
TYPE Original Research

PUBLISHED 28 April 2025

DOI 10.3389/fnrgo.2025.1539552

OPEN ACCESS

EDITED BY

Edmund Wascher,

Leibniz Research Centre for Working

Environment and Human Factors

(IfADo), Germany

REVIEWED BY

Manuela Chessa,

University of Genoa, Italy

Benjamin Stodt,

Leibniz Research Centre for Working

Environment and Human Factors

(IfADo), Germany

*CORRESPONDENCE

Ranjana K. Mehta

rmehta38@wisc.edu

RECEIVED 04 December 2024

ACCEPTED 09 April 2025

PUBLISHED 28 April 2025

CITATION

Hayes J, Gabbard JL and Mehta RK (2025)

Learning selection-based augmented reality

interactions across di�erent training

modalities: uncovering sex-specific neural

strategies.

Front. Neuroergonomics 6:1539552.

doi: 10.3389/fnrgo.2025.1539552

COPYRIGHT

© 2025 Hayes, Gabbard and Mehta. This is an

open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Learning selection-based
augmented reality interactions
across di�erent training
modalities: uncovering
sex-specific neural strategies

John Hayes1, Joseph L. Gabbard2 and Ranjana K. Mehta3*

1Department of Industrial and Systems Engineering, Texas A&M University, College Station, TX,

United States, 2Grado Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA,

United States, 3Department of Industrial and Systems Engineering, University of Wisconsin Madison,

Madison, WI, United States

Introduction: Recent advancements in augmented reality (AR) technology have

opened up potential applications across various industries. In this study, we

assess the e�ectiveness of psychomotor learning in AR compared to video-based

training methods.

Methods: Thirty-three participants (17 males) trained on four selection-based

AR interactions by either watching a video or engaging in hands-on practice.

Both groups were evaluated by executing these learned interactions in AR.

Results: The AR group reported a higher subjective workload during training

but showed significantly faster completion times during evaluation. We analyzed

brain activation and functional connectivity using functional near-infrared

spectroscopy during the evaluation phase. Our findings indicate that participants

who trained in AR displayed more e�cient brain networks, suggesting improved

neural e�ciency.

Discussion: Di�erences in sex-related activation and connectivity hint at varying

neural strategies used during motor learning in AR. Future studies should

investigate how demographic factors might influence performance and user

experience in AR-based training programs.

KEYWORDS

augmented reality, fNIRS, psychomotor learning, sex di�erences, graph theory, training,
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1 Introduction

Recent advances in immersive technologies have made augmented reality (AR) more

readily available and affordable (Yin et al., 2021), with continued growth expected in the

coming years. Virtual reality (VR) has already made its way into many industries, with

commercially available VR-based training applications already on the market (Bric et al.,

2016; Hayes et al., 2022), but AR offers some distinct advantages over VR. Unlike virtual

reality, which completely immerses the user in a virtual environment, AR places virtual

objects within the real world and allows the user to interact with both real and virtual

objects. This opens the possibility for AR to be used for realistic training simulations in

naturalistic environments rather than fully simulated virtual environments. Additionally,

unlike VR, AR is not limited to training but could also be deployed for use in the field

(Braly et al., 2019). AR has been shown to have potential applications in a wide range of

industries, including healthcare (Gerup et al., 2020), construction (Rankohi and Waugh,

2013), emergency response (Sebillo et al., 2016), and manufacturing (Nee et al., 2012).
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However, despite the potential benefits that AR offers, it is a

novel interface requiring a new set of skills and interactions distinct

from current widespread technologies, such as touchscreens. Prior

studies have indicated that selection-based interactions in AR

involve a learning curve, which can lead to some difficulty and

frustration before they can be effectively utilized to enhance user

performance (Dwivedi et al., 2022). Therefore, some form of

AR training or familiarization will be necessary before it can be

successfully implemented and enhance performance in training or

on the field (Vyas et al., 2024). This raises unresolved questions

about the most effective and efficient methods for delivering

this training. For instance, would a brief video illustrating

basic selection-based AR interactions suffice, or is hands-on

practice with the AR headset more effective for familiarizing

users with the interface? At the heart of this issue lies a

more fundamental knowledge gap regarding the distinctions

between observational motor learning and hands-on AR-based

motor learning.

Neuroimaging studies have shown that both motor observation

and motor execution enhance motor learning through a shared

neural network, specifically the Action Observation Network

(Jeannerod, 2001; Balconi et al., 2017). The AON involves the

premotor cortex, supplementary motor area, and the primary

motor cortex and is associated with motor learning and

automaticity (Toni et al., 1998; Debaere et al., 2004;Wu et al., 2004).

Prior studies have shown that motor learning through physical

execution elicits higher activation of these brain regions when

compared to observational learning (An et al., 2013; Su et al.,

2023). Additionally, prior studies have reported that males benefit

more in gaining procedural motor skills than females from motor

training, and differences in neural structures and strategies may

explain these sex differences (Kennedy and Raz, 2005; Dorfberger

et al., 2009). These studies support our hypothesis that enhanced

neural strategies may be more prominent with hands-on AR-based

motor learning than with observational motor learning through

video-based demonstrations, and that these strategies may differ

by sex. It is important to note that these neuroimaging studies
focused on basic hand-grasping actions, in contrast to the selection-

based motor interactions used in AR. Therefore, the effect of
cognitive load associated with different interaction modes (e.g.,
poking, raycasting, scrolling, moving) should also be considered

when evaluating various training modalities for AR interfaces.
AR offers the benefit of being more immersive than other

traditional systems, such as video instruction, and it is known

that immersion can improve learning (Dede, 2009) and reduce

cognitive load (Psotka, 1995). AR has been previously shown to

improve declarative learning and visualization (Chen, 2008; Radu,

2012), and AR-based instructions were shown to improve the

performance of a real-world (i.e., non-virtual) procedural task

compared to traditional instructions (Henderson and Feiner, 2011;

Braly et al., 2019). It is thus expected that learning a selection-

based task by practicing it virtually in AR would be more effective

than learning by watching a video. However, the effectiveness of

AR as a motor learning tool (i.e., specifically practicing a virtual

task in AR) is inconsistent in the literature, and AR has not always

been found to be more effective than other methods (Dwivedi

et al., 2022). It has been shown that the design of an AR interface

can significantly impact the mental and physical demands and

performance of a user during an AR-basedmotor activity (Kia et al.,

2021). Further, the use of AR and other head-mounted displays

(HMD) also presents possibilities of increased cognitive demand,

nausea, motion sickness, and other adverse effects (Gavgani et al.,

2017; Kia et al., 2021). Finally, higher immersion is not always

necessary for effective learning (Bowman andMcMahan, 2007). For

example, it is unclear if all or some interactions (e.g., poking vs.

raycasting) will benefit from AR-based training or if some training

could be effectively conducted with more cost-effective video-based

training. Therefore, there is a need to understand the fundamental

nature of motor learning within AR and how it differs from other

traditional training tools to employ it effectively.

The current body of literature regarding augmented reality

(AR) has primarily concentrated on user experience and

performance; however, there exists a paucity of research addressing

potential sex differences that may influence these outcomes (Bend

and Öörni, 2023). A limited number of studies have investigated

the presence of sex differences in AR interactions, indicating that

males typically excel over females in competencies such as spatial

visualization, orientation tasks, and navigation (Waller et al., 1998;

Ahmad et al., 2005). Furthermore, Yan et al. (2021) reported that

women experienced a heightened cognitive load compared to

men during an AR-based warehousing task, yet demonstrated

more rapid enhancements in operational efficiency relative to

their male peers. Considering that motor execution and learning

are susceptible to the influence of sex differences (Cohen and

D’Esposito, 2016), a comprehensive analysis of sex differences in

selection-based AR interactions is warranted.

The goal of this study was to explore the fundamental

differences between observational video-based motor learning and

hands-on AR-based motor learning by examining how these

modalities differentially affect a user’s performance and perceptions

of workload, cognitive load, and engagement. A secondary goal

was to evaluate any potential sex differences in these outcomes.

To compare the effectiveness of the two training modalities, we

analyzed user performance during an evaluation task within the

AR environment that followed either AR or video-based training.

To assess user experience and the cognitive load imposed by each

form of training, we compared subjective workload ratings from

both the training and evaluation phases. Finally, we employed

a neuroergonomics approach to investigate how each training

modality impacts the neural strategies users utilize following

training, as this can provide fundamental insights into differences

in performance and skill acquisition. Examining how the brain

recruits various regions associated with distinct functions (e.g.,

working memory, attention, or motor preparation and execution)

during an AR-based motor learning activity could offer critical

insights into AR-specific cognitive demands placed on users.

2 Methods

2.1 Participants and experimental
protocols

Thirty-three participants (17m/16f) were recruited from a

university community. All participants reported being right-

handed and attested to having <1 h of combined AR and VR

experience to minimize any confounds related to prior AR

experiences. The participants ranged in age from 19 to 59 years
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(mean: 23.2; SD: 7.2 years). Each participant provided informed

consent under the approval of the Texas A&M Institutional Review

Board (IRB2021-0742).

Participants were randomly assigned into one of two groups:

AR (8m/8f) and video (9m/8f). The experiment consisted of

a training phase and an evaluation phase. Upon arrival at

the lab, participants were equipped with a functional near-

infrared spectroscopy (fNIRS) device (NIRSport2, NIRx Medical

Technologies LLC, NY, USA.), and a three-minute resting baseline

(seated with closed eyes) was collected in a quiet, dark room.

Participants then completed training on four basic AR interactions:

poking, raycasting, scrolling, and moving. These interactions were

chosen because of their wide utility in a broad range of AR

applications. Poking and moving are generally regarded as simpler

interactions, while raycasting and scrolling are more challenging,

requiring more control and coordination. Poking is used to select

nearby objects that are within arm’s reach of the user, by touching

the object with a finger. Raycasting is used to select objects that are

outside of the arm’s reach by directing a ray that extends from the

palm of the user’s hand toward the object and tapping the thumb

and forefinger together. Scrolling uses raycasting to scroll through

a list of items on a virtual menu and select the correct item. Moving

uses raycasting to select and hold onto a virtual object and move it

to a different location.

During the training phase, participants in the AR group

practiced each interaction with the Microsoft HoloLens 2 AR

headset (Microsoft Corp., Redmond, WA). The order of the

interactions was counterbalanced between poking and raycasting

and between moving and scrolling, with poking/raycasting always

being presented before moving/scrolling. At the beginning of

training for each interaction, written and verbal instructions on

how to perform the interactions were provided to the participant

through the AR headset. The poking interaction required the user

to use the poking interaction to select virtual buttons labeled

from one to ten. The buttons were arranged in two rows and five

columns within arm’s reach of the participant, but the order of the

numbers was randomized. The raycasting interaction required the

participant to use the raycasting interaction to select virtual buttons

labeled from one to ten. The buttons were in the same arrangement

as the poking interaction, but they were located outside of the
arm’s reach. The scrolling interaction required the participant to
use raycasting to scroll through a virtual menu with a list of

names of types of fruit and select a specific fruit. The moving
interaction required the participant to use raycasting to move a

small virtual box inside a larger virtual box. Participants completed
six consecutive trials of each of these interactions, with a two-

minute rest period in between the different interactions. For all
interactions, the participant was instructed to use only the right

hand and was asked to complete each interaction as quickly and
accurately as possible.

Participants in the video group were trained on the four

interactions by watching four videos on a computer monitor

demonstrating each of them. Each video lasted 25–45 seconds and

demonstrated one of the four interactions. The videos began with

written and verbal explanations of the interactions, followed by a

demonstration of the interaction from the viewpoint of the user

within the AR headset. The counterbalancing and rest breaks were

similar to those employed in the AR group.

After training, both groups completed the evaluation phase,

which involved performing three consecutive trials of each

interaction within the AR headset. Participants were encouraged

to complete each trial as quickly and accurately as possible, with

a two-minute rest period in between the different interactions.

2.2 Measurements

2.2.1 Performance
The time of completion for each interaction during evaluation

was used as a measure of performance. Completion times of each

trial were averaged across trials for each interaction. We chose time

to complete as the performance metric over accuracy as the intent

of the training was to enhance motor skill acquisition with the four

AR interactions (Vyas et al., 2024).

2.2.2 Subjective responses
Participants completed the NASA Task Load Index (NASA-

TLX) (Hart and Staveland, 1988; Hart, 2006) and the Cognitive

Load Theory (CLT) (Klepsch et al., 2017) surveys after each

interaction in the training and evaluation phases. For the NASA-

TLX survey, participants were asked to respond to six questions

on mental demand, physical demand, temporal demand, effort,

frustration, and performance on a scale from one (Low) to twenty-

one (High). The unweighted total NASA-TLX score for each

interaction was calculated by taking the sum of all the sub-scores

(Moroney et al., 1992). A previous study used NASA-TLX to

measure subjective workload during a motor learning task of

varying difficulty levels and found that maximal improvement

occurred at a moderate workload level and decreased under

very high and very low workloads (Akizuki and Ohashi, 2015).

Therefore, comparing subjective workload during training in AR

and video modalities could help to explain any performance

differences during evaluation. Further, identifying the workload

associated with each modality and each interaction can help to

calibrate the workload level of future training to elicit maximal

learning. For the cognitive load theory survey, participants were

asked to rate on a scale from one (Low) to seven (High) how

much they agreed with eight statements on the germane, intrinsic,

and extraneous cognitive load of the interaction (Klepsch et al.,

2017). Cognitive load theory provides more detailed insight into

the specific cognitive demands associated with a task, dividing

cognitive load into three categories: intrinsic, extraneous, and

germane. Intrinsic load depends on task complexity. Extraneous

load depends on the design of the learning task or learning

environment. Germane load is related to the engagement of mental

processes that facilitate learning and the development of mental

models (Klepsch et al., 2017). This can help to distinguish beneficial

load from non-beneficial cognitive load to optimize the efficiency

of a training task (Paas and vanMerriënboer, 2020). Germane load,

intrinsic load, and extraneous load sub-scores were calculated from

CLT scores, as described previously (Klepsch et al., 2017).

Participants also completed the User Engagement Survey (UES)

(O’Brien et al., 2018) at the end of the training phase and the

end of the evaluation phase, in which they were asked to rate
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FIGURE 1

(A) AR training, (B) video training, (C) fNIRS probe montage: sensors (white) and detectors (gray) are connected by solid black lines indicating the

channels.

from one (Low) to five (High) how much they agreed with 12

statements on the usability, aesthetic appeal, and engagement of

the task. Engagement is an important factor to consider when

designing a learning interface to improve the experience of the

user and facilitate learning (O’Brien and Toms, 2008). Engagement

has previously been found to correlate with performance (Askari

et al., 2020), and the UES has been used previously to compare

engagement across different learning platforms (Lopez-Ozieblo

et al., 2021). Identifying differences in user engagement during AR

vs video training could help to explain performance differences.

It could also help to provide a better understanding of the user

experience associated with this new form of training, which could

be important in the implementation of this tool in the future. Four

metrics—aesthetic appeal, focused attention, perceived usability,

and reward—were calculated from the UES scores (O’Brien et al.,

2018).

2.2.3 fNIRS measures
An fNIRS system was used to measure the hemodynamic

response of the brain during the training and evaluation tasks.

fNIRS uses the concentration of oxygenated hemoglobin in the

blood as a functional indicator of brain activity (Zhu et al.,

2019). An 8 × 8 fNIRS system (NIRSport2, NIRx Medical

Technologies LLC, NY, USA.) was employed using a probe map

on the International 10–20 Coordinate System (Jasper, 1958)

consisting of 20 channels and targeting six brain regions: Frontal

Eye Fields/Cingulate Gyrus (FEF/CG), Supplementary Motor Area

(SMA), Left Premotor Cortex (LPMC), Right Premotor Cortex

(RPMC), Left Primary Motor Cortex (LM1), Right Primary Motor

Cortex (RM1) (Figure 1). These regions were monitored based

their involvement in motor function and on prior literature which

identified changes in the activation of these regions associated

with the AON for motor learning and automaticity (Toni et al.,

1998; Debaere et al., 2004; Wu et al., 2004). The prefrontal cortex

has also been shown to play a role in motor learning (Wu et al.,

2004; Alves Heinze et al., 2019); however, the position of the AR

HMD interfered with the placement of probes in the prefrontal

regions, so prefrontal cortex activity could not be collected during

this study. At the start of the experiment, the fNIRS cap was

positioned on the participant’s head using the Cz and Fpz, based

on the International 10–20 Coordinate System (Jasper, 1958), as

landmarks to ensure accurate probe placement. The participant was

fitted with an opaque, black shower cap to block outside light from

interfering with the measurement, and a signal optimization test

was performed in the NIRx Aurora software (Aurora fNIRS, NIRx

Medical Technologies LLC, NY, USA). After optimization, a three-

minute baseline measurement was recorded, during which time the

participant was asked to remain seated and still with eyes closed.

fNIRS data was processed using the MATLAB toolbox Homer2

(Huppert et al., 2009). First, the raw intensity data was converted

to optical density. Next, motion artifact correction was applied

by a kurtosis-based wavelet algorithm with a kurtosis threshold

of 3.30 (Chiarelli et al., 2015). Then, a hybrid spline-SG motion
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correction was applied (Jahani et al., 2018). A bandpass filter was

applied to remove artifacts from respiration and heartbeat as well

as low-frequency waves (Alves Heinze et al., 2019) with a high

pass filter frequency of 0.010Hz and a low pass filter frequency

of 0.50Hz (Shi et al., 2020; Tyagi et al., 2021). Finally, a modified

Beer-Lambert law was used to convert the optical density into

concentrations of oxygenated (HbO) and deoxygenated (HbR)

hemoglobin (Delpy et al., 1988; Rhee and Mehta, 2018). HbO is a

better indicator of cerebral blood flow than HbR, so it was used

for the remaining analysis (Hoshi et al., 2001). Brain activation

and functional connectivity metrics were extracted from the task-

related HbO signals during the evaluation phase.

Brain activation has been measured in prior motor learning

studies using both fMRI and fNIRS, and distinct changes in activity

have been identified in association with motor learning (Toni

et al., 1998; Debaere et al., 2004; Wu et al., 2004; Alves Heinze

et al., 2019). These changes are associated with the development

of automaticity (Wu et al., 2004), and therefore, comparing brain

activation patterns in the two groups during evaluation can help

to capture differences in the effectiveness of motor learning within

each modality.

Activationwas calculated for each interaction during evaluation

as described in Shi et al. (2022). The start and end times of each

trial were extracted from the AR headset log and were used to

extract the HbO concentrations corresponding to that period. For

every channel, mean activation was calculated for each trial by

taking an average of the HbO concentration during that trial (Shi

et al., 2022). A global baseline was calculated by taking the average

HbO concentration during the second two minutes of the three-

minute baseline period, and the mean activation for each trial was

corrected by subtracting this baseline. Channels were grouped into

the six regions of interest (namely, FEF/CG, SMA, RPMC, LPMC,

RM1, and LM1; displayed in Figure 1), and region of interest (ROI)

averages were calculated for each trial. The mean value of all the
trials for each interaction was taken as the mean brain activation

for that interaction.

Functional connectivity can provide additional insight into the
neural processes associated with a task. Functional connectivity

examines the correlations between the HbO time series of

each channel to identify brain networks of coordinated activity
(Rogers et al., 2007; Tyagi et al., 2021). Quantifying the

number of connections within and between different brain

regions can provide information about the network recruited

for the task and the degree of communication between different
brain regions.

Using the start and end times from the AR headset, the HbO
concentration curves for the four interactions during the evaluation

were spliced together into a single continuous curve for each

channel (i.e., the rest periods between interactions were removed).

The Pearson Correlation coefficient between each pair of channels

was calculated for each participant. Channel pairs with a Pearson

Correlation coefficient between −0.291 and 0.291 were considered

spurious and were removed. This threshold, determined via Monte

Carlo simulation, sets the 99th percentile for p < 0.01 to reduce

false positives, ensuring only the strongest correlations are seen as

significant (Hocke et al., 2016). For each participant, the number of

non-spurious connections within the motor regions (LM1, RM1),

within the frontal regions (FEF/CG, SMA, RPMC, LPMC), and

between the motor and frontal regions was determined. Owing

to the short duration of each interaction, functional connectivity

analysis was pooled across all four interactions based on the

recommended duration (∼3–5 minutes) of analysis (Zhu et al.,

2019).

Graph theoretical analysis (GTA) is a network-level analysis

that provides information about the functional integration and

segregation of different brain regions during a task (Rubinov and

Sporns, 2010). In GTA, the brain is analyzed as a complex network

consisting of nodes connected by edges. Each node represents

an fNIRS channel, and each edge represents the correlation in

HbO signals of the two nodes connected to that edge. For

each participant, a weighted, undirected graph was generated in

MATLAB using the un-thresholded Pearson Correlations for each

channel pair. Unthresholded analyses were chosen to minimize

threshold biases (Drakesmith et al., 2015). Global efficiency, local

efficiency, clustering coefficient, and modularity were calculated

for each graph using the MATLAB Brain Connectivity Toolbox

(Rubinov and Sporns, 2010) (see Figure 2).

Prior studies have found increased clustering coefficient

associated with motor learning and skill acquisition (Heitger et al.,

2012) and distinct changes in modularity, global efficiency, and

local efficiency associated with motor and cognitive tasks (Cohen

and D’Esposito, 2016). Global efficiency reflects the functional

integration of the brain, while local efficiency, clustering coefficient,

and modularity reflect the functional segregation and community

structure of brain networks (Rubinov and Sporns, 2010). Together,

these metrics provide insight into the efficiency of communication

within the brain and the neural strategies employed by a participant

while performing a task.

Modularity was calculated using the Louvain community

detection algorithm (Blondel et al., 2008). Global efficiency

(Equation 1), local efficiency (Equation 2), and clustering

coefficient (Equation 3) were calculated using the formulas below,

where N represents the set of all of the nodes in the graph, n is the

total number of nodes, (i, j) represents an edge between the nodes

i and j, wi,j represents the weight of the edge (i, j), lW represents

the sum of the weights of all edges, k−i represents the degree of the

node i, ti represents the number of triangles around node i, and

dWij represents the shortest weighted path length between nodes i

and j (Rubinov and Sporns, 2010).

Global Efficiency:

EW =
1

n

∑
i∈N

∑
j∈N, j6=i (d

W
ij )

−1

n− 1
(1)

Local Efficiency:

EWloc =
1

2

∑
i∈N

∑
j, h∈N, j6=i (WijWih[d

W
jh (Ni)]

−1
)
1
3

ki(ki − 1)
(2)

Clustering Coefficient:

CW =
1

n

∑
i∈N

2tWi
ki(ki − 1)

(3)
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FIGURE 2

Pipeline for generation of graphs from fNIRS data and calculation of graph theory metrics.

2.3 Statistical analysis

All statistical analysis was performed in the coding language R,

version 4.1.1. All dependent measures were tested for normality

with the Shapiro-Wilk normality test (Shapiro and Wilk, 1965),

and three sets of statistical analyses were performed. First, we

employed the Spearman Rank Correlation analysis to assess the

relationships between neural activation and task performance

measures for each interaction. Second, we evaluated the impact

of training modality and sex on the time of completion for each

interaction during the evaluation. For interactions with normal

distributions, we performed a two-way between-subjects ANOVA

for the effects of group (AR vs. video) and sex. For interactions with

non-normal distributions, we performed an aligned ranks non-

parametric two-way between-subjects ANOVA using the R package

ARTool (Wobbrock et al., 2011).

Second, to examine changes in subjective workload and user

experience, both between the two trainingmodalities and over time,

we analyzed the subjective survey responses for the main effects of

group (AR vs. video), phase (training vs. evaluation), and sex for

each interaction. A non-parametric test for factorial experiments

with longitudinal data was performed, using the R package nparLD

(Noguchi et al., 2012), because it has shown to be robust to non-

continuous data. This test sets the denominator degrees of freedom

as infinity for ANOVA-type statistics, so results from this analysis

are reported with only the numerator degrees of freedom (Noguchi

et al., 2012). Post hoc tests were conducted using the R package

nparcomp (Konietschke et al., 2015).

Third, to compare differences in brain function during the

evaluation task, we analyzed the activation, connectivity, and graph

theory metrics for the effects of group (AR vs. video) and sex.

Due to the variable nature of physiological data, values falling

outside of the first and third quartile by more than one and a half

times the interquartile range were considered outliers and removed

from the analysis for the fNIRS data. For normally distributed

measures, a two-way between-subjects ANOVA was performed.

For non-normally distributed measures, an aligned ranks non-

parametric two-way between subjects ANOVA was performed

using the R package ARTool (Wobbrock et al., 2011). Post hoc tests

were conducted using the “pairwise_t_test” function within the

R package rstatix (Kassambara, 2019) for normal data and the R

package ARTool (Elkin et al., 2021) for non-normal data.

Across all analyses, Bonferroni corrections were applied to

account for multiple comparisons.

3 Results

All participants completed their assigned training and the

evaluation task. Table 1 provides the mean (SD) of the performance

and subjective responses (i.e., NASA-TLX, CLT, and UES scores)

across both groups and sexes and for the training and evaluation

phases. No significant correlations were found between neural

activation of the different brain regions and task performance

during poking, raycasting, or moving interactions (all p’s > 0.123).

However, scrolling performance was positively correlated with

HbO levels at the RPMC (ρ = 0.373; p= 0.04).

3.1 Performance

The time of completion (Figure 3) for the AR group was

significantly lower than the video group for poking [Group Main
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TABLE 1 Mean (SD) of performance during the evaluation task and subjective responses to cognitive load theory (CLT), NASA Task Load Index

(NASA-TLX), and user engagement survey (UES) across phases, groups, and type of interaction.

Training Evaluation

AR Video AR Video

Performance Time of completion (s) PokingG 15.56 (3.56) 23.64 (7.09)

RaycastingG 28.73 (10.18) 78.78 (66.89)

ScrollingG 22.38 (11.59) 62.02 (32.13)

MovingG 9.84 (4.93) 16.33 (8.94)

CLT Germane PokingG 4.88 (1.41) 6.42 (0.81) 5.17 (1.62) 6.6 (0.56)

RaycastingG 4.77 (1.4) 6.33 (0.72) 5.35 (1.72) 6.48 (0.81)

ScrollingG 4.92 (1.74) 6.4 (0.8) 5.02 (1.52) 6.54 (0.73)

MovingG 5 (1.66) 6.19 (1.19) 5.12 (1.73) 6.79 (0.4)

Intrinsic Poking 1.78 (0.73) 1.94 (0.87) 1.69 (0.93) 1.84 (1.03)

RaycastingGxP 3.44 (1.59) 2.12 (1.24) 2.56 (1.31) 3.31 (1.67)

ScrollingGxP 3.72 (1.46) 2.31 (1) 2.28 (1.02) 3.41 (1.99)

Moving 2.22 (1.38) 2.16 (1.23) 2.31 (1.61) 1.97 (1.22)

Extraneous Poking 1.35 (0.49) 1.21 (0.47) 1.44 (0.54) 1.23 (0.38)

RaycastingGxP 2.75 (1.74) 1.6 (0.88) 1.85 (1.06) 2.52 (1.76)

ScrollingGxP 2.6 (1.28) 1.65 (0.89) 1.96 (1.13) 2.35 (1.58)

Moving 1.46 (0.56) 1.73 (0.9) 1.71 (0.95) 1.46 (0.53)

Overall PokingG 2.67 (0.56) 3.19 (0.34) 2.76 (0.68) 3.23 (0.41)

RaycastingGxP 3.65 (1.37) 3.35 (0.7) 3.26 (0.91) 4.1 (0.78)

ScrollingGxP 3.75 (1.09) 3.45 (0.5) 3.09 (0.67) 4.1 (0.96)

Moving 2.89 (0.91) 3.36 (0.44) 3.05 (1) 3.41 (0.44)

NASA-TLX Mental demand Poking 2.75 (2.35) 3 (4) 2.31 (1.58) 3.18 (2.72)

RaycastingGxP 7.44 (5.49) 2.94 (2.56) 3.56 (3.16) 6.24 (4.99)

ScrollingGxP 7.44 (4.03) 3.29 (2.8) 3.25 (2.86) 8.53 (5.58)

Moving 2.75 (2.84) 2.94 (2.66) 2.38 (1.86) 3.06 (2.97)

Physical demand PokingGxP 3.06 (2.29) 2.59 (4.81) 2.06 (1.48) 3.24 (3.21)

RaycastingGxP 5.81 (4.39) 2.65 (3.37) 2.81 (2.59) 4.94 (4.66)

ScrollingGxP 4.75 (4.09) 2.29 (2.54) 2.88 (3.61) 5.47 (5.16)

Moving 2.25 (2.84) 2.06 (2.51) 1.75 (1.34) 2.53 (2.12)

Temporal Demand Poking 3 (2.45) 2.24 (2.28) 3.06 (4.67) 1.71 (1.05)

Raycasting 4.56 (3.31) 2.71 (2.85) 3.56 (3.92) 2.71 (2.39)

Scrolling 3.12 (2.7) 2.59 (2.09) 4 (4.97) 2.41 (2.29)

Moving 2.56 (3.03) 3.47 (4.19) 2.94 (4.65) 2.18 (2.24)

Performance Poking 2.25 (1.77) 1.59 (2.18) 2.88 (4.49) 1.76 (1.82)

RaycastingGxP 5.75 (3.8) 1.47 (0.87) 2.38 (1.78) 4.71 (4.41)

ScrollingGxP 5.94 (4.2) 2 (2.03) 3.56 (3.52) 5.29 (4.36)

Moving 3.69 (4.39) 2.29 (2.54) 2.25 (2.35) 2.06 (2.16)

Effort Poking 3.94 (2.89) 3.41 (4.14) 2.88 (2.55) 3.82 (3.3)

Raycasting 10.12 (5.9) 3.71 (3.41) 5 (4.77) 10.59 (6.79)

ScrollingGxP 10.19 (5.33) 4.12 (3.82) 6.25 (5.37) 12.18 (5.65)

Moving 3.69 (3.7) 3.53 (3.47) 2.75 (2.46) 3.76 (3.83)

(Continued)
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TABLE 1 (Continued)

Training Evaluation

AR Video AR Video

Frustration Poking 2.81 (3.69) 1.76 (1.39) 2.25 (3.3) 1.94 (1.52)

RaycastingGxP 7.25 (6.44) 1.94 (1.68) 4.69 (6.13) 4.94 (4.53)

ScrollingGxP 5.5 (5.05) 2.12 (2.06) 3.56 (4.1) 6.59 (5.03)

Moving 2.44 (3.01) 1.71 (1.57) 1.94 (2.26) 2.06 (1.34)

Total workload Poking 17.81 (11.33) 14.59 (17.41) 15.44 (10.73) 15.65 (10.95)

RaycastingGxP 40.94 (24.79) 15.41 (12.27) 22 (16.38) 34.12 (21.08)

ScrollingGxP 36.94 (18.62) 16.41 (11.79) 23.5 (17.88) 40.47 (22)

Moving 17.38 (15.62) 16 (14.65) 14 (9.22) 15.65 (10.98)

UES Focused attentionP 2.58 (0.61) 2.29 (0.63) 3 (1.02) 2.73 (0.86)

Perceived usabilityGxP 3.67 (0.92) 4.73 (0.36) 3.94 (0.98) 3.98 (0.61)

Aesthetic appeal 3.25 (1.06) 2.73 (0.98) 3.54 (1.21) 3.43 (1.2)

Reward 3.83 (0.89) 3.78 (0.76) 3.96 (0.96) 3.67 (1.09)

Overall engagement 3.33 (0.59) 3.38 (0.49) 3.61 (0.82) 3.45 (0.71)

G,P,GxP denote significant group and phase main effects, and group x phase interaction effects, respectively.

FIGURE 3

Performance during the evaluation task by sex, group, and interaction plotted as time of completion in seconds. The AR group performed better than

the video group for all four interactions (all p < 0.05). There were no main e�ects of sex (all p > 0.20) or interaction e�ects of group and sex (all p >

0.07). Error bars represent standard error.

Effect: F(1,29) = 22.66, p < 0.001, η
2
p = 0.44], raycasting [Group

Main Effect: F(1,29) = 27.07, p< 0.001, η2p = 0.48], scrolling [Group

Main Effect: F(1,29) = 22.81, p < 0.001, η
2
p = 0.44], and moving

[Group Main Effect: F(1,29) = 7.14, p = 0.01, η
2
p = 0.20]. No sex

effects (all p > 0.20) or interaction effect on group and sex (all p >

0.07) were identified.

3.2 Cognitive load theory

For the poking interaction, irrespective of phase or sex,

participants in the video group reported greater germane load

[Group Main Effect: F(1) = 17.22, p < 0.001] and greater overall

cognitive load [Group Main Effect: F(1) = 17.47, p < 0.001] than

the AR group (see Table 1).

For the raycasting interaction, irrespective of phase or sex,

participants in the video group reported greater germane load

[Group Main Effect: F(1) = 11.24, p < 0.001] than the AR group.

Additionally, there was an interaction effect on intrinsic load

[Group x Phase Interaction: F(1) = 12.92, p < 0.001], extraneous

load [Group x Phase Interaction: F(1) = 10.40, p = 0.001], and

overall load [Group x Phase Interaction: F(1) = 8.91, p = 0.003].

During training, the AR group reported higher intrinsic and

extraneous load than the video group. During evaluation, the video

group reported a greater overall load than the AR group. The video

group reported higher intrinsic and overall load during evaluation

compared to training (see Table 1).
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For the scrolling interaction, irrespective of phase or sex,

participants in the video group reported a greater germane load

[Group Main Effect: F(1) = 12.75, p < 0.001] than the AR group.

Additionally, there was an interaction effect on intrinsic load

[Group x Phase Interaction: F(1) = 24.41, p < 0.001], extraneous

load [Group x Phase Interaction: F(1) = 13.21, p < 0.001], and

overall load [Group x Phase Interaction: F(1) = 22.0, p < 0.001].

During training, the AR group reported greater intrinsic and

extraneous load than the video group. During evaluation, the video

group reported a greater overall load than the AR group. The

AR group reported greater intrinsic and extraneous load during

training than during evaluation (see Table 1).

For the moving interaction, irrespective of phase or sex,

participants in the video group reported greater germane load

[Group Main Effect: F(1) = 17.39, p < 0.001] than the AR group

(see Table 1).

3.3 NASA task load index

For the poking interaction, there was a group x phase

interaction effect on physical demand (Group x Phase Interaction:

F(1) = 9.87, p = 0.002), wherein the video group reported greater

levels during evaluation than during training (see Table 1).

For the raycasting interaction, there was a group x

phase interaction effect on mental demand [Group x Phase

Interaction: F(1) = 29.21, p < 0.001], physical demand [Group

x Phase Interaction: F(1) = 45.07, p < 0.001], effort [Group x

Phase Interaction: F(1) = 41.37, p <0.001], performance [Group

x Phase Interaction: F(1) = 38.96, p < 0.001], frustration [Group

x Phase Interaction: F(1) = 18.92, p < 0.001], and total workload

[Group x Phase Interaction: F(1) = 45.15, p < 0.001]. During

training, the AR group reported higher mental demand, physical

demand, effort, performance, frustration, and overall workload

than the video group. During evaluation, the video group reported

greater effort than the AR group. The AR group reported greater

mental demand, physical demand, effort, performance, and total

workload during training than during evaluation. The video

group reported greater mental demand, physical demand, effort,

performance, frustration, and total workload during evaluation

than during training (see Table 1).

For the scrolling interaction, there was a group x

phase interaction effect on mental demand [Group x Phase

Interaction: F(1) = 44.17, p < 0.001], physical demand [Group

x Phase Interaction: F(1) = 39.90, p < 0.001], effort [Group x

Phase Interaction: F(1) = 45.13, p < 0.001], performance [Group

x Phase Interaction: F(1) = 13.74, p < 0.001], frustration [Group

x Phase Interaction: F(1) = 22.50, p < 0.001], and total workload

[Group x Phase Interaction: F(1) = 41.05, p < 0.001]. During

training, the AR group reported greater mental demand, physical

demand, effort, performance, frustration, and total workload than

the video group. During evaluation, the video group reported

greater mental demand and effort than the AR group. The AR

group reported greater mental demand, physical demand, effort,

performance, and total workload during training than during

evaluation. The video group reported greater mental demand,

physical demand, effort, frustration, and total workload during

evaluation than during training (see Table 1).

No significant main effects or interaction effects were found for

the moving interaction (see Table 1).

3.4 User engagement survey

Irrespective of group or sex, participants reported higher

focused attention [Phase Main Effect: F(1) = 8.09, p = 0.005],

during the evaluation compared to the training, but they rated

perceived usability [Phase Main Effect: F(1) = 11.29, p < 0.001]

higher in the training than in the evaluation. There was a group

x phase interaction effect for perceived usability [Group x Phase

Interaction: F(1) = 20.16, p < 0.001]. During training, the video

group reported higher perceived usability than the AR group, and

the video group reported higher perceived usability during training

than during evaluation (see Table 1).

3.5 Brain activation

For the poking interaction, there was a two-way interaction

effect for mean activation of the SMA [Group x Sex Interaction:

F(1,26) = 5.59, p = 0.026, η
2
p = 0.18] and LM1 [Group x Sex

Interaction: F(1,23) = 4.58, p = 0.043, η
2
p = 0.17]. Females in the

AR group displayed higher activation of the SMA and LM1 than

females in the video group (Figure 4).

During raycasting, no significant group effects, sex effects, or

interaction effects of group and sex (all p > 0.17) were identified

in the FEF/CG (Mean: 1.36e-08; SD: 3.53e-08), SMA (Mean: 9.86e-

09; SD: 4.21e-08), LPMC (Mean:−2.31e-09; SD: 9.75e-08), RPMC

(Mean: 3.08e-09; SD: 5.96e-08), LM1 (Mean: 1.53e-09; SD: 6.99e-

08), or RM1 (Mean: 1.95e-08; SD: 4.51e-08).

During the scrolling interaction, irrespective of sex, the AR

group displayed lower RPMC activation than the video group

[Group Main Effect: F(1,25) = 4.80, p = 0.038, η2p = 0.16; Figure 5],

while no other ROI was influenced by group and sex effects

(all p > 0.05).

During moving, no significant group effects, sex effects, or

interaction effects of group and sex (all p > 0.12) were identified

in the FEF/CG (Mean: 1.45e-09; SD: 1.96e-07), SMA (Mean:−2.2e-

09; SD: 1.62e-07), LPMC (Mean: 5.76e-08; SD: 2.26e-07), RPMC

(Mean:−3.07e-09; SD: 2.31e-07), LM1 (Mean: 8.48e-08; SD: 1.78e-

07), or RM1 (Mean: 3.27e-08; SD: 2.11e-07).

3.6 Functional connectivity

Within the frontal regions, irrespective of group, males

displayed more connections than females [Sex Main Effect: F(1,24)
= 15.38, p < 0.001, η

2
p = 0.39]. Within the motor regions, there

was a two-way interaction effect [Group x Sex Interaction: F(1,24) =

7.24, p = 0.013, η
2
p = 0.23; Figure 6] in which males in the video

group displayed more connections than females in the video group,

while no sex differences were observed in the AR group. Between

the frontal and motor regions, males displayed more connections

than females [SexMain Effect: F(1,25) = 18.31, p< 0.001, η2p = 0.42].
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FIGURE 4

Mean brain activation by group, sex, and brain region, measured as the change in HbO concentration from baseline, captured by fNIRS during the

poking evaluation. A group x sex interaction was identified for the SMA (p = 0.026) and the LM1 (p = 0.043). Females in the AR group displayed higher

activation of SMA and LM1 than females in the video group. Error bars represent standard error.

FIGURE 5

Mean brain activation by group and brain region, measured as the change in HbO concentration from baseline, captured by fNIRS during the

scrolling evaluation. The AR group displayed lower RPMC activation than the video group (p = 0.038). Error bars represent standard error.
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FIGURE 6

Number of non-spurious channel-wise connections identified in the brain during the evaluation task, plotted by group and sex. Males displayed

more connections than females within the frontal regions (p < 0.001). Males displayed more connections than females within the motor regions (p =

0.017) and there was a group x sex interaction within the motor regions (p = 0.013). Within the video group males displayed more connections within

the motor regions than females, while there was no sex di�erence in the AR group. Males displayed more connections between the frontal and

motor regions than females (p < 0.001). Error bars represent standard error.

FIGURE 7

Graph theory metrics (global e�ciency, local e�ciency, clustering coe�cient, and modularity) generated from weighted graphs of brain connectivity

(i.e., channel-wise Pearson Correlation) during the evaluation task, plotted by group and sex. Males exhibited higher global e�ciency (p = 0.004),

local e�ciency (p < 0.001), and clustering coe�cient (p < 0.001) than females, and males exhibited lower modularity than females (p = 0.004). Error

bars represent standard error.

3.7 Graph theory metrics

Males exhibited a higher global efficiency [Sex Main Effect:

F(1,26) = 10.27, p = 0.004, η
2
p = 0.28], local efficiency [Sex Main

Effect: F(1,25) = 14.03, p < 0.001, η
2
p = 0.36], and clustering

coefficient [Sex Main Effect: F(1,24) = 22.30, p < 0.001, η2p = 0.48]

than females, and males exhibited lower modularity than females

[Sex Main Effect: F(1,24) = 10.48, p = 0.004, η
2
p = 0.30]. Figure 7

illustrates the sex effects.

4 Discussion

The goal of this study was to compare the effectiveness

of AR- and video-based training for motor learning and to

use neurophysiological and subjective data to understand

and explain potential differences in performance between

the two modalities. Our main findings are summarized

as follows:

1. AR-based psychomotor training places greater perceived

demands on the user during training but leads to improved

performance during evaluation.

2. Neural data suggests that learners in the AR group utilize a more

efficient brain network during the evaluation task and that the

impacts of AR training are interaction-specific.

3. Sex differences in brain activation and connectivity

patterns suggest distinct neural strategies associated with

psychomotor learning, which could contribute to differences in

user experience.

4.1 AR-based psychomotor training places
greater perceived demands on the user
during training but leads to improved
performance during evaluation

During the evaluation, participants in the AR group exhibited

faster completion times than those in the video group across all four
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interactions. Furthermore, participants in the video group showed

more variability in performance (i.e., a larger standard deviation in

evaluation completion times) than those in the AR group. These

findings indicate that hands-on AR-based psychomotor learning

is more effective and consistent than video-based observational

learning for teaching these basic AR interactions, leading to two

major implications. First, when introducing AR to a new group

of users, they should receive hands-on training in AR rather than

video-based instruction for basic AR interactions to expedite skill

acquisition and diminish the learning curve associated with early

AR use. This will enable users to become comfortable with the AR

interface more quickly, allowing them to use AR more effectively

during contextual training and in practical applications. In this

study, we found that just six trials within the AR headset were

sufficient to enhance skill acquisition in the AR group compared

to the video group. This raises the question of howmuch practice is

necessary for effective skill acquisition. While the specific number

of trials is likely dependent on the individual (Vyas et al., 2024),

it is possible that the AR training could be even further reduced

while still maintaining the benefits over the videomodality. Second,

these findings suggest that AR-based motor learning could be more

effective than video-based observational learning in a wide variety

of training applications. Future studies should explore whether

these findings extend to learning industry-relevant skills in AR

(e.g., triage) (Nelson et al., 2022) rather than basic AR interaction

skills (such as those evaluated here). It is also important to note

that this study focused specifically on learning basic AR interaction

skills and not skills that would transfer to an analogous task in

the real world. Future studies should explore whether practicing

a real-world skill virtually in an AR simulation leads to improved

performance of the actual skill in the real world, which has

important technology acceptance considerations for fielded AR

applications (Mehta et al., 2022).

A relatively consistent pattern associated with perceived

workload (as measured by NASA-TLX) was observed during the

raycasting and scrolling interactions. During training, the AR

group reported a higher workload, but during evaluation, the AR

group perceived a significant decrease in workload. Conversely,

the video group experienced a lower workload during training

but displayed a significant increase moving into evaluation. These

findings suggest that the increased demands during training

perceived by the AR group may have potentially increased their

arousal and engagement, leading to improved learning and better

performance during evaluation. Indeed, it has been found that

mild levels of stress and arousal can help to improve performance

(Teigen, 1994), which is consistent with our results. Interestingly,

this pattern was only observed in raycasting and scrolling but not

in poking or moving. Different interactions likely place different

demands on the user, and it has been found previously that the

design of the AR interface can significantly induce mental and

physical demands (Kia et al., 2021). Raycasting has indeed been

found to be a more complex visuomotor interaction (Argelaguet

and Andujar, 2013), displaying a non-linear relationship between

the target’s angular size and the task’s difficulty (Kopper et al.,

2010). This has important implications for the design of future AR

interfaces. A thorough understanding of the impacts of different

AR tasks and interactions on user experience and perceptions must

guide the design of such interfaces. Compared to the AR group,

the video group perceived very low demands during training,

which is expected, but failed to effectively acquire the skills needed

for efficient performance, leading to longer completion times and

greater workload during the evaluation.

In addition to perceived workload, which is a major

determinant of learning and skill acquisition (Akizuki and Ohashi,

2015), it is also important to examine through the lens of Cognitive

Load Theory (Klepsch et al., 2017) whether different training or

instructional modalities (AR vs video) facilitate learning. A recent

systematic review of research on AR and CLT has emphasized

the need to assess the different loads (germane, intrinsic, and

extraneous) placed on users when using AR-based instructional

modalities (Buchner et al., 2021), which the present study captured.

Optimizing intrinsic load (i.e., the load associated with the

complexity of a task, which is influenced by both the amount of

information that must be maintained in working memory during

the task and by the prior knowledge of the user) is a goal in

developing effective instructional materials (Klepsch et al., 2017).

In the present study, the AR group reported a higher intrinsic load

than the video group for raycasting and scrolling during training.

This finding, which suggests that watching a video is intrinsically

easier than completing a complex and unfamiliar motor task, is not

surprising. Interestingly, intrinsic load decreased in the AR group

moving into the evaluation task for the scrolling task. This indicates

that AR training effectively imparted the skills/knowledge needed

to perform the task, allowing the participants to rely on recently

acquired knowledge/experience to reduce the intrinsic load of the

task during evaluation.

It is important to develop training that minimizes the

extraneous load associated with design elements of a learning

task that distracts the user from learning (Klepsch et al., 2017).

During training, the AR group reported a higher extraneous load

than the video group for raycasting and scrolling. One training

element likely contributing to this difference was the text-based

and verbal instructions. Participants in the video group received

written and verbal instructions followed by a video demonstration.

In contrast, participants in the AR group only received written

and verbal instructions and were then required to perform each

interaction based solely on these instructions. This approach forced

the AR group to determine each interaction based on the written

guidelines and a trial-and-error method, rather than being able to

clearly visualize how each interaction was performed. Despite this

challenge, the extraneous load in the AR group decreased during

the evaluation for the scrolling task. This suggests that while the

novelty of the interface and the unfamiliarity with the interactions

initially contributed to the extraneous load, it diminished as

participants became more accustomed to the interactions. Future

training could integrate a short video demonstration with hands-on

practice to minimize extraneous load.

It was interesting and surprising to note that germane load

was rated higher in the video group than in the AR group across

both phases and all four interactions. According to cognitive load

theory, germane load is the type of cognitive load that enhances

learning and aids in the development of mental models or schemas

to store and organize new information (Klepsch et al., 2017). One

might expect that a greater germane load during training would
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enhance performance during evaluation; however, in this study,

the video group underperformed despite the increased germane

load. Previous studies have found that dynamic visualizations (i.e.,

videos) can be highly effective at inducing increased germane load

over static visualizations (Ayres and Gog, 2009), which helps to

explain the high levels of germane load associated with video

training in the current study. Based on the findings of this study,

we propose that the increased germane load from video training

helped participants achieve a better conceptual understanding and

develop a mental model for the interactions (i.e., the position

of the hand, what each finger should do, etc.); however, it fell

short in providing the actual hands-on practice and motor training

that the AR modality offered. Future studies should investigate

the combination of video and AR training modalities to optimize

germane load and enhance user performance.

The video group reported higher perceived usability on the

user engagement scale compared to the AR group during training.

This finding aligns with the lower frustration associated with

video-based training and the reduced intrinsic load of watching

a video. Interestingly, during evaluation, despite performance

differences between the two groups, both reported similar levels

of perceived usability. Additionally, focused attention was noted to

be higher during evaluation, regardless of the group. This suggests

that while skill acquisition and performance during evaluation

are largely influenced by training modality, user engagement in

AR during evaluation remains mostly unaffected by the training

modality used.

4.2 Neural data suggests that participants
in the AR group utilize a more e�cient
brain network during the evaluation task
and that the impacts of AR training are
interaction-specific

Previous studies have linked decreased activation of the

premotor cortex with motor learning and the development of

automaticity (Toni et al., 1998; Debaere et al., 2004;Wu et al., 2004),

and the difference in RMPC activity suggests that participants in

the AR group learned the interaction better than participants in the

video group. The premotor cortex is involved in motor planning

(Brovelli et al., 2005), so it is possible that participants in the AR

group required less planning and completed the interaction more

automatically. Participants in the video group had a conceptual

understanding of what the interaction required (indicated by

the high germane load) but required greater engagement of the

premotor cortex to implement this action.

It is unclear why this change was inconsistent across

interactions, given that performance was better in AR across all four

interactions. This may potentially be related to the difficulty of the

interactions (Wu et al., 2004). Indeed, differences in performance

across groups were greater for raycasting and scrolling than for

poking and moving. Additionally, raycasting and scrolling revealed

differences in cognitive load and subjective workload between

groups during evaluation that were not observed during poking

and moving. This is further supported by the positive correlation

between scrolling performance and activation of the premotor

cortex. Collectively, these findings suggest that the benefits of AR

training are interaction-specific, with greater advantages on tasks

that are more complex or challenging. However, it is important

to note that limitations in the analysis technique may have also

contributed to the differences in activation patterns between

interactions. Activation analysis from hemodynamic data requires

highly dynamic time-series data to be condensed into a single

data point. Based on the design of this study, mean activation was

chosen as the best option for this analysis, but this decision comes

with limitations and could have muted some of the effects due

to averaging.

Our study findings contradict a previous study that reported an

increased clustering coefficient with improved motor performance

(Heitger et al., 2012). However, the mentioned study used fMRI

and, therefore, a different set of nodes for the graph theoretical

analysis. This could lead to differences in the interpretation of the

results, as it is recommended that graphs should only be compared

when generated with the same parcellation scheme (Rubinov and

Sporns, 2010). Our findings may indicate a form of functional

reorganization or “pruning” (Kelly and Garavan, 2004) in the

AR group that led to the recruitment of a more efficient brain

network to complete the task. Prior literature suggests that early

in the process of learning a new task, additional brain regions are

activated, usually within the PFC, to support the novel demands of

a new task (Petersen et al., 1998). As a person practices and becomes

more familiar with the task, these additional regions are pruned

away, leaving activation of only themore essential regions (Petersen

et al., 1998; Kelly and Garavan, 2004). As non-essential regions fall

away, connections would decrease, leaving a more efficient network

with a smaller footprint, such as that observed with the AR group

in the present study. While scaffolding is generally associated with

the activation of regions of the PFC associated with attention and

control (Kelly and Garavan, 2004), it is possible that it also occurs

in other frontal regions contained within our fNIRS probe maps,

such as the premotor cortex and frontal eye fields.

4.3 Sex di�erences in brain activation and
connectivity suggest di�erent neural
strategies across sex, which could
contribute to di�erences in user experience

Sex differences in the functional connectivity and graph theory

metrics further support the concept that males and females employ

different neural strategies during motor learning. While these

differences may be an artifact of the brain imaging methodology

(i.e., they reflect differences in vasculature between males and

females and not differences in neural activity), sex differences in

neural activity have been previously observed in both motor and

cognitive tasks across a range of neuroimaging techniques that

rely on different mechanisms (e.g., fNIRS, EEG, fMRI) (Tyagi

and Mehta, 2024; Davidson et al., 1976; Lissek et al., 2007; Kober

and Neuper, 2011). Interestingly, within the motor regions, a sex

difference in functional connectivity was only observed in the

video group and not in the AR group. This might indicate that,

to some extent, AR training reduces differences in the neural

strategies employed by males and females compared to video
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training. Further research is needed to explore the implications of

this finding.

Understanding these differences is essential in developing

equitable training tools that support training for both men and

women (Keri, 2002). While the interaction-based training in

this study was relatively easy, future applied training within AR

directed toward real contexts (e.g., medical, industrial, educational)

could place much greater demands on users, exacerbating sex-

based differences in frustration, which could lead to differences in

performance outcomes and differences in user experience. Further

studies into sex-based differences in motor learning and training

within AR are essential to identify and address such differences.

4.4 Study limitations

In this study, participants learned virtual skills (i.e., selection-

based AR interactions) and were tested by completing those

interactions. The main reason was to identify neurophysiological

and perceptual differences specific to training modalities, aiming

to better understand fundamental skill acquisition in key AR

interactions, free from any contextual confounds noted in earlier

work (Dwivedi et al., 2022). This study assessed participants trained

using video and AR-based modalities through AR interactions.

There is a need for more innovative experimental designs that

tackle the biases associated with modality-specific assessments

(e.g., evaluating video training with video assessments). More

importantly, future studies should explore transferring the

basic AR interaction skills learned in this study to more

contextual interactions within AR (e.g., industry-specific training

or field applications).

fNIRS is limited to measuring activation in the cortex, so

we cannot observe how changes in the activation of subcortical

structures contribute to motor learning during this study.

Correlation analyses between task performance and brain region

activation did not yield conclusive results, revealing only one

significant positive relationship between scrolling task performance

and activation of the premotor cortex. These findings highlight the

necessity for further analyses with larger sample sizes and stress

the importance of exploring network analyses beyond activation

levels. Since the time of completion for the study was used as

a performance metric, the duration of each trial varied. Ideally,

each trial should have the same duration for fNIRS activation

analysis, so this should be considered when interpreting the

results. The moving interaction, in particular, was very brief,

which could have affected the fNIRS measurements. Participants

were given a rest period between interactions, but not after

every trial, which could impact the fNIRS measurements of later

trials, as HbO levels did not have enough time to return to

baseline before the trials began. Prior studies have examined

changes in the prefrontal cortex associated with motor learning

(Wu et al., 2004; Alves Heinze et al., 2019), and this could have

provided valuable insight into the cognitive demands associated

with performing the interactions in AR. Unfortunately, the shape

of the AR headset interfered with the placement of the prefrontal

fNIRS probes. Future studies should identify ways to integrate

fNIRS probes with the AR headset design to acquire prefrontal

cortex measurements.

Connectivity and graph theoretical analyses require

determining thresholds to reduce the risk of spurious effects.

Thresholding for GTAs has been a contentious topic (Drakesmith

et al., 2015). In network analysis, thresholding can induce biases

due to arbitrary values and the effort to connect thresholds

to minimize false positive outcomes. However, identifying

the appropriate threshold a priori is challenging, especially in

exploratory topics like the one presented here. Furthermore,

thresholding increases the likelihood of observing false negatives

in the network connections. There are methods (reviewed by

Hosseini et al., 2012) to mitigate these biases (i.e., comparing

network metrics across a range of thresholds). However, they may

not support the current study’s analyses. Future work is warranted

to explore our analyses in light of the range of thresholds applied

for GTA.

Lastly, future studies with larger and more diverse participant

demographics should be conducted to expand upon the findings

of this study and ensure generalizability across a broad range

of user groups. For example, age can significantly impact motor

performance throughmechanisms impacting neural and peripheral

pathways of neuromuscular functioning (Rhee and Mehta, 2018;

Mehta and Rhee, 2021; Tyagi and Mehta, 2024). The participant

age range in the study was diverse but not adequately powered to

support formal analysis by age. Future work is needed to examine

the impact of age on the study variables.

5 Conclusion

We found that participants who completed motor training

within augmented reality performed better than those who

completed video training. These findings should be considered

when introducing AR into new industries and teaching new

users how to interact with the interface. While prior studies

have examined subjective workload and user experience

when using augmented reality interfaces, we incorporated a

novel neuroergonomics approach to identify the underlying

neural mechanisms driving changes in psychomotor learning.

Additionally, we identified significant sex differences in neural

activity during evaluation, suggesting that men and women use

different neural strategies when learning AR interactions. There

is an urgent need to understand these differences when designing

future AR training tools.

In this study, participants learned basic AR skills. Future studies

should explore the use of AR for teaching more complicated and

occupationally relevant skills (e.g., teaching triage to emergency

responders). Additionally, future work should explore how

effectively skills learned virtually in AR transfer to the real world.

AR offers great potential to expedite and improve training in a

vast range of fields, which can help reduce costs, improve safety,

and increase the on-the-job effectiveness of those who are trained.

While it is clear that the limitations of such training must be

considered and understood, there is a huge potential for this

technology to improve training.
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