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Objective: This study aims to investigate the relationship between the subjective

performance evaluations on pilot trainees’ aircraft control abilities and their

brainwave dynamics reflected in the results from EEG microstate analysis.

Specifically, we seek to identify correlations between distinct microstate patterns

and each dimension included in the subjective flight control evaluations,

shedding light on the neurophysiological mechanisms underlying aviation

expertise and possible directions for future improvements in pilot training.

Background: Proficiency in aircraft control is crucial for aviation safety and

modern aviation where pilots need to maneuver aircraft through an array of

situations, ranging from routine takeo�s and landings to complex weather

conditions and emergencies. However, the neurophysiological aspects of

aviation expertise remain largely unexplored. This research bridges the gap by

examining the relationship between pilot trainees’ specific brainwave patterns

and their subjective evaluations of flight control levels, o�ering insights into the

cognitive underpinnings of pilot skill e�ciency and development.

Method: EEG microstate analysis was employed to examine the brainwave

dynamics of pilot trainees while they performed aircraft control tasks under a

flight simulator-based pilot training process. Trainees’ control performance was

evaluated by experienced instructors across five dimensions and their EEG data

were analyzed to investigate the associations between the parameters of specific

microstates with successful aircraft control.

Results: The experimental results revealed significant associations between

aircraft control levels and the parameters of distinct EEG microstates.

Notably, these associations varied across control dimensions, highlighting the

multifaceted nature of control proficiency. Noteworthy correlations included

positive correlations between microstate class E and class G with aircraft

control, emphasizing the role of attentional processes, perceptual integration,

working memory, cognitive flexibility, decision-making, and executive control

in aviation expertise. Conversely, negative correlations between microstate

class C and class F with aircraft control indicated links between pilot

trainees’ cognitive control and their control performance on flight tasks.
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Conclusion: The findings underscore the multidimensional nature of aircraft

control proficiency and emphasize the significance of attentional and cognitive

processes in achieving aviation expertise. These neurophysiological markers

o�er a basis for designing targeted pilot training programs and interventions to

enhance trainees’ aircraft control skills.

KEYWORDS

aircraft control evaluations, brain dynamics, EEG microstate analysis, correlation

analysis, cognitive functions, pilot training, learning processes

1 Introduction

The aviation domain demands unparalleled levels of cognitive

processing, motor coordination, and conscious attention to ensure

the safe and efficient execution of flight operations (Sikora

et al., 2020; Wickens et al., 2002; Lintern et al., 1990; Dehais

et al., 2017; Prokopczyk and Wochyński, 2022). Modern aviation

demands pilots to maneuver aircraft through an array of situations,

ranging from routine takeoffs and landings to complex weather

conditions and emergencies. The mastery of aircraft control skills

emerges as an unequivocally vital aspect of aviation expertise,

directly influencing the pilot’s capacity to navigate and respond

proficiently to dynamic and challenging flight conditions (Zaal and

Mobertz, 2017; Feary, 2018; Prokopczyk and Wochyński, 2022).

Skilled control over an aircraft enables pilots to maintain precise

trajectories, stabilize flight during turbulent weather, and conduct

critical maneuvers with confidence and precision. It is through

proficient aircraft control and decision-making skills that pilots

are equipped to avert potential dangers, respond effectively to

unexpected situations, and ensure the safety of passengers and crew

members (Taylor et al., 2005; Strickland et al., 2019; Gordon et al.,

2016). Effective control skills, developed through rigorous training

and experience, empower pilots to maintain precise navigation,

efficient fuel consumption, and adherence to designated flight

paths, contributing to efficient air traffic management and reduced

operational costs. Research findings have associated the level of

expertise with better performance in flight control (Taylor et al.,

2007; Kennedy et al., 2010). The proficiency of pilots’ aircraft

control skills under diverse flight scenarios constitutes pivotal

determinants of aviation safety and operational success.

Some applications have successfully quantified pilots’ or vehicle

drivers’ cognitive changes from their physiological signals (Masi

et al., 2023). Among these signals, electroencephalogram (EEG)

has been the focus of extensive research interest (Sibi et al.,

2017; Causse et al., 2019; Borghini et al., 2017; Balters et al.,

2021; Zhao et al., 2020). Given its high temporal resolution, time-

based and frequency-based EEG features have been applied to

detect mental and functional abnormalities, as well as cognitive

and affective states under external or internal stimuli (Acharya

et al., 2013; Pidgeon et al., 2016; Su et al., 2024). Moreover,

EEG is considered a valuable tool for investigating temporal

changes in trainees’ brains without imposing additional workload

or interference. For instance, a decline in alpha power has

been witnessed in correlation with escalating cognitive workload

(Stipacek et al., 2003; Gevins and Smith, 2003; Kamzanova et al.,

2014). Substantial reductions in alpha activity were pinpointed in

the fronto-central and parietal regions (Slobounov et al., 2000;

Fairclough et al., 2005). On a parallel note, theta oscillations

are speculated to contribute to working memory enhancement

(Roux and Uhlhaas, 2014; Raghavachari et al., 2001; Tesche and

Karhu, 2000; Jensen and Lisman, 1998), facilitation of cognitive

control (Cavanagh and Frank, 2014), and orchestrating rhythmic

shifts in spatial attention (Fiebelkorn and Kastner, 2019; Herweg

et al., 2020). Empirical findings suggest a positive correlation

between higher EEG theta power and efficacious information

encoding and memory retrieval during memory tasks (Staudigl

and Hanslmayr, 2013; Guderian and Düzel, 2005; Addante et al.,

2011). However, the underlying neurophysiological mechanisms

associated with skilled aviation control or aircraft control skills

remain largely unexplored. Investigating the brain mechanisms

associated with skilled aircraft control would shed light on the

neural plasticity and adaptability underlying pilot training, offering

insights into optimizing instructional methods and designing

targeted interventions for enhanced pilot performance and safety

(Zhao et al., 2024). EEG microstate analysis, as a method that

allows for simultaneous investigation into the spatial properties

and temporal dynamics of the human brain, was applied in this

research as it appears to be an attractive method to be applied

to aviation research. Unlike traditional EEG features, microstates

capture scalp potential topography patterns and their changes over

time (Lehmann et al., 1987; Pascual-Marqui et al., 1995).

Therefore, this research aims to bridge the gap between

subjective evaluations of aircraft control expertise and

neurophysiological understanding by applying EEG microstate

analysis to explore the correlations between pilot trainees’

control evaluations and brainwave dynamics. We conducted

EEG microstate analysis to the pre-processed EEG data

originally collected from a group of pilot trainees during

a simulator-based pilot training process. Afterward, paired

comparisons were conducted on both the EEG microstate

features extracted from each computed microstate class

across different training stages and the control performance

evaluated by training instructors. Finally, we computed the

Spearman correlation coefficients between the EEG microstate

parameters and the five dimensions of control expertise covered in

subjective evaluations.
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2 Materials and methods

2.1 Experiment design and participants

The experiment was conducted on a custom aircraft flight

simulator as shown in Figure 1, which was built by Marinvent

Corporation. The simulator reflected the dynamics of a Boeing 737,

modeled using XPlane 11 from Laminar Research on a computer

running the Windows 10 operating system. The simulator controls

included a yoke, pedals, rudder, and throttle quadrant. During

the experiment, participants did not have an out-the-window view

but relied solely on a primary flight display (PFD) (Figure 2) for

information about the aircraft’s attitude, altitude, heading, climb

rate, and speed. Participants used the yoke to control pitch and roll,

while an autopilot managed the throttles (for speed maintenance)

and pedals (for turn coordination), allowing participants to focus

exclusively on operating the yoke.

The study recruited twenty-four participants (11 males,

13 females) aged 21 to 41, all in good health with no

neurological or psychiatric disorders. Participants had normal

vision or corrected-to-normal vision using contact lenses, as

glasses were not permitted. Each participant received $100 CAD

compensation, as well as $80 CAD for transportation expenses

upon completion of experiments. Before commencing the pilot

training process, all participants underwent several preparation

steps to ensure a basic understanding of flight instruments

and maneuvers. These steps included reading a flight briefing

presentation, watching four training videos, and participating in a

familiarization session in the simulator with the test director. In

the simulator session, participants practiced the basic maneuvers

explained in the videos and received instruction on the yoke

as flight control and its effects on pitch and roll. Furthermore,

participants were taught how to interpret control and performance

indications on the Primary Flight Display (PFD) as illustrated in

Figure 2, along with some fundamental flight control strategies.

Informed consent forms were signed, and participants completed

a questionnaire pertaining to the training tasks. Based on their

responses, the experimenters conducted additional interviews

with the participants to gather further information. More details

of participants’ demographic information could be found in

Supplementary Table S1. Participants were asked to complete two

separate resting sessions prior to the training process: one 2-min

session with their eyes open, and another 2-min session with their

eyes closed. The resting state sessions were combined with task

sessions (training and practice) to compute global EEG microstate

maps and were also used to baseline data for other physiological

measurements, such as heart rate and GSR, which were reported in

Darvishi-Bayazi et al. (2023) and Ruiz-Segura et al. (2024).

The pilot training process consisted of 22 sessions. The required

maneuvers were provided to the participants through an iPad

positioned in front of them, and the test director supervised the

process. Each session consisted of a sequence of tasks. Firstly,

participants were instructed to perform a Baseline task for a

duration of 30 seconds. Subsequently, they were required to engage

in a Trial task for a duration of 90 seconds. After completing

each session, participants were prompted to assess their perceived

workload by completing a NASA-TLX questionnaire on the iPad.

During the Baseline tasks, participants were instructed to maintain

straight and level flight at a constant heading and altitude. The

maneuvers requested in these tasks remained the same for all

participants. Following the completion of the Baseline task, the

simulator was paused and reset, and participants were provided

with instructions for the subsequent Trial stage. In the Trial

task, participants were required to perform maneuvers of varying

difficulty levels, which were categorized into three distinct levels:

(1) a climb, descent, or turn in one direction; (2) a climb, descent,

or turn with a reversal; and (3) a climb or descent with reversal

combined with a turn in one direction; or a turn with reversal

combined with a climb or descent.

The experimental protocol was approved by both the

Concordia Human Research Ethics Committee and the research

ethics board of the National Research Council Canada. All

participants gave their written informed consent before the

experiment and were financially compensated for the experiment

regardless of their performance.

2.2 Experimental data collection

Once the pilot training process started, participants’

physiological data and learning behaviors were recorded untill the

end of the experiment. The recordings were controlled through the

National Research Council’s Integrated Physiological Monitoring

System (IPMS) (Law et al., 2017) and were synchronized with the

aircraft simulator using a network time protocol server. An iPad

located to the left of the participant presented task instructions

and collected NASA-TLX ratings and other questionnaire data

(e.g., fatigue ratings). Instructions were presented and data were

collected using Qualtrics software. Electroencephalogram (EEG)

data were acquired using a 64-channel BioSemi ActiveTwo

system, positioned following the international 10—20 system, and

sampled at a rate of 2,048 Hz. Additionally, we also recorded other

physiological data like ECG and GSR, while participants’ learning

behaviors were recorded using the training devices, along with

three cameras placed at different angles (top, front, and side) to

capture their actions. For comparative analysis, subjective real-

time evaluation by an instructor was impossible due to COVID-19

health restrictions. Still, it was conducted post-experiment by a

review of parametric data and video of the sessions.

The recorded experiment process consisted of 22 sessions,

which were categorized into three stages to track different phases

of the training process: Training (comprising 7 Baseline and 7 Trial

tasks), PracticeA (comprising 8 Baseline and 8 Trial tasks), and

PracticeB (comprising 7 Baseline and 7 Trial tasks). In the Training

stage, participants received performance feedback from the test

director and performed a standardized sequence of maneuvers.

However, in Practice A and Practice B stages, participants did

not receive feedback from the test director, and the sequence

of maneuvers was pseudo-randomized among participants. The

maneuvers were presented in sets of three, each set comprising

one twizzle from Level 1, Level 2, and Level 3 difficulty levels.

Additionally, the first trial task in a new set could not have the

same difficulty level as the last trial task of the previous set. EEG

signals were also collected during the resting sessions, which were

later included in the computation of global microstate classes.
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FIGURE 1

Flight simulator and the experimental settings viewed from the top camera.

FIGURE 2

Information displayed on the primary flight display (PFD).

2.3 Data pre-processing

The collected EEG data underwent a series of preprocessing

steps using the EEGLAB toolbox (Delorme and Makeig, 2004) in

Matlab. The data were referenced to mastoids and then filtered

using a zero-phase Hamming windowed-sinc FIR filter, with a

frequency range of 1 to 40Hz, as EEG microstates are usually

based on this frequency band (Jensen et al., 2007; Herrmann et al.,

2004; Tallon-Baudry, 2009). Channels that met one or more of

the following criteria below were identified as bad channels: (1)

the channels that remained flat for more than 5 seconds; (2)

channels with a correlation coefficient smaller than 0.8 with their

neighboring channels; and (3) channels with amplitudes greater

than 3 standard deviations from the mean. For artifact removal,
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we applied an automatic artifact removal process via MARA,

the multiple artifact rejection algorithm (Winkler et al., 2011),

to provide a consistent, objective approach to artifact rejection

across all participants and datasets, reducing the variability that can

arise from manual operations. MARA was applied to identify and

remove the IC components (Makeig et al., 1995) having more than

40% chance to be labeled as artifacts (eye-blink, eye-movement,

muscle-generated, and other artifacts). Moreover, the signals were

segmented in 2-second epochs for detecting bad segments and bad

local channels within each segment (Gabard-Durnam et al., 2018).

Bad local channels in each segment were detected using

FASTER (Nolan et al., 2010) criteria (variance, median gradient,

amplitude range, and deviation from mean amplitude) when

one or more Z scores of four criteria were greater than 3

standard deviations from the mean, which were interpolated

thereafter using spherical splines. Afterward, bad segments were

identified and rejected when one or more criteria were satisfied: a

channel’ amplitude was higher than ±100µV; the single electrode

probability across segments or the electrode group probability

within segments was greater than 3 standard deviations from the

mean. Finally, the isolated bad global channels were interpolated

using spherical splines. The cleaned EEG signals were re-referenced

to the average reference and were downsampled to 250 Hz.

2.4 EEG microstate analysis

Each microstate reflects an activation pattern in large-scale

brain networks and represents a quasi-stable state of the brain

(Lehmann et al., 1987). As reviewed in Michel and Koenig (2018),

the four microstates (A, B, C, D) identified in most previous studies

exhibited high similarity, and further research has focused on the

associated functional role. For instance, microstate class C has been

linked to the engagement of cognitive control networks, including

the prefrontal cortex and anterior cingulate cortex (Khanna et al.,

2015; Milz et al., 2016). Microstate class D has been associated with

the dorsal attention network (Britz et al., 2010; Seitzman et al.,

2017), while microstate class A and class B are associated with

phonological process and visual processing supported by fMRI and

EEG evidence (Seitzman et al., 2017; Milz et al., 2016). In the

meantime, researchers have applied six or seven microstate classes

to investigate different cognitive states including mental workload

and cognitive control under more complex activities (Michel and

Koenig, 2018; Jia et al., 2021; Jia and Zeng, 2021; Takarae et al., 2022;

Zhao et al., 2024).

Sevenmicrostate classes were computed following the approach

proposed in Pascual-Marqui et al. (1995). We first calculated the

Global Field Power (GFP) from the pre-processed EEG data for

each session (including the two resting sessions and 22 training

sessions) and identified the GFP peaks corresponding to the

local maxima in the GFP time series. To ensure the selection of

independent and significant peaks, a minimum distance of 10 time

points between peaks was applied. After identifying these GFP

peaks, only the EEG data corresponding to the time points of the

GFP peaks were sent to the modified k-means algorithm. We then

use a modified k-means clustering algorithm, which employs a

predefined cost function (detailed in Supplementary Equation S1),

to generate the K clusters by minimizing the cost function. To

determine the optimal microstate classes for each task of each

participant, we repeat such clustering process 100 times and select

the best set of clusters, namely the optimal microstate set, using

the cross-validation metric which is descripted in details in the

Supplementary Equation S2. This step helps address the sensitivity

of k-means clustering to initial conditions, ensuring a more robust

identification of microstate classes for each session (22 training

sessions and two resting sessions).

In the subsequent analysis, we implemented a full permutation

procedure to determine the group-level microstate classes. The

full permutation process included multiple levels: determining the

optimal clusters for each subject (across tasks under the same

condition), each condition (across subjects), and ultimately the

overall optimal clusters (across all conditions including the resting

condition consisted of two resting sessions), with the clustering

repeated 100 times at each level. At each iteration, we randomly

selected a set of clusters from the concatenated list of clusters,

and the set of clusters with the best cross-validation value was

considered the optimal microstates. The resulting group-level

microstate classes were referred to as global microstate classes,

labeled as A, B, C, D, E, F, and G. We represented the pre-processed

EEG data in the time domain by associating each time point

with a specific global microstate class. To assign these labels, we

computed the spatial correlation between the EEG scalp map at

each time point and each of the global optimal microstate maps.

The assignment criterion involved selecting the global microstate

class with the highest spatial correlation value disregarding the

polarities. Additionally, our analysis refrained from applying any

smoothing parameters to ensure that the temporal dynamics of the

generated microstate sequences remained unaltered.

Thereafter, microstate parameters were computed from the

generated microstate time series based on the global optimal maps.

That is, we used the obtained seven global microstates to label

the EEG time series leading to 22 microstate sequences for each

participant’s different tasks throughout the pilot training process.

The three types of microstate parameters computed for each of the

global optimal microstates in this study are listed below:

• Mean microstate coverage: the fraction of the total analysis

time covered by a microstate. The microstate coverage can be

interpreted as the relative rather than absolute presence of a

microstate.

• Mean microstate duration: the average lifespan or duration

that a microstate remains stable. The microstate duration can

be interpreted as the average amount of time that a set of

neural generators remains synchronously active.

• Mean microstate occurrence: the average number of times

that a microstate occurs per second. The mean microstate

occurrence can be interpreted as the average amount of times

that a set of neural generators becomes synchronously active.

2.5 Statistical analysis

The repeated measures analysis of variance (ANOVA) was

employed to investigate the effects of microstate classes and

training stages on the three types of microstate parameters under

a pilot training process. For each computed EEG microstate
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TABLE 1 Averaged evaluation results [Mean (SE)] for pilot trainees’ aircraft

control performance.

Evaluation
dimension

Training Practice-A Practice-B

D1: Control-roll 3.38 (0.082) 3.27 (0.087) 3.46 (0.066)

D2:

Performance-heading

3.68 (0.066) 3.72 (0.000) 3.77 (0.065)

D3: Control-pitch 2.21 (0.110) 2.27 (0.095) 2.27 (0.124)

D4:

Performance-altitude

3.13 (0.124) 3.34 (0.098) 3.50 (0.091)

D5: Performance-rate

climb/descent

2.36 (0.107) 2.38 (0.121) 2.49 (0.121)

parameter, namely coverage, occurrence, and duration, a 7 (CLASS)

× 3 (STAGE) repeated measures ANOVA was applied. The

two investigated within-subject factors were CLASS (microstate

class A to G), and STAGE (Training, PracticeA, and PracticeB).

Greenhouse-Geisser correction was applied in the case of sphericity

violations. Moreover, a post hoc paired t-test was conducted

between each microstate CLASS and between STAGE for multiple

comparisons on the computed microstate parameters with

Bonferroni correction for multiple comparisons.

The subjective evaluations of pilot trainees’ aircraft control

abilities were analyzed using a 5 (DIMENSION) × 3 (STAGE)

repeated measures ANOVA. The two within-subject factors

were DIMENSION (Performance-heading, Performance-altitude,

Performance-rate climb/descent, Control-roll, Control-pitch) and

STAGE (Training, PracticeA, and PracticeB). Greenhouse-Geisser

correction was applied in the case of sphericity violations. A post

hoc paired t-test was conducted between STAGE for each evaluated

dimension with Bonferroni correction for multiple comparisons.

Inter-subject correlation analysis was thereafter performed

to explore the associations between the EEG microstate

features and pilot trainees’ aircraft control performance

which was subjectively evaluated by experienced training

instructors. To assess the relationship between the microstate

parameter metrics and the evaluation results for aircraft

control abilities, a non-parametric measure was employed

due to its suitability for evaluating the monotonic nature of

the association between these two variables considering their

inherent characteristics. In particular, we computed the Spearman

correlation coefficients between the three microstate parameters

(duration, occurrence, and coverage) on each microstate and

the subjective evaluations of aircraft control. Concurrently, the

p-values with Bonferroni correction for multiple comparisons were

considered to assess the statistical significance of the observed

correlations.

3 Results

3.1 Subjective evaluations of aircraft
control abilities

The subjective evaluation of pilot trainees’ aircraft control

performance was conducted using a combination of qualitative

TABLE 2 P-values for paired STAGE comparisons on each performance

evaluation dimension.

Comparisons D1 D2 D3 D4 D5

Training vs. PracticeA 0.463 1.000 1.000 0.046* 1.000

Training vs. PracticeB 1.000 0.567 1.000 0.001* 0.942

PracticeA vs. PracticeB 0.130 1.000 1.000 0.066 0.949

* ρ ≤ 0.050.

and quantitative assessment. The evaluation process involved a

comprehensive assessment of the training trials across three distinct

aspects encompassing the quality of the dataset, a quantitative

evaluation of performance in maneuvering the simulated aircraft

under specific tasks, and a descriptive analysis of the actions

undertaken by the trainees. To ensure an appropriate grading

scale, a panel of two instructors collaborated to establish the

levels of evaluation tailored to the expected performance of ab-

initio candidates for each parameter. To minimize variability in

assessments, a single qualified instructor was designated to evaluate

the pilot trainees’ control skills of the simulated aircraft.

Among the three aspects analyzed, the quality of the dataset is

inherently reflected in the results obtained from the quantitative

assessment of the trainees’ aircraft control performance. However,

the descriptive analysis provides supplementary information that

can contribute to a more comprehensive understanding of the

factors influencing trainees’ control performance, whether positive

or negative. For this research, the focus was primarily on the

quantitative assessment aspect, which not only effectively reflects

pilot trainees’ proficiency in controlling the simulated aircraft

throughout the training process, but also takes the control behavior

recorded by the simulator into consideration.

The averaged subjective evaluation results are listed in Table 1

and the related p-values for paired STAGE comparisons with

Bonferroni correction can be found in Table 2. The quantitative

assessment encompassed five dimensions in total, consisting of

three performance indicators (heading, altitude, and rate of

climb/descent) and two evaluations of control management (roll

and pitch), which are denoted as D1-D5 in this research as

illustrated in Table 1. To be more specific, D1 corresponds to the

“control-roll” dimension, D2 denotes the “performance-heading”

dimension, D3 is mapped to the “control pitch” dimension,

D4 represents the “performance-altitude” dimension, and D5 is

associated with the “performance-rate climb/descent” dimension.

Among the five dimensions under evaluation, performance-

altitude (D4) was the only dimension that showed significant

increases from Training to PracticeA as well as from Training to

PracticeB stage (Table 2). The 5 × 3 repeated measures ANOVA

on trainees’ control performance statistics revealed two significant

main effects of DIMENSION [F(4,92) = 388.045, p = 0.000, η2 =

0.710] and STAGE [F(2,46) = 31.066, p = 0.000, η2 = 0.081], as

well as one significant interaction effect of DIMENSION× STAGE

[F(8,184) = 7.208, p = 0.000, η2 = 0.026]. Moreover, pilot trainees’

evaluation statistics were further applied in our correlation analysis

to gain insight on how the extracted EEG microstate features may

relate to aircraft control levels. Given the significant main effect
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FIGURE 3

The spatial configuration of the seven microstate classes across STAGE (global) and for each training stage.

of DIMENSION, the five control performance dimensions were

analyzed one by one in the correlation analysis.

3.2 EEG microstate parameters

Figure 3 shows the topographic maps of seven global

microstate classes across STAGE, as well as for each stage

within the pilot training process, namely Training, PracticeA,

and PracticeB. The seven microstate classes were labeled as

A, B, C, D, E, F, and G according to Custo et al. (2017),

Michel and Koenig (2018), and Jia and Zeng (2021). The

seven microstate classes explained 67.127% (SE = 0.348)

of the global variance of the original EEG topographies

corresponding to peaks of GFP for Training stage, 67.894%

(SE = 0.264) for PracticeA stage, 68.342% (SE = 0.301) for

PracticeB stage.

The computed EEG microstate parameters include coverage,

occurrence, and duration, as illustrated in Figure 4. As shown

in Table 3, the 3 × 7 repeated measures ANOVA revealed one

significantmain effect of CLASS [F(6,138) = 36.544, p = 0.000, η2 =

0.558] for microstate coverage analysis. Similarly, the 3×7 repeated

measures ANOVA on the other two microstate parameters also

revealed one significant main effect of CLASS [F(6,138) = 56.952,

p = 0.000, η
2 = 0.665] for duration and one significant main

effect of CLASS [F(6,138) = 32.972, p = 0.000, η
2 = 0.540]

for occurrence.

Consistently, no significant differences were found in any of

the investigated microstate parameters between different stages

TABLE 3 E�ects of microstate classes on three time-domain microstate

parameters under pilot training tasks.

Parameter Source Num DF F-value P-value η
2

Coverage Classes 6 36.544 0.000 0.558

Conditions 2 0.630 0.503 0.000

Classes×

Conditions

12 1.358 0.266 0.004

Duration Classes 6 56.952 0.000 0.665

Conditions 2 0.607 0.524 0.000

Classes×

Conditions

12 0.934 0.419 0.002

Occurrence Classes 6 32.972 0.000 0.540

Conditions 2 11.500 1.000 0.000

Classes×

Conditions

12 1.192 0.317 0.004

across seven microstate classes according to our paired t-test

results (more details could be found in Table S8). In terms of

CLASS comparisons, significant differences were observed in

multiple paired comparisons between microstate classes, with

effects detected in one ormoremicrostate parameters. For example,

our findings indicate that microstate class G differs significantly

frommicrostate classes A, B, and F throughout the training process

(across all three stages), with evidence observed across the three

tested parameters. Detailed significance results are provided in

Tables S5–S7 in the Supplementary material.
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FIGURE 4

EEG microstate parameters of each microstate class during three stages: Training, PracticeA, and PracticeB.

3.3 Correlations between expert
evaluations and EEG microstate parameters

As depicted in Figures 5–7, the computed Spearman correlation

results were visualized using heatmaps, where positive and negative

correlations were differentiated with colors. Moreover, correlations

with p-values smaller than 0.05 were considered statistically

significant in our analysis and were denoted with an asterisk
∗ in Figures 5–7. The five aircraft control dimensions included

in the subjective evaluations were denoted as D1 to D5, each

of which captures a distinct aspect of trainees’ behavior and

performance on the given aircraft control tasks. The D1-D5

annotations represent the five aircraft control dimensions within

the subject expert ratings described in Table 1, corresponding to

the “control-roll” dimension, “performance-heading” dimension,

“control pitch” dimension, “performance-altitude” dimension, and

“performance-rate climb/descent” dimension respectively.

The Spearman correlation results between trainees’ subjective

performance valuations and the parameter features extracted from

EEG microstate analysis revealed positive correlations between

class G and all of the five evaluation dimensions as indicated

by the coverage and duration results (Figures 5, 6). To be more

precise, the coverage of microstate class G showed significant

positive correlations with evaluation dimensions including D1

and D4, whereas the duration of microstate class G was

significantly positively correlated with D1, D4, and D5. Even

though the occurrence results of class G didn’t show any significant

correlations (Figure 7), the positive correlations between class G

and the evaluation dimensions D1 and D4 were consistently

supported across the temporal parameters. Moreover, the coverage

and duration of microstate class E both showed significant positive

correlations with two subjectively evaluated dimensions, D1 and

D4 (Figures 5, 6), and the occurrence results also supported the

positive correlations between class E with these two dimensions

with non-significant correlations (Figure 7). As for class D, the only

significant positive correlation was observed between the duration

parameter and evaluation dimension D3 (Figure 6). Meanwhile,

the duration of microstate class A and class B showed consistent

positive correlations across the evaluated dimensions though none

of those correlations were significant (Figure 6).

Besides the positive correlations discussed above, the

correlation results showed significant negative correlations

between the occurrence of microstate class C and dimensions D1,

D4, and D5, as illustrated in Figure 7. Consistently, significant

negative correlations were also observed between dimension

D1 and the other two parameters of class C, namely coverage

and duration (Figures 5, 6). Significant negative correlations

were also observed between the occurrence of microstate class F

and dimensions D3, D4 and D5 (Figure 7). Significant negative

correlations between the coverage of microstate classes C and F

were observed with D1 and D5 (Figure 5). In the meantime, the

correlation results indicated by the two parameters, coverage and

occurrence, revealed consistant negative correlations for both

class C and class F across the evaluated dimensions. Moreover, we

observed consistent negative correlations between two parameters

(coverage and occurence)of microstate classes A and B with most

of the aircraft control dimensions, though most of which were

non-significant (Figures 5, 7). The occurrence of both microstates

class A and class B retained significant negative correlations with

the evaluation dimension D5.

Among the five aircraft control dimensions included in the

subjective evaluations, D1 and D4 exhibited noticeable consistency

in the reported significant correlations across the three types of

microstate parameters extracted from seven microstate classes

(Figures 5–7). In particular, the subjective evaluation dimension

D1 exhibited significant negative correlations with microstate class

Frontiers inNeuroergonomics 08 frontiersin.org

https://doi.org/10.3389/fnrgo.2025.1472693
https://www.frontiersin.org/journals/neuroergonomics
https://www.frontiersin.org


Zhao et al. 10.3389/fnrgo.2025.1472693

FIGURE 5

Spearman correlation coe�cients between the coverage of seven microstate classes and five aircraft control dimensions. Correlations with p-values

satisfying p ≤ 0.05 are annotated by ∗.

C in all three types of microstate parameters, whereas significant

positive correlations were observed between D1 with microstate

classes D and G in two out of three parameters, namely coverage

and duration (Figures 5, 6). Also, the parameters coverage and

occurrence of microstate class D indicated significant negative

correlations with dimension D1 (Figures 5, 7). Moreover, the

subjective evaluation dimension D4 exhibited significant positive

correlations with microstate classes E and G as indicated in the

parameters coverage and duration (Figures 5, 6).

Moreover, the correlation results also revealed significant

correlations between certain dimensions covered in the subjective

evaluations and one or two parameters of a specificmicrostate class.

More detailed information can be found in (Figures 5–7).

4 Discussions

4.1 Does brainwave dynamics correlate
with subjective evaluations of aircraft
control?

Our research revealed significant correlations between EEG

microstate parameters and expert evaluations of aircraft control

performance in pilot trainees. Both positive and negative

correlations were observed, providing insights into the cognitive

functions involved in pilot training. Specifically, microstate classes

E and G had significant positive correlations with most subjective

control performance dimensions, while microstate classes C and

F showed significant negative correlations. These findings suggest

that different cognitive processes, as indicated by variousmicrostate

classes, play distinct roles in enhancing or impairing control

capabilities during pilot training.

The positive correlation between microstate class E and pilot

trainees’ subjective performance evaluations suggests that the

activation and enhanced engagement of this microstate may be

a key indicator of effective pilot training. The increased presence

of microstate class E indicates better attentional allocation and

integration of sensory inputs, which are essential for achieving

expertise in aircraft control. This is consistent with previous

research linking microstate class E to attentional processes

and perceptual integration (Khanna et al., 2015). Attentional

mechanisms are crucial in monitoring and responding to multiple

sources of information during complex tasks like aircraft control

(Larson and Clayson, 2011; Valéry et al., 2017; Holmes et al.,

2014). Thus, enhanced engagement of the neural configuration

captured by microstate class E likely facilitates efficient information

processing andmotor coordination necessary for successful aircraft

control. Similarly, the positive correlation between microstate class

G and better aircraft control abilities, as reflected in subjective

evaluations, highlights the importance of cognitive processes

associated with decision-making and executive control in aviation.

Microstate class G has been linked to higher-order cognitive

functions such as working memory and cognitive flexibility

(Van de Ville et al., 2010). Effective aircraft control demands
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FIGURE 6

Correlation coe�cients between the duration of seven microstate classes and five aircraft control dimensions. Correlations with p-values satisfying

p ≤ 0.05 are annotated by ∗.

continuous monitoring of various factors, swift decision-making,

and adaptive responses to changing situations. Jia et al. (2021)

found that microstate class G was more prevalent in designers

engaged in internally guided decision-making than in externally

guided decision-making tasks. This suggests that the enhanced

engagement of microstate class G reflects the recruitment of

executive control processes, which facilitate efficient information

processing, strategic planning, and adaptive behavior, ultimately

contributing to superior aircraft control performance.

The negative correlation between microstate class C’s

parameters and pilot trainees’ subjective evaluations may indicate

the involvement of cognitive control processes in aircraft control

tasks. Cognitive control processes, which involve the regulation and

coordination of cognitive functions, such as attention, inhibition,

and working memory, play a critical role in complex tasks like

aircraft control (Niendam et al., 2012; Miller and Cohen, 2001).

Microstate class C, a distinct pattern of synchronous neural activity

observed in EEG recordings, has been reported for both positive

and negative correlations with cognitive control mechanisms as

reviewed in Michel and Koenig (2018). For example, research

has shown that microstate class C is related to the engagement

of cognitive control networks including the prefrontal cortex and

anterior cingulate cortex (Khanna et al., 2015; Milz et al., 2016).

Microstate C has also been found to reflect activities in the default

mode network (DMN) supported by EEG and fMRI evidence

(Xu et al., 2016; Seitzman et al., 2017; Bréchet et al., 2019). From

this standpoint, our results could also support the notion that

microstate class C is negatively correlated to control skills, which

was consistent with the studies suggesting this specific microstate’s

role in reflecting activities in the default mode network (DMN).

Furthermore, the negative correlation between microstate class

F and pilot trainees’ subjective evaluations further emphasizes

the role of the DMN in enhanced aircraft control under the

context of pilot training. Microstate class F has been associated

with the DMN, primarily involving regions such as the medial

prefrontal cortex, posterior cingulate cortex, and angular gyrus

(Khanna et al., 2015; Musso et al., 2010; Van de Ville et al., 2010).

The DMN is a network of brain regions that is active during

internally focused, self-referential, and mind-wandering states,

and it becomes suppressed during goal-directed tasks (Dohmatob

et al., 2020; Carhart-Harris and Friston, 2010). Our results may

indicate the negative associations between DMN and better aircraft

control performance.

In summary, the aforementioned correlations observed

between certain microstate classes and pilot trainees’ subjective

evaluations of their training performance provide insights into

the neural underpinnings of skilled aircraft control. In particular,

the observed negative correlations between the parameters of

microstate class C and class F with subjective performance

evaluations suggest that an inefficient suppression or interference

from the DMN during task execution might impede trainees’

ability to maintain focused attention and cognitive resources

on the aviation control tasks at hand. Our findings align with

previous research demonstrating that excessive activation or
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FIGURE 7

Correlation coe�cients between the occurrence of seven microstate classes and five aircraft control dimensions. Correlations with p-values

satisfying p ≤ 0.05 are annotated by ∗.

inefficient suppression of the DMN is associated with poorer

task performance across various domains (Anticevic et al., 2012;

Duan et al., 2012; Harrison et al., 2011). In the meantime, we

also observed the positive correlations between the parameters

of microstate class E and class G with pilot trainees’ subjective

performance evaluations. As indicated by our experimental

results, there might exist positive associations between aircraft

control expertise and several cognitive aspects like attentional

processes, perceptual integration, working memory, cognitive

flexibility, and executive control, which could be considered to

improve the current pilot training efficiency. Further research is

needed to elucidate the precise mechanisms through which these

microstates influence pilot performance and explore their potential

applications in training and optimizing aviation expertise.

4.2 What added value does brainwave
dynamics bring for a more accurate and
comprehensive pilot performance
evaluation?

The integration of neuroscientific evidence from EEG analysis

allows for a detailed understanding, confirmation, and calibration

of the interrelationships among various assessment dimensions

included in current evaluation systems. For instance, D3 (control-

pitch) and D5 (performance-rate climb/descent) show positive

correlations with the duration parameter across the seven

microstate classes whereas these two dimensions also indicated

consistent negative correlations with the occurrence parameter

across most of the computed microstates. This neuroscientific

evidence aligns with the inherently connected relationship between

D3 (pitch control) and D5 (rate of climb/descent) from the

instructors’ standpoint where D3 control enables the performance

of D5, and could serve as the validation for each other. To achieve

a good rate of climb or descent, effective pitch control is essential.

This interrelationship can be seen as analogous to the relationship

between a root cause (D3) and its symptom (D5). Good pitch

control is fundamental to ensuring a proper rate of climb or

descent, which is why these two elements are deeply interrelated

for a practical understanding of vertical control in aviation. In

the meantime, D1 (control-roll) and D4 (performance-altitude)

exhibit significant correlations with several microstates across

parameters, suggesting that those two dimensions could serve as

holistic measures of trainees’ aircraft control abilities. Dimensions

D1 and D4 were not only involved in the aforementioned

significant positive correlations with microstate classes like E

and G, but also indicated significant negative correlations with

microstate classes C and F as discussed. Emphasizing such

dimensions in future performance evaluations may provide a more

accurate and comprehensive assessment of a pilot’s cognitive and

control capabilities.

Moreover, advanced EEG analysis techniques provide an

objective reflection of trainees’ cognitive states, which could
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be integrated into the evaluation protocol to improve accuracy

and reliability. This precision ensures that training feedback

incorporates objective data alongside traditional performance

metrics, providing a richer understanding of trainee behavior

and performance. For example, we may also infer from the

microstate-based similarities observed between dimensions D3

and D5 that both dimensions reflect the continuous involvement

of visual and attentional resources under flight tasks alongside

the aforementioned alignment. Evidence from EEG microstates

reveals the shared cognitive and neural mechanisms underlying

these dimensions, adding extra angles to instructors’ understanding

of the trainees’ cognitive states during the training process.

The involvements of microstate classes A and B highlight

the visual monitoring and information processing consistently

required for both pitch control and assessing the rate of

climb or descent during flight tasks. Also, the activation of

microstate class G underscores the importance of attentional

control in executing precise pitch adjustments and maintaining

the desired vertical trajectory. Another example is the significant

positive correlations observed between microstate class G and

multiple dimensions (D1, D4 in both coverage and duration,

and D5 only in duration), indicating its critical role in

reflecting cognitive abilities under aircraft control tasks. Further

investigations into this microstate could contribute to a better

understanding of a pilot’s cognitive changes throughout the

training program. Such a holistic approach addresses both cognitive

and physical aspects of performance, leading to more effective

training outcomes.

Our experimental results provide insights into integrating

advanced analytical techniques with subjective and objective

evaluations for a more comprehensive, efficient, and effective

approach to assessing pilots’ aircraft control abilities. These

scores can be weighted to reflect the relative importance

of each dimension based on empirical data from microstate

correlations, while subjective evaluations and feedback from

instructors remain crucial and should be integrated recursively

with objective assessments. This ensures a holistic approach,

as instructors can provide nuanced insights that may not be

captured through objective measures alone. The continuous

interplay between subjective and objective evaluations enriches the

training process, offering a complete understanding of a trainee’s

performance and cognitive state. Following our discussions on

the consistent correlations between D1 and D4 with various

microstate classes, we observed similarities between three of

the evaluated performance dimensions, namely D1, D2, and

D4 considering both significant and non-significant correlations.

Therefore, grouping some of these dimensions under the umbrella

of vertical control seems logical from both an evaluative and

a neurocognitive standpoint, as they share common underlying

cognitive processes. However, breaking them down into separate

components provides the necessary granularity to assess each

aspect individually, thereby facilitating a more comprehensive

evaluation and targeted interventions. That is to say, combining

and balancing subjective feedback and objective measures is key

to achieving greater efficiency and effectiveness in pilot training,

allowing formore precise, adaptable training programs that address

individual needs while leveraging empirical data to optimize

learning outcomes. We aim to optimize the pilot evaluation

protocol by integrating advanced analytical techniques to ensure a

more targeted, accurate, and holistic approach to evaluating pilots’

aircraft control skills.

4.3 How to enable adaptive and
personalized training by utilizing brainwave
dynamics?

The integration of EEG data allows for detailed feedback

on specific cognitive functions associated with different training

tasks, benefiting both pilot instructors and trainees by providing a

clearer understanding of trainees’ cognitive control, engagement,

and workload. By combining objective and subjective feedback,

training programs can be tailored to address individual trainees’

specific cognitive status and aircraft control skills. For example,

trainees exhibiting higher levels of microstate class C can receive

additional training focused on maintaining engagement and

increasing cognitive control abilities. In this way, the EEG-

enabled individualized approach ensures that training programs

are adjusted to each trainee’s cognitive states and control levels,

enhancing the overall training effect. Personalized training plans

and materials can also help minimize cognitive overload and

improve training effectiveness.

Additionally, we aim to incorporate real-time EEG microstate

analysis into the evaluation protocol in our future work, allowing

continuous monitoring of trainees’ cognitive states throughout the

training process. This integration can provide immediate feedback

and enable dynamic adjustments to training programs based

on real-time data. By adapting training programs to individual

trainees’ cognitive profiles, training efficiency, and effectiveness

can be enhanced without overwhelming instructors with extra

task loads. When training instructors detect EEG-based signs of

cognitive overload or disengagement in their trainees, they can

provide personalized and timely interventions to improve learning

efficiency. Furthermore, continuous validation and refinement

of training protocols based on empirical EEG data ensure the

effectiveness of the trainingmaterials and program settings. Regular

updates based on the latest research findings can further enhance

the accuracy and reliability of evaluations, leading to a more

efficient and effective training process.

In summary, the research findings presented in this project

highlight the potential for improving pilot training processes

by integrating advanced EEG analytical techniques into pilot

evaluations. These techniques can objectively reflect trainees’

cognitive states, enhancing the accuracy and reliability of

evaluations. Incorporating real-time EEG microstate analysis for

continuous monitoring and adaptive training programs can enable

personalized training and timely interventions. Considering the

practical aspects of obtaining EEG information and deriving

microstates under a pilot training process, we will continue to

explore less invasive alternatives while current EEG methodologies

are indeed intrusive. Our future research will continue to

refine the microstate features to develop a metric that is more

readable and user-friendly for instructors. This will facilitate

easier integration into existing training protocols without adding
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significant operational complexity, ultimately improving the

effectiveness and efficiency of pilot training.

5 Limitations and future work

The present research has some limitations that need to be

carefully considered in our future work. Firstly, one limitation of

this study is the lack of behavioral analysis of trainees’ learning

behaviors recorded by cameras. This limitation arises mainly due

to the subjectivity involved in behavior analysis. Recognizing

the importance of integrating such behavioral analysis into our

research, we consider it as one of our future directions to

complement the results obtained from physiological measures

and subjective assessments. Another limitation lies in the lack

of direct analysis of the objective results recorded by the

simulator, although the objective aspect has been considered

for the generation of expert evaluations. Our expert ratings

were based on time-series visualization of aircraft heading,

angle of bank, altitude, pitch angle, vertical speed, and control

movements. And results presented in Jennings et al. (2024) also

demonstrated that the objective performance metrics from our

dataset are proportional to those objective expert evaluations.

As this research highlights the common utilization of subjective

evaluations in practical pilot training processes, we will include

the analysis of objective performances in our future work without

distracting readers’ attention from the EEG-based insight into

current pilot training protocols. Additionally, the study primarily

focuses on pilot trainees, which may limit the applicability

of the findings to experienced pilots or aviation professionals.

Therefore, we plan to expand the dataset in our future research

by including larger datasets and more diverse participant groups,

including both novices and experienced pilots, to enhance the

generalizability of the findings. However, this may enhance the

potential generalizability of the current study to other training

or learning processes. Furthermore, it is worth noting that the

research primarily relies on EEG-based analysis, which offers a

high temporal resolution but may lack spatial specificity. In our

future work, we will continue to incorporate other techniques such

as ECG and GSR through wearable devices. These methods will

allow for more practical and naturalistic assessments of cognitive

control, complementing the advantages of EEG in real-world pilot

training scenarios as reported in Darvishi-Bayazi et al. (2023) and

Ruiz-Segura et al. (2024).

6 Conclusion

In conclusion, this research investigates the correlations

between pilot trainees’ subjective performance evaluations and

their brainwave dynamics during a pilot training process, as

revealed through EEG microstate analysis. The experimental

results showed significant associations between the temporal

parameters of a few specific microstates and the aircraft control

performance dimensions included in the subjective evaluations,

highlighting the multidimensional nature of aircraft control

proficiency. To be more precise, the observed positive correlations

between subjective performance evaluations with microstate class

E and class G reflected the involvement of attentional processes,

perceptual integration, working memory, and executive control

in skilled aircraft control in the context of pilot training. On

the other hand, the observed negative correlations between

subjective performance evaluations with microstate class C and

class F suggest the associations between decreased default mode

network (DMN) in pilot trainees and their aircraft control

abilities expected to be achieved at the end of a pilot training

process. These results provide neurophysiological markers that

could be employed in designing targeted training programs

and interventions to optimize the training efficiency in aviation

control skills. Additionally, the research highlights the potential

of using EEG microstate analysis as a non-invasive and cost-

effective tool to objectively assess trainees’ cognitive states,

enhancing the accuracy and reliability of evaluations. Overall,

our research findings could not only provide implications

for cognitive neuroscience and human factors in aviation

expertise but also inspire further exploration and applications

in improving the efficiency and effectiveness of pilot training

programs.
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