(t) = υ [λNml (1+ t)ρ], (2)

where υ is the initial utility value parameter, t is time spent

on the task (scaled to minutes), λ scales the effect of micro-

lapses on utility values, and ρ scales the effect of time-on-task. As

fatigue increases and production values decrease, the probability

of sampling an inappropriate production increases, leading to

increases in false alarms.

In contrast, the production utility selection threshold is only

affected by time-on-task as shown in Equation 3:

UT(t) = τ (1+ t)κ , (3)
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FIGURE 5

Process model of the Psychomotor Vigilance Test (PVT) in ACT-R. From Veksler and Gunzelmann (2018).

where τ is the initial utility threshold parameter and κ scales

the effect of time-on-task on the threshold. Lower thresholds

under conditions of fatigue allow the model to select productions

whose υ values have decreased, which can also lead to selecting

inappropriate productions, e.g., false alarms.

6.3 Current model development

The current effort expands Veksler and Gunzelmann’s (2018)

CMF in the PVT to instantiate concepts of our hybrid framework

of fatigue. As such, the model implements interactions between

fatigue, relative motivational control, and the observed patterns

in the neural and behavioral data from the current study (c.f.

“Results”). Specifically, we modeled the combined influences of

fatigue (e.g., slowed responses due to time-on-task) and motivation

(e.g., energetical control and effort) on PVT performance across

all participants and within individuals. In contrast to previous

models, but consistent with our proposed hybrid framework,

we define alertness as the composite representation of the

subjective intensification of a cognitive function (such as controlled

attention) in the service of a goal (Inzlicht et al., 2018). That is,

alertness approximates effort consistent with the CCM (Hockey,

1997, 2011). Our model construes motivation as a system that

either intensifies (i.e., increases) or constrains (i.e., decreases)

performance behaviors. This implementation corresponds to the

CCM such that intrinsic goals influence the control of task

performance, similar to a hyperparameter in a standard cognitive

model, and wellbeing needs extract a cost on performance.

We assume that task goals (on-task states) and wellbeing (off-

task states) vary across individuals—namely that subjects engage

in a subjective cost-benefit calculus—resulting in differences in

energy expenditures. Utility values index evolving cost-benefit

tensions across time-on-task to account for the waning trade-space

advantaging achievement goals due to fatigue.

6.3.1 Parameterized motivation
We instantiate motivation as the parameter zeta (ζ ) that

is typically bounded between zero and one. In the proposed

model, however, ζ can exceed its upper bound, meaning that

parameterized effort cannot go below zero (meaning “absolute”

fatigue), but can surpass unity (meaning “extra” effort). Thus, ζ

can capture decrements due to fatigue (off-task states) as well as

compensatory efforts that offset fatigue (on-task states).

One way to normalize fatigue moderator values is by adjusting

the values to the smallest value and the range of the values. This

normalization method has been used to scale biomathematical

estimates of arousal in previous investigations of the PVT

(Gunzelmann et al., 2009b), where estimates start with high values

and monotonically decrease as a function of time. An interesting

aspect of this method that is reflected in the fatigue moderators

proposed by Gunzelmann et al. (2009b); Veksler and Gunzelmann
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FIGURE 6

Single-trial utility values for the CMF (black) and Gamma model 2

(blue), excluding noise.

(2018) is that the normalized values start at one (the highest

possible value) and decrease with time-on-task, implying that

performance cannot meet or exceed that from t = 1. Normalizing

from the starting value, however, allows the transformed values to

reflect the energetical variation from “baseline” (i.e., beginning of

the task), including instances where performance exceeds initial

efforts (unity). Therefore, we opted to normalize gamma values

to a baseline reference in order to simulate pacing and end-

spurt effects using gamma PSD estimated across 2-min bins

(Model 1) and motivational control within individual trials (Model

2). The resulting values are then multiplied against production

utility values to simulate changes in performance. Parameterizing

motivation in this way highlights a distinction between the CMF

using fatigue moderators and models using interactions between

gamma activity and fatigue moderators. Without noise, utility

values for CMF exhibit a monotonic decline over time whereas

utility values for the gamma models exhibit dynamic and declining

properties across the task consistent with hybrid model predictions

(see Figure 6).

6.3.2 Model 1: binned gamma
Our first model uses the PSD estimates binned across 2-min

time intervals observed in the current study to examine broad

trends in cognitive-energetical behavior (Figure 2A). Given a set of

observed PSD estimatesŴi = {γi,1, . . . , γi,t}, for participant i at time

bin t, as well as the range of these values, γri = range{γi,1, . . . , γi,t},
we can calculate effort as shown in Equation 4:

ζi,t = 1+
(

γi,t − γi,1

γri

)

. (4)

Here, ζi,1 = 1 and all subsequent values are interpreted as

diminished effort due to time-on-task (ζi,t < ζi,1) or as intensified

(i.e., compensatory) effort compared to baseline (ζi,t > ζi,1),

allowing the model to account for pacing and end-spurt effects

observed in the data.

6.3.3 Model 2: single trial gamma
We also developed a model of the PVT that examines

fluctuations in performance with higher temporal precision using

gamma PSD values estimated for each trial. Because of the high

variability in these PSD estimates, we used a simple modification

of the common decibel conversion method (c.f., Cohen, 2014). As

shown in Equation 5, ζ values are calculated as a ratio of gamma

power for a given trial (t) against a baseline comparison calculated

as the average spectral power for trials 1 through k, where k is

typically set to 10. This ratio is then scaled into units appropriate

for the simulation by adding 1 to the logarithm of the ratio:

ζi,t = 1+ logbi

(

γi,t

µγi,1 : k

)

, (5)

where b is a parameter that allows the base of the logarithm to

vary for each participant. The base can be any multiple of 10 that is

>10 (the default value).

6.3.4 Applying fatigue moderators
To moderate performance, we integrate parameterized

motivation in a linear function with the initial production utility

parameter υ (similar to Equation 2) with brief lapses in central

control. Therefore, as shown in Equation 6, the modulated utility

value for an individual at a given time, Ui,t , can be calculated as a

function of υi, ζi,t , and a penalty (λi) to the number of simulated

microlapses (Nml):

Ui,t = υi · [λ
Nml
i · ζi,t]. (6)

The probability of selecting a given production (wait, attend,

respond) then, is positively related to parameterized motivation

(ζ ), but negatively related to the number of brief lapses in control

during the vigil.

6.4 Results

We used the neural and response time data observed in this

study to examine the ability for the gamma 1 and gamma 2models

to simulate performance during the 10-min PVT. Performance

in these models was compared against the most recent CMF of

PVT performance that includes the additional ρ and κ parameters

listed in Equations (2) and (3), respectively (c.f., Veksler and

Gunzelmann, 2018).

To reduce the complexity of the models and potential for poor

convergence, we fixed the initial utility threshold τ to 2.0 for all

participants in all models. Therefore, all models include initial

utility value (υ), microlapse penalty (λ), and conflict resolution

time (φ) as free parameters, with two additional time-on-task
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TABLE 4 Descriptions of parameters in the ACT-R models of the PVT.

Param. Description Bounds Value Gamma
models?

υ Initial production

utility value

( 0.0, Inf ) Free Yes

τ Initial production

utility threshold

N/A 2.0 Yes

λ Microlapse penalty ( 0.0, 1.0 ) Free Yes

φ Conflict resolution

time

( 0.01, 0.1 ) Free Yes

ρ Production utility

time-on-task

penalty

(−1.0, 0.0 ) Free No

κ Utility threshold

time-on-task

penalty

(−1.0, 0.0 ] Free No

The “Value” column indicates if a value is freely-estimated, and if not, what the value is fixed

to. The “Gamma models?” column indicates if the parameter is included in the models that

use gamma power as a performance moderator.

TABLE 5 Summary statistics of the parameters from the best-fitting

models fit to data from individual participants.

Parameters Fit indices

Model υ λ φ ρ κ -2LL AIC

CMF 3.82 0.88 0.057 −0.20 −0.15 1,137.63 1,147.63

(0.14) (0.01) (0.002) (0.01) (0.01) (16.55) (16.55)

Gamma

model 1

6.65 0.94 0.058 – – 1,176.06 1,182.06

(0.93) (0.01) (0.002) – – (21.29) (21.29)

Gamma

model 2

4.15 0.93 0.058 – – 961.74 967.74

(0.40) (0.01) (0.002) – – (26.03) (26.03)

The mean values are listed above the standard errors in parentheses.

penalty parameters for utility values (ρ) and thresholds (κ) in the

CMF model (Table 4).

The model-fitting procedures consisted of maximizing the

likelihood of trial-level latency for each subject using approximate

Bayesian computation (ABC) with differential evolution (Turner

and Sederberg, 2012). All model code was developed using the

Julia programming language (Bezanson et al., 2017) and open

source code libraries, including DifferentialEvolutionMCMC.jl

(dfish, 2022). The parameters estimated for each of the three types

of simulations are listed in Table 5.

6.4.1 CMF model
The parameters recovered using the CMF model are consistent

with those reported by Veksler and Gunzelmann (2018).

Specifically, initial utility values were greater than the fixed

threshold parameter, Mυ = 3.82, SEυ = 0.14, while the conflict

resolution time was around 50 ms, Mφ = 0.057, SEφ = 0.002.

These results did diverge from the original parameter estimates

in two ways, however: First, the two penalties for time-on-task,

Mρ = −0.20, SEρ = 0.01, Mκ = −0.15, SEκ = 0.01, are much

greater in magnitude compared to those estimated by Veksler and

Gunzelmann (ρ = −0.05, κ = −0.01). Second, when allowed

to freely-vary, the average estimated penalty to microlapses,

Mλ = 0.88, SEλ = 0.01, is smaller than the fixed value given by the

authors (λ = 0.98). This could be due to differences in lengths of

the two PVT tasks (30- vs. 10-min), such that greater time-on-task

penalties are needed to account for decrements across shorter

periods of time.

6.4.2 Gamma model 1
The model that integrated gamma PSDs estimated in five time

bins (i.e., Model 1) resulted in a similar pattern of parameters:

initial utility values, Mυ = 6.65, SEυ = 0.93, are greater than the

fixed initial threshold values, with microlapse penalties close to 0.9,

Mλ = 0.94, SEλ = 0.01, and conflict resolution times close to 50

ms, Mφ = 0.058, SEφ = 0.002. The average fit of the gamma 1

model to the observed data, MAIC = 1176.06, SEAIC = 21.29,

is no different than that for the CMF model, MAIC = 1137.63,

SEAIC = 16.55, t(33) = 1.39, p = 0.17, d = 0.34, indicating

that model’s transformations of binned gamma PSD values provide

estimates of PVT performance that are as accurate as those given

by previously-published models.

6.4.3 Gamma model 2
Finally, when gamma PSD values are transformed on a trial-by-

trial basis, the recovered parameters are similar to those captured

by the CMF and Model 1, but with better fit to the observed data,

MAIC = 967.74, SEAIC = 26.03, compared to the CMF, t(33) =
5.67, p < 0.05, d = 1.37, and gamma 1 models, t(33) = 6.37,

p < 0.05, d = 1.55. Initial utility values are again greater than the

fixed initial threshold values, Mυ = 4.15, SEυ = 0.40, microlapse

penalties are close to 0.9, Mλ = 0.93, SEλ = 0.01, and the average

conflict resolution time is close to 50 msMφ = 0.058, SEφ = 0.002.

6.5 Model discussion

The model presented here demonstrate that fluctuations in

performance on the PVT arising from fatigue and motivational

control can be represented using high frequency neural activity

observed during the task. Critically, declines in utility values

over time can be interpreted as the dynamic re-orientation of

the state away from goal-motivated control to leisurely off-

task states. Here, transformed gamma PSD values reflect the

energetical variations from unity (e.g., increases above baseline)

in balancing competing motivations. Model 1 uses gamma PSD

values collected in 2-min time bins to moderate transition

probabilities between states of waiting, attending, and responding

while Model 2 does the same, but with gamma PSD estimates

calculated for each trial. The simulated reaction times suggest

that a model integrating binned gamma PSD values (Model

1) produces results that are as accurate as the most recent

computational model of fatigue (CMF model; Veksler and

Gunzelmann, 2018) using fewer assumptions and free parameters.
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The results also suggest that increasing the temporal resolution

of these PSD values, as done in Model 2, significantly increases

the accuracy of the computational model. These new models

allow for individual differences in parameter estimations and

for differences in energetical control as well as broader pacing

and end-spurt effects in the PVT—patterns not previously

captured in a computational model of fatigue. Importantly,

Model 1 and Model 2 provide effective and parsimonious

demonstrations of the integration of cognitive-energetic theory,

i.e., the CCF, and computational modeling formalisms, i.e., the

CMF, with neural data in computational simulations of the

vigilance decrement—satisfying the intent of our hybrid framework

of fatigue.

7 Full discussion

The current work introduces a novel hybrid framework

of fatigue which connects an influential cognitive-energetic

theoretical perspective (Hockey, 1997, 2011) with moderators from

a recent computational model of fatigue (Veksler and Gunzelmann,

2018) and gamma oscillations representing motivational control.

The framework put forth a more cohesive explanation of the

vigilance decrement than considering each of the constituent

accounts independently. The theoretical perspective, Hockey’s

(1997; 2011) CCM, emphasizes interactions between competing

motivations, energetical control, and effort, but remains somewhat

ambiguous about the cumulative effects of fatigue on performance.

Alternatively, Veksler and Gunzelmann’s (2018) CMF specifies

mechanisms, i.e., microlapses, responsible for time-on-task

performance declines but does not consider the implications of

a motivational system. When united in the hybrid framework,

motivational control exhibits properties consistent with cost

(aversiveness) vs. benefit (intrinsic achievement) trade-offs

mobilizing effort. From the phenomenological perspective, such

trade-offs are state dependent, orienting toward adaptive behavior,

e.g., goal achievement, until after some point in time, the cost of

persistence (controlled effort) orients the state toward to things

personally rewarding, e.g., a state of wellbeing or leisure (Kurzban,

2016). As a result, motivational control experiences a relative

reduction over time in comparison to off-task states. Moreover,

the hybrid framework formally links very brief lapses (occurring

over milliseconds) in control to fluctuations in the motivational

system at a temporal scale not otherwise described in the fatigue

literature.

Frontally-oriented high frequency gamma oscillations

instantiate the rapid dynamic interplay between motivation and

fatigue. In our computational models, parameterized gamma

power modulated interactions between the CCM’s dual-purpose

motivational system and CMF’s moderators implementing

accumulating time-on-task effects. Notably, binned and single-

trial gamma power along with frontal-parietal connectivity

exhibited properties consistent with energetical cognition and

motivational control but failed to correlate with behavior to

capture the full range of fatigue effects. By contrast, our best fitting

computational model,Model 2 using single-trial neural data, offers

compelling and parsimonious support for the hybrid framework’s

conceptualization of interacting fatigue mechanisms.

To our knowledge, gamma oscillations have not previously

been parameterized to index tension between the goal-oriented

and default drives of the motivational system under fatigue.

While numerous perspectives view gamma power as an index

of motivation-related top-down (i.e., controlled) processes (Engel

et al., 2001; Karch et al., 2016; Kim et al., 2017; Martel et al., 2019;

Halderman et al., 2021), dynamic transitions between peaks (as

energized motivational control) and troughs (as gaps in control)

remain largely unaddressed. In our hybrid framework, troughs

reflect a retreat from the effortful goal-oriented state to the

biophysically and affectively unstressed default state. Support for

this interpretation has been observed in non-fatigued contexts with,

for example, less gamma power emerging during rest periods in

comparison to active engagement in a cognitively demanding task,

i.e., serial math computations (Shivabalan et al., 2020). Flow states

provide additional insights into states with low gamma activity. In

contrast to the challenging but monotonous tasks producing the

vigilance decrement, challenging but engaging tasks lead to a state

of “flow” where intensified effort does not elicit an adverse response

and withdrawal to the default state (Inzlicht et al., 2018). In a

recent video game study examining flow, enhanced gamma power

was maintained during high intensity events whereas low intensity

events exhibited decreased gamma power (McMahan et al., 2015).

In sum, the results suggest gamma oscillations index two functions

of the motivational system—effortful and low-effort unstressed

states, respectively.

By addressing dissociations between distinct accounts of

fatigue, our hybrid framework and computational models add

clarity to underlying processes introduced in preceding theories

and models. In particular, scaling parameterized motivation by

fatigue moderators offer a formal explanation of dynamic state

transitions and performance declines across time. Moreover, the

underlying processes align with biological-grounded mechanisms,

i.e., microlapses approximate disruptions to circadian rhythm

dynamics (Gunzelmann et al., 2009a,b) and utility thresholds

correspond to activation thresholds for populations of cortical

neurons (Helfrich and Knight, 2016). Similarly, parameterizing

gamma dynamics in our models increases the fidelity of latent

factors driving the compensatory process. As shown in Model

2, gamma power continuously reaches unity (increases above

baseline) to maintain task performance over time, albeit with

reduced efficacy. This pattern is consistent with motivationally-

driven compensatory control described by the CCM (Hockey, 1997,

2011).

Our hybrid framework challenges stochasticity assumptions

of earlier computational models of fatigue (Gunzelmann et al.,

2009a,b; Veksler and Gunzelmann, 2018). In these models,

a noise parameter implements the stochasticity observed in

behavioral data. By contrast, parameterizing motivation using

gamma oscillations resulted in a dynamic response to fatigue

without relying on an arbitrary noise mechanism. As shown

in Figure 6, this is a key distinction between Model 2 which

uses single-trial gamma power and the CMF which uses fatigue

moderators exhibiting a steady monotonic decline over time.

In ACT-R, noise is considered a universal feature of cognition

rather than specific to a given psychological function (Anderson

et al., 2004). However, Model 2 demonstrates that fluctuations

in performance over time can be attributed to a specific set of
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cognitive processes—in this case, dual motivations interacting with

time and microlapses—rather than strictly a function of more

generalized uncertainty (i.e., noise) in the decision process.

Though distinct, our hybrid framework overlaps with

traditional resource theories which conceptualize performance

declines as a function of diminishing resources (Caggiano

and Parasuraman, 2004; Warm et al., 2008). Analogously,

the hybrid framework views controlled effort as increasingly

unavailable when the motivational system favors a low effort,

non-aversive state. Indeed, the parameterization of gamma

power and the constant utility threshold in our gamma models

point to effort as a finite resource used to maintain performance

over time—a conclusion consistent with a role for gamma

oscillations, as nested in low frequency theta oscillations, in the

dynamic allocation of limited resources (Helfrich and Knight,

2016).

Beyond theoretical implications, our hybrid framework offers

insights for developing fatigue intervention technologies. One

potential intervention involves the use of transcranial direct current

stimulation (tDCS) to stimulate neuroplasticity mechanisms by

resetting ongoing oscillatory activity. Recently, effective tDCS

treatments aligned with changes in gamma activity. For example,

gamma power increased in the tDCS treatment group in

comparison to a sham treatment group during a vigilance

task (Hemmerich et al., 2023). In a clinical setting, tDCS

treatment enhanced gamma power coincidentally with improved

general cognition and neural connectivity (Liu et al., 2022).

Similar tDCS technologies could leverage individual profiles for

gamma activity and motivational control to assist professionals

performing uninteresting but difficult and high-consequence tasks.

Alternatively, gamma power can be used to measure the efficacy

of an intervention. For example, high frequency gamma power

was assayed to evaluate the improvement of elderly participants’

performance in different cognitive training regimens (Akimoto

et al., 2016). In a fatigue context, gamma activity could be

adapted to index the effectiveness of a motivation intervention over

time.

7.1 Limitations and future work

The present study had some limitations. Although utility

values in our computational models index shifts in the trade-

space between motivated on-task and disengaged restful off-task

states over time, adding experimental manipulations or including

thought probes may have yielded converging evidence for the

hybrid framework. For instance, goal setting, rest, feedback,

try-harder instructions, and other incentives decreased RTs in

comparison to control (no manipulation) conditions (Botvinick

et al., 2015; Steinborn et al., 2017; Robison et al., 2021;

Schumann et al., 2022; Strayer et al., 2023). Moreover, thought

probes frequently (but not always) correlate with motivation

manipulations (Herlambang et al., 2021; Robison et al., 2021;

Schumann et al., 2022). Fatigue-oriented studies would benefit

from routinely incorporating these measures. Other indexes of the

motivation trade-space use cortical data acquired by functional

magnetic resonance imaging (fMRI) to map state transitions to

frontal cortex regions responsible for computing rewards and

costs (Langner and Eickhoff, 2013; Kok, 2022). In EEG data, the

ERP error-related-negativity (ERN) has been similarly associated

with reward predictions and response switching (Yasuda et al.,

2004) and affective reward processing mediated by the ACC

(Inzlicht et al., 2015). Future studies and computational models

of fatigue should consider incorporating an explicit cost-benefit

function parameterizing the ERN akin to the utility parameter

in our gamma models. Such endeavor would be expected to

yield benefits beyond the inclusion of a cost-benefit mechanism.

First, the ERN could be construed as representing, at least

in part, the biologically-grounded “effort monitor” mechanism

described by the CCM (Hockey, 1997, 2011). Second, ERPs record

neural activity at a finer temporal resolution (tens of ms) than

frequency data (hundreds of ms) in the present study, extracted

from a full trial or aggregated across many trials. The increased

resolution would allow for identifying the precise timing and

neural activity magnitude of state transitions due to the competing

motivational drives. Separately, future studies should consider

nonlinear approaches to evaluating the theoretical implications of

foreperiod and time-on-task interactions given the inadequacies of

linear analyses uncovered in recent work (Houshmand Chatroudi

et al., 2024).

Though gamma power reliably distinguishes good from poor

performers (Herrmann et al., 2010; Kim et al., 2017), our

computational models did not evaluate individual performance

differences, though previous power (Borghetti et al., 2021) and

connectivity (Borghetti et al., 2022) studies have. Our future work

includes extending our Gamma models to accommodate these

variations in individual subjects’ performance.

7.2 Conclusion

Our novel hybrid framework of fatigue resolves dissociations

between psychological theory, computational mechanisms, and

neural behavior, to establish a comprehensive account of time-

on-task effects, i.e., the vigilance decrement. Our framework

casts motivation as a dual-purpose system balancing effortful

goal-oriented control with dynamic transitions to a biophysically

and affectively comfortable off-task state. Fatigue moderators,

such as microlapses, additionally account for increasing time

off-task responsible for performance declines. We parameterized

motivation using high gamma power in two computational

models to demonstrate the dynamic properties of on-task

compensatory control and the off-task default state. We are

optimistic that our hybrid framework bridges gaps in the

fatigue, motivation, and neuroscience research and contributes

to the development of mitigation technologies in affected

professions.
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