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Mind the road: attention related
neuromarkers during automated
and manual simulated driving
captured with a new mobile EEG
sensor system
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1Fraunhofer Institute for Digital Media Technology, Branch Hearing, Speech and Audio Technology,
Oldenburg, Germany, 2Institute of Cognitive Science, University of Osnabrück, Osnabrück, Germany

Background: Decline in vigilance due to fatigue is a common concern in tra�c
safety. Partially automated driving (PAD) systems can aid driving but decrease
the driver’s vigilance over time, due to reduced task engagement. Mobile EEG
solutions can obtain neural information while operating a vehicle. The purpose
of this study was to investigate how the behavior and brain activity associated
with vigilance (i.e., alpha, beta and theta power) di�ers between PAD andmanual
driving, as well as changes over time, and how these e�ects can be detected
using two di�erent EEG systems.

Methods: Twenty-eight participants performed two 1-h simulated driving tasks,
while wearing both a standard 24 channel EEG cap and a newly developed,
unobtrusive and easy to apply 10 channel mobile EEG sensor-grid system. One
scenario requiredmanual control of the vehicle (manual) while the other required
only monitoring the vehicle (PAD). Additionally, lane deviation, percentage
eye-closure (PERCLOS) and subjective ratings of workload, fatigue and stress
were obtained.

Results: Alpha, beta and theta power of the EEG as well as PERCLOSwere higher
in the PAD condition and increased over time in both conditions. The same
spectral EEG e�ectswere evident in both EEG systems. Lane deviation as an index
of driving performance in the manual driving condition increased over time.

Conclusion: These e�ects indicate significant increases in fatigue and vigilance
decrement over time while driving, and overall higher levels of fatigue and
vigilance decrement associated with PAD. The EEGmeasures revealed significant
e�ects earlier than the behavioral measures, demonstrating that EEGmight allow
faster detection of decreased vigilance than behavioral driving measures. This
new, mobile EEG-grid system could be used to evaluate and improve driver
monitoring systems in the field or even be used in the future as additional sensor
to inform drivers of critical changes in their level of vigilance. In addition to
driving, further areas of application for this EEG-sensor grid are safety critical
work environments where vigilance monitoring is pivotal.
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Introduction

Driver fatigue and the associated decline in vigilance is a
common concern when it comes to traffic safety. According to the
American Automobile Association (AAA) Foundation for Traffic
Safety, driver fatigue contributes to about 100,000 crashes, 71,000
injuries and 1,550 deaths each year in the United States alone
(Owens et al., 2018). In Germany, current figures demonstrate
similar findings (relative to population) that there were 1,507
fatigue-related accidents causing injury in 2021, with unreported
cases expected to be significantly higher (ADAC, 2022). Studies of
traffic accident casualties have shown that∼32% of U.S. drivers will
drive a vehicle while in a fatigued state at least once per month
(Zhang et al., 2016). Additionally, according to a survey by the
German Road Safety Council (Deutscher Verkehrssicherheitsrat,
2016), 26% of surveyed drivers admitted to falling asleep at the
wheel at least once. As if the consequences for the individuals
involved in drowsiness related accidents are not bad enough, this
has led to a cost of more than $100 billion annually, not including
property damage (Higgins et al., 2017). At the same time, vehicles
equipped with automated driving systems are becoming more
popular (e.g., Department U. S. of Transportation, 2018). While
these systems themselves do not experience fatigue in the way
that humans do, it is unclear whether these systems can solve the
problem of driver fatigue.

Currently, the standard for automated vehicle technology is
that vehicles are “partially automated” [Society of Automotive
Engineers (SAE) Level 2]. This means that the driver is not
responsible for the car’s longitudinal or lateral position, but instead
must supervise the automated driving system (SAE International,
2018). This is because, while automated vehicles are steadily
improving, they still suffer from imperfections, which may lead
to failures in detecting and responding to dangerous hazards
on the roadway such as pedestrians (National Transportation
Safety Board, 2019a), crossing traffic (National Highway Traffic
Safety Administration, 2017), or stopped vehicles (National
Transportation Safety Board, 2019b). Therefore, the driver must
remain vigilant and attentive to the road, in order to act as a failsafe
in emergencies, and take over control in the case that the vehicle
does not respond correctly (Greenlee et al., 2022; National Highway
Traffic Safety Administration, 2017). Therefore, we refer to this type
of driving as partially automated driving (PAD).

Although PAD reduces the driver’s workload by changing
their role to only a failsafe instead of the main controller of the
vehicle, there is some evidence to show that PAD can have a
negative impact on the driver’s vigilance. Vigilance is defined as the
ability to maintain the necessary level of sustained attention while
performing a task in order to respond correctly when the situation
requires a response (Davies and Parasuraman, 1982; Parasuraman,
1986; Warm and Parasuraman, 2008). Vigilance to sustained tasks
such as PAD tends to decrease over time (Mackworth, 1948), due
to cognitive underload, in which one experiences a low amount of
cognitive demand, likely due to lower levels of engagement with
the driving environment (McWilliams and Ward, 2021). Cognitive
underload is especially common when performing monotonous,
low demand driving scenarios (Körber et al., 2015a; McWilliams
and Ward, 2021). In previous studies, Greenlee et al. (2018,

2019, 2022) demonstrated that the likelihood of detecting hazards
decreases over time for drivers in automated simulated vehicles.
Therefore, in partially automated vehicles, the driver’s ability to
monitor the vehicle and the traffic to prevent collisions will decrease
as a function of time (Greenlee et al., 2018, 2019, 2022; Körber
et al., 2015a; Mok et al., 2015). Cognitive underload can then lead
to passive fatigue, which is the depletion of attentional resources
due to low task demands over time (Desmond and Hancock, 2000;
McWilliams and Ward, 2021; Saxby et al., 2013). Previous studies
have indicated that monitoring a PAD simulation can induce
passive fatigue (Saxby et al., 2013), and stress (Funke et al., 2007),
and is cognitively demanding enough to lead to reduced vigilance
over time (Greenlee et al., 2018, 2019). In other words, the state of
fatigue caused by a monotonous task with low cognitive demand
such as driving leads to reduced vigilance, and therefore for this
study it is necessary to acknowledge both of these concepts in the
context of driving.

Increasing time devoted to a driving task tends to decrease
driving performance in measures such as the standard deviation
of lateral lane position (i.e., how much the vehicle weaves) and
therefore driving vigilance (van der Hulst et al., 2001; Verster and
Roth, 2013; Ting et al., 2008; Thiffault and Bergeron, 2003; Philip
et al., 2005). This vigilance decrement may be enhanced in PAD
because the reduced driving workload reduces driver engagement
(McWilliams and Ward, 2021). In one study, when the same 40-
min vigilance task was compared between partially automated
and manual simulated driving, the PAD condition showed more
severe vigilance-related decrements (Greenlee et al., 2022). While
participants in both conditions showed a decreasing percentage
of correct target detections over time, only the automated
condition showed decreased sensitivity to the hazardous stimuli
and increasing tendency for false alarms. In the manual condition,
these measures remained consistent over time (Greenlee et al.,
2022).

Other studies comparing PAD tomanual driving have observed
PAD conditions to show slower response times to a concurrent task
(Biondi et al., 2018; Neubauer et al., 2012), as well as increased heart
rate variability (Biondi et al., 2018), increased self-reported distress
and decreased engagement (Neubauer et al., 2012). Altogether,
these studies indicate that PAD does not necessarily make driving
safer, as reduced vigilance can possibly lead to collisions in real
world driving situations when the driver has to take over control
of the vehicle.

Since lapses in attention and vigilance during driving can
be dangerous, some studies have suggested the use of artificial
intelligence systems to detect such lapses in attention (Simon et al.,
2011; Arefnezhad et al., 2019; Awais et al., 2014; Arefnezhad et al.,
2022; Stancin et al., 2021; Zhou et al., 2021). Systems that analyze
driving behavior have been suggested (Arefnezhad et al., 2019),
since this is arguably one of the simplest ways to measure driving
vigilance (Verster and Roth, 2013), when the driver is actively
controlling the car. However, driver behavior can be affected heavily
by external factors, such as obstacles and features of the roadway,
and also driving performance information would be unavailable
in automated conditions. Additionally, with the human brain as
source for cognitive functioning, measuring brain activity may
ideally allow attentional changes to be detected earlier than with
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changes in behavior or observable indices such as drooping eye lids
or increased blinking rate. For example, parietal and occipital EEG
alpha activity (8–12Hz) as well as frontal channel theta power (4–
8Hz) have been shown to increase with mental fatigue (Wascher
et al., 2014; Dehais et al., 2020; for a review see Borghini et al.,
2014 and Tran et al., 2020) with theta activity and changes thereof
reflecting workload in a more complex multitasking environment
(Sciaraffa et al., 2022). Additionally, frontal beta power increases
with time-on-task as increasing levels of mental effort are required
to maintain vigilance (Pershin et al., 2023). Therefore, changes
in spectral EEG activity such as in alpha, beta and theta power
have been identified as neurophysiological biomarkers of vigilance
and drowsiness or fatigue during driving (Awais et al., 2014;
Arefnezhad et al., 2022; Sciaraffa et al., 2022). Several studies have
used these neuro-signals to attempt monitoring a driver’s spectral
brain activity during both manual driving (Awais et al., 2014;
Arefnezhad et al., 2022; Simon et al., 2011; for a review, see Stancin
et al., 2021) and PAD (Zhou et al., 2021). Particularly frequency-
based measures are of interest for real-world settings as they do not
rely on frequently repeating external events which is the case for
ERP-based approaches.

Another scientifically established method that has been used to
observe drowsiness and vigilance decrements is to assess PERCLOS
(PERcentage of eye CLOSure) through eye tracking (Abe et al.,
2011; Arefnezhad et al., 2022; McWilliams and Ward, 2021).
PERCLOS has also been shown to increase with time on task
during PAD (Heikoop et al., 2017) and has been used as a “ground
truth” for assessing driver drowsiness in some cases (Arefnezhad
et al., 2022). Similarly, eye blinks have been suggested as another
way to detect drowsiness during driving as blink rate increases
with time on task and when individuals are drowsy (Cori et al.,
2021). Additionally, increase in heart rate variability (Heikoop
et al., 2017), as well as decreases in heart rate (Pattyn et al., 2008;
Heikoop et al., 2017) have also been shown with increasing time
on task during vigilance tasks. While these previous studies show
that various physiological measures can demonstrate decreases in
vigilance during driving, there are currently no studies, of which
we are aware, that have observed these physiological measures in a
comparison between partially automated and manual driving in a
long monotonous simulated driving scenario.

Furthermore, as indicated above EEG promises to be a
particularly sensitive method to detect changes in vigilance as
it measures the source of cognitive function, namely the brain
itself (for reviews, see Peng et al., 2022; Halin et al., 2021 and
Stancin et al., 2021). Recent reviews suggest that EEG offers
the most important source of data for successful detection of
driver drowsiness (Stancin et al., 2021) and is a gold standard
for monitoring perception during driving which is influenced by
attentional processes and fatigue (Peng et al., 2022). That being said,
one of the challenges associated with this technology is its limited
mobility and cumbersome setup. To overcome these limitations,
recent developments in sensor technology could provide a solution
to bridge the gap between lab-bound scientific experiments and
real-world application. Based on the so-called cEEGrids (Bleichner
and Debener, 2017; Debener et al., 2015) the trEEGrid was
developed to go beyond around-the-ear EEG to provide long-term,
high-quality EEG, EOG and EMG signals at low impedances (Da

Silva Souto et al., 2021, 2022). Due to their soft, flexible material, the
trEEGrids offer very high user comfort with minimal setup time.
Originally designed for sleep research, a new trEEGrid variant was
designed for the current study to record high-quality EEG and EOG
with an unobtrusive, comfortable, and easy-to-apply EEG sensor
system to be worn around the ear. Unlike the original trEEGrid,
the new variant does not have electrodes along the jaw. This is the
first time this new variant of the trEEGrid was used for a mainly
cognitive task outside the area of sleep research.

In the current study, our goal was to investigate the best
features which could be used to detect changes in vigilance in
a simulated driving scenario. We aimed to observe the effects
of driving both partially-autonomously and manually, over time,
while observing various measures including PERCLOS, brain
activity, heart rate variability as well as some behavioral and
subjective measures. Participants drove an hour-long driving
scenario in a driving simulator in both autonomous and manual
mode (i.e., 1 h each), while being recorded by two types of EEG
apparatuses (standard EEG cap and custom EEG grid) as well as
using an eye tracking, and electrocardiogram (ECG) instruments.
Between driving conditions, participants performed a psychomotor
vigilance task (PVT) and filled out questionnaires to rate their
subjective levels of alertness/sleepiness, task-load, engagement, and
stress. The new design version of the trEEGrid system was used as a
small and highly mobile brain measurement, ideal for real world
application, while the EEG cap served as a control, or reference
system. Our first hypothesis was that the PAD condition will show
lower levels of self-reported alertness as well as physiological fatigue
and vigilance decrement (e.g., higher PERCLOS, and higher levels
of alpha and beta power), due to the decreased level of engagement
required for this task. Our second hypothesis was that in both
scenarios, measures of vigilance decrement and fatigue will increase
over time, as increasing time on task tends to lead to increased
fatigue. Our third hypothesis was that vigilance and fatigue related
changes are detected earlier in EEG based signals as opposed to
other parameters such as driving performance or PERCLOS. The
fourth hypothesis was that the EEG patterns and statistical effects
would be the same in both EEG sensor systems.

Materials and methods

Participants

Data were collected from 28 participants [age: 20–60 years,
mean: 26.6, standard deviation (SD): 7.3] out of which 10 (=
35.71%) were female and 2 (= 7.14%) were left-handed. All of them
were recruited from the online forum of the Carl von Ossietzky
University of Oldenburg.

All participants reported normal hearing and normal or
corrected-to normal vision. All of them possessed a valid driver’s
license (years of possession: 1–42 years, mean: 7.9, SD: 7.8). None of
the participants claimed to have medical implants or magnetizable
metal implanted in the body/skull. In addition, none of the subjects
reported to be pregnant or to have neurological disorders or
seizure disorders. Also, no participant took medications that limit
driving ability.
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The participants gave their informed consent before the start of
the study and received 12 e per hour for their participation in the
experiment. The experiment was approved by the ethics committee
of the Carl von Ossietzky University in Oldenburg and the dataset
was collected in accordance with established research protocols and
ethical guidelines.

EEG devices

EEG was recorded with two EEG systems simultaneously.
Therefore, participants were first fitted with an EEG-trEEGrid
with 10 channels (layout shown in Figure 1). Then, an EEG
cap with 24 channels arranged according to the 10–20 system
was placed over the EEG-trEEGrid. The electrodes of both EEG
systems were prepared with abrasive electrolyte gel (Abralyt HiCl,
Easycap, Germany).

trEEGrid

By applying a method of spatial approximation, it has been
shown that different channel combinations on the EEG-grid allow
for approximating the EEG signal from typical 10–20 channels
located in hairy areas on the scalp referenced to the right trEEGrid
mastoid channel M2 (Bleichner et al., 2016). This approach thereby
yields the following “virtual” grid channels [similar to Da Silva
Souto et al., 2021; see Figure 1 (bottom)]: FPz_M2, C4_M2,
P4_M2, O2_M2, as well as horizontal, vertical and diagonal EOGs.
To avoid confusion with actual 10–20 cap channels, trEEGrid
channels will be labeled with the affix “_M2” to indicate the virtual
approximations referenced to the trEEGrid right mastoid “M2.”
Previously it was shown that EEG parameters recorded with the
trEEGrid and data recorded from standard 10–20 locations (Da
Silva et al., 2022) correlate significantly, supporting the use of this
new technology for unobtrusive EEG recordings.

EEG cap

The cap EEG system consisted of 24 Ag/AgCl ring electrodes
(EasyCap GmbH, Brain Products GmbH) according to the 10–
20 system (channels Fp1, Fp2, Fz, F7, F8, FC1, FC2, Cz, C3, C4,
T7, T8, CPz, CP1, CP2, CP5, CP6, Pz, P3, P4, O1, O2, M1, M2).
In case of overlapping electrodes between cap and grid, the cap
electrode was loosened and attached slightly next to its actual
position using a suitable ring-shaped adhesive tape. This was the
case for less than five participants involving at least one electrode
of Fp2, T8 or M2 and did not influence the signals. Both systems
(cap and grid) were each connected to separate wireless Smarting
“mobiSleep” amplifiers (mBrainTrain, Serbia), transmitting the
data via Bluetooth at a sampling rate of 250Hz to a PC (Dell
Precision 3660 Tower; trEEGrid) or laptop (Dell Latitude 5280;
EEG-Cap) using the Smarting Streamer application for Windows
(mBrainTrain, Serbia). Impedance values for both the cap and the
grid were kept below 15 kOhm and the EEG-signal quality was
checked by visual inspection of the EEG data.

Additional measurement equipment

In addition to the EEG systems described above, further
devices were used to acquire data from the participants. A
Tobii Pro Spectrum 600 stationary eyetracker (Tobii, Stockholm,
Sweden) was used to record gaze coordinates and eye openness
information at a 600Hz sampling rate. To measure heart rate
variability, a Zephyr Bioharness 3.0 chest belt (Zephyr Technology,
Boulder, USA) was used which transmitted data at a sampling
rate of 250Hz. A photodiode was connected to a LabStreamerBox
(Neurobehavioral Systems, USA) to provide exact stimulus timing
data at 12 kHz.

Driving simulator set-up

The driving simulator was set up in a room at the
Fraunhofer IDMT in Oldenburg. Carnetsoft driving simulator
software (Carnetsoft BV, Groningen, Netherlands) was used for
the driving simulation and driving task presentation. In Figure 2, a
schematic representation of the experimental setup is depicted. The
participants occupied a fixed position in front of a table, where they
were positioned to observe three interconnected monitors [Dell
Ultra Sharp U2422H 24 inches (1920× 1080); denoted as 1]. These
screens were connected to a computer [Dell Precision 3,660 Tower
(Intel Core i9)] and displayed the simulated driving environment,
imitating a 210 degrees horizontal field of view (including three rear
view mirrors).

Directly in front of the screens, the stationary eyetracker Tobii
Pro Spectrum 600 (2) was placed. The front of the eyetracker
maintained a distance of 69.0 cm (d3) from the participant’s eyes
and was inclined at an angle of 25.5◦. The Logitech G29 steering
wheel (Logitech, Switzerland; (3) was fixed to the table in front of
the participant.

The auditory experience was realized with four loudspeakers
and a subwoofer surrounding the participant (Teufel Concept E
450 Digital 5.1). Two speakers were positioned on the left and
right sides of the eyetracker, directly beneath the screens and two
audio speakers were situated behind the participant, positioned
at a height of 102 cm and oriented toward the participant’s ears.
Complementing the audio setup, a subwoofer (5) was situated
beneath the table. All devices, except for audio speakers 4.3 and 4.4,
were positioned on a table (7) with a standardized height of 72 cm.

Recording equipment and setup

A schematic visualization of the devices used in the experiment
and the corresponding data streams are shown in Figure 3.
All data streams were temporally synchronized and stored via
LabStreamingLayer protocol (LSL; Kothe et al., 2014). The
stationary eyetracker (4) transmitted gaze coordinates and eye
openness information via two LSL streams. To monitor and extract
the exact timing of the cars appearing in the virtual environment a
photodiode was placed on the left side of the central monitor.When
a car appeared on the screen, a white dot appeared simultaneously
directly under the photodiode. The photodiode (6) and white spot
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FIGURE 1

(Top): Left: drawing of the trEEGrid grid designed for this study including connector endpiece. Right: trEEGrid grid when attached to a user. © Leona
Ho�mann, Fraunhofer IDMT. (Bottom): Left: lateral view of the right side of the face and right frontal view of the face. Electrode positions and
corresponding labels of the standard 10–20 system in blue with reference to M2 on the right mastoid behind the ear. Electrode positions of the
trEEGgrid in green [DRL = ground (Driven Right Leg); Ref = reference]. The purple-colored vectors illustrate the channel combinations to
approximate 10–20 electrode locations. The box contains supplementary information how channels can be combined to approximate 10–20
electrodes referenced to the mastoid reference electrode.

on the screen were both covered with black electrical tape, blending
into the black sky of the driving scenario. The photodiode was
connected to a LabStreamerBox (Neurobehavioral Systems, USA,
5) to provide stimulus timing data via an LSL stream. The chest belt
sent ECG data via Bluetooth to a laptop (3).

A router [Fritz!Box 7530 AX (1; AVM Computersysteme
Vertriebs GmbH, Germany)] was installed which received most of
the data streams via a Local Area Network (LAN) connection. The
router was connected to a laptop (3) via LAN, also receiving data
via bluetooth directly from the Zephyr Bioharness 3.0 belt (7) and
one EEG stream from the Smarting “Sleep” amplifier connected to

the cap (9) EEG system. Data from the eyetracker were also sent to
the router via LAN.

From the router, all data streams were sent to a computer
(2) via LAN. This computer further recorded one stream
from the second Smarting “mobiSleep” amplifier connected
to the trEEGrid (8) as well as behavioral data from the
driving simulator. The driving simulator data consisted of
two streams: one containing information on sporadic events
such as stimuli appearing (e.g., cars), responses to stimuli
(i.e., button presses on the steering wheel), as well as timing
and strength of wind gusts (see section Tasks and Stimuli
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FIGURE 2

Schematic visualization of the device setup in the room. Additional measures: table height = 72.0 cm, height of speakers (4.3/4.4) = 102.0 cm,
distance eyetracker to tabletop = 24.0 cm, angle eyetracker = 25.5◦.

FIGURE 3

Schematic visualization of the devices and the dataflow connections. The arrow directions describe the dataflow of the collected data.
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FIGURE 4

Screenshot (center screen) of the stimuli. (Left): Safely parked car, next to the right lane. (Right): Unsafely parked car protruding into the lane.

below for more information) and one containing continuous
(sampled at 10Hz) information on driving performance (i.e.,
lateral position relative to right lane center, steering angle,
heading angle, velocity and distance traveled in the scenario
map). The steering wheel (10) was connected to the PC via a
serial connection.

Subjective evaluations

In addition to physiological and driving data, subjective
evaluations in the form of questionnaires regarding subjective
sleepiness and alertness [Stanford Sleepiness Scale (SSS; Hoddes
et al., 1973)], subjective perception of stress and engagement
[Short Stress State Questionnaire (SSS-Q; Helton and Näswall,
2015)] and perceived workload [NASA-Task Load Index (NASA-
TLX; Hart, 1986, 2006)] were administered before, after and
between driving blocks. For the SSS and the NASA-TLX
available translations into German were used, whereas the SSSQ
was translated from English into German by the authors.
Questionnaires were in reference to the participants’ subjective
experience during the driving tasks. Furthermore, a brief 5-min
computer-based version of the Psychomotor Vigilance Test (PVT;
Basner et al., 2011; Loh et al., 2004) was administered before,
after the first and after the second driving session to measure
sustained attention and whether it changes over the duration of
the experiment.

Procedure

All participants came in for one session which lasted between
3.5 and 4 h. In the beginning of the experiment, participants were
given enough time to read information and consent documents,
as well as an opportunity to ask questions. After informed consent
was given, an EEG cap, a trEEGrid and the chest belt ECG sensor
were applied. After a short introduction into the experiment, the
participant was seated in the driving simulator. Here the participant

performed the first 5-min PVT and was asked to fill out the first
SSS-Q and SSS. This was followed by a short practice task for
the driving simulator. Subsequently, the eyetracker was calibrated,
followed by the first 1-h driving scenario, which was either the
partially autonomous (PAD) or the manual scenario. The sequence
of experimental scenarios was counterbalanced across participants.
After the first driving scenario was completed, participants
performed a second PVT, SSS-Q, SSS and the first NASA-TLX.
Before the second scenario started, the participants could take
a short break. On average the break lasted around 4min and
participants remain seated in the driving simulator. After finishing
the second scenario, another PVT, SSS-Q, SSS and NASA-TLX
was completed.

Task and stimuli

Driving scenarios
The driving simulator task consisted of two nighttime driving

sessions each lasting 1 h. The participant could only see about 80–
100m ahead, with no visible scenery to the sides of the roadway
(see Figure 4). The simulator task was performed twice, in two
conditions: In the manual condition, the participants manually
steered the car. Participants drove at a consistent speed of 80 km/h,
which was controlled by the simulator to keep the task consistent
compared to the autonomous condition (similar to Karthaus et al.,
2021). To ensure that the participants were engaged in the driving
task, sporadic wind gusts were added to the scenario, requiring
participants to actively steer to stay in the center of the lane.
The wind gusts were in a direction perpendicular to the driver, at
alternating directions every 11.7–14.9 s (260–330m).Winds blew at
a random speed between 0 and 30 km/h, which was enough tomove
the car over a meter to the left or right and could even cause the
car to crash into parked cars in the scenario if no counter-steering
was performed. If a crash happened during the manual condition,
a “crash” sound was played, and the car was repositioned to the
lane center.
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In the partially automated (PAD) condition, the same scenario
was used, using both automatic speed control and lane keeping.
This condition also included wind, for which the automated lane
keeping compensated.

Hazard detection task
In both conditions, the participants had to monitor the road

to respond to a secondary task (i.e., driving was the primary task).
For this hazard detection task, white cars were parked along the
righthand side of the road either correctly (i.e., the car was fully
outside the lines of the road) or in a potentially unsafe position (i.e.,
the car protruded slightly onto the lane; see screenshots in Figure 3;
similar to Greenlee et al., 2018, 2019, 2022). Cars appeared every
4–6 s at about 80m ahead of the participant and remained visible
for 3.5 s, until the vehicle passed them. 12–15% cars were parked
unsafely, with no two unsafe cars being parked subsequently. The
participants were asked to respond to the unsafely parked cars by
pushing a button on the steering wheel with their left hand. The
hazard detection task started about 25 seconds (550m) after the
start of the scenario. The hazard detection task was based on a task
used by Greenlee et al. (2018, 2019, 2022), with some adjustments
for our purposes. This task was originally intended to be an in-
scenario oddball task for which we would observe event related
potentials (ERPs). However, no significant differences were found
in the ERPs between the conditions or over time, so this part of the
study was removed.

Practice scenario
Before starting the experimental tasks, participants first had to

perform a practice driving simulator task. This task lasted ∼4min
and consisted of the same car position task as the main task, with
the steering set to manual mode. In the practice trial, however, the
percentage of unsafe cars was increased to 20%, to ensure sufficient
experience detecting the difference between safely and unsafely
parked cars. The participant could then ask any questions they had
about the task and repeat the practice if necessary.

Data analysis

Data preprocessing
The EEG preprocessing, data analysis and figures were

implemented in Python, using various external libraries including
MNE (MNEDevelopers, 2023), NumPy (VanDerWalt et al., 2011),
Scipy (Pedregosa et al., 2011), CSV, Math, Pandas (McKinney,
2011) and Matplotlib (Ari and Ustazhanov, 2014). Some figures
(scatterplots) were created in Excel. Initially, photodiode data was
used to ensure correct timing of the event markers from the
driving simulator. Then, cap and trEEGrid data were temporally
synchronized, ensuring that the data initiation and termination
occurred simultaneously. There was a small amount of data loss
(mean PAD: 0.46%, Manual: 0.75%) in a few subjects, due to brief
disconnection between the amplifiers and the laptop or computer.
Sections containing data loss were marked in 0.5 s segments with
100ms overlap and excluded from analysis.

Following the application of a channel position montage for
both EEG systems, temporal alignment and adjustment of sampling
rates were performed. Subsequently, the data from each EEG
system was bandpass filtered using 0.1Hz to 40Hz finite infinite
response filter (FIR). As LSL recorded the data for the cap and
grid with slightly differing nominal sampling rates, the data was
then resampled to 250Hz for each, to synchronize the two streams
to be merged into one dataset. Identification and interpolation of
bad channels of cap data were conducted, and a re-referencing
procedure was implemented, referencing the cap data to averaged
mastoid electrodes (M1 and M2). Using the spatial approximation
approach, computations based on grid channels were performed
to obtain virtual 10–20 channels (see vector projections and
computations in Figure 1). The grid and cap EEG data were then
combined into one dataset and underwent a second round of FIR
bandpass filtering, now within the frequency range of 1 to 40Hz
which is optimal for the following Artifact Subspace Reconstruction
(ASR) method (refer to Mullen et al., 2015; Plechawska-Wojcik
et al., 2019) to remove EEG artifacts.

EEG spectra analysis
To compute power spectral density (PSD), preprocessed data

was epoched into 10 s epochs from the beginning to the end
of the simulation. Epochs that overlap with data loss sections
were then removed, as well as any epochs with artifacts, defined
by >200 µV peak-to-peak signal amplitude. Epochs were then
divided into six 10min sections, created equally from the beginning
to the end of each driving simulation condition, according to
where each epoch started. Then we computed the PSD of each
section from 1 to 30Hz, using a multitaper method in the
compute_psd() function of MNE, and log transferred it to decibel
(dB) scale. Data were then compared for the alpha (8–12Hz),
beta (13–26Hz) and theta (4–8Hz) bands, separately for cap and
trEEGrid channels. For alpha spectra, channel P4_M2 (grid) and
channel P4 (cap) were used, as parietal channel alpha has been
associated with mental workload (Sciaraffa et al., 2022; Gevins
et al., 1997). Beta and theta bands both used channel FPz_M2
(trEEGrid) and Fz (cap), as frontal beta power has been shown
to be positively related to mental effort (Pershin et al., 2023)
and negatively to vigilance (Sciaraffa et al., 2022), while frontal
theta has been associated with mental fatigue (Wascher et al.,
2014).

Behavioral driving analysis
Behavioral driving data used for analysis included the simulated

vehicle’s lateral position relative to the center of the right lane,
steering angle (angle of the steering wheel in radians) and heading
angle (heading angle of the vehicle in degrees with respect to the
world). The continuous data from all measures was split into six
equal 10-min sections over the whole simulation and for each
condition. To assess driving performance, we took the root-mean-
squared error (RMSE) lane position, which is defined as the root
mean square deviation of the vehicle’s lateral position from the
center of the lane, in meters.
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Hazard detection task data
To compute discrimination response times (DRT) to the

driving hazard detection task, we subtracted themarker times of the
unsafe car appearances from the timing of a valid button press. DRT
values were removed if they were <200ms, as these fell out of the
typical range of the DRT for this particular hazard detection task
(∼500–2,500ms) and were likely late responses from the previous
event. Across all participants there was only one response faster
than 200ms after stimulus onset.

Eye tracking data
The main measure computed from the eye tracking data

was percentage closure of the eyes, or PERCLOS (Abe, 2023;
Wierwille et al., 1994). PERCLOS was calculated by first extracting
information streams for eye openness and validity at each timepoint
from both the left and right eye. The openness value was defined
by the eye tracking software as the largest sphere that could fit
between the lower and upper eyelids (Tobii, Stockholm, Sweden).
Validity was marked as a 0/1 value from the eye tracker at each time
point to indicate whether the data could be considered valid (1) or
invalid (0). An invalid data point indicated some type of error or
inability of the eye tracker to properly calculate the openness value
(e.g., the participant sneezes or looks away from the simulator). The
PERCLOS was then computed by finding the percentage openness
relative to themaximum eye openness for each subject, for each eye.
Then, PERCLOS was averaged between the left and right eyes, and
data points in which both eyes are deemed invalid were removed.
PERCLOS calculation was performed with a sliding window over
each session, averaging over data with a window length of 60 s, 59 s
overlap and 1 s step size.

Heart rate variability (HRV)
To extract heart rate variability (HRV) data the continuous

ECG data stream for each of the two driving conditions was divided
in 1-min intervals. Using a peak finding algorithm based on the
function “find_peaks” (SciPy Version 1.7.3; Virtanen et al., 2020)
the R-peak of the ECG signal was detected. This was done in
a semiautomatic fashion by setting the prominence value of said
algorithm individually for each subject to ensure accurate peak
detection. Heart rate variability was computed first by extracting
heart rate (beats-per-minute, BPM) by summing the detected R-
peaks in each of the 1-min time windows. We used SDRR in ms as
measure of HRV which refers to the standard deviation of the R-
to-R peak time difference (ms) of successive peaks for each of the
1-min time window.

Psychomotor vigilance task (PVT)
The PVT was implemented in such a way that there was

a 1 s response time window and only responses >100ms were
considered valid (Basner et al., 2011; Roach et al., 2006). Valid
reaction times were then averaged for each participant and
each PVT measurement (baseline, driving session 1, driving
session 2).

Statistical analysis
The data were analyzed using JASP (JASP Team, 2024).

Measures included RMSE lateral position, discrimination response
times (DRT), parietal alpha, frontal beta and theta, PERCLOS,
HRV, PVT responses, as well as questionnaire responses from the
NASA-TLX, SSS, and SSS-Q. For all continuous measures (i.e.,
RMSE lateral position, DRT, PERCLOS, HRV, parietal alpha, frontal
beta and theta), data were averaged over the same six 10min time
sections from the beginning to end of each 60min scenario, and
these 6 values per driving condition were used in further analysis.
For ANOVA tests, degrees of freedom and p-values are reported
using the Greenhouse-Geisser (GG) correction, when applicable.
Effect sizes for p < 0.05 ANOVA effects are reported using partial
eta squared (η2

p). Upon significant ANOVA tests, post-hoc paired
t-tests were performed, comparing within the factor that reached
significance. In the case of multiple t-tests, p-values are corrected
for multiple corrections using the Bonferroni-Holm correction
(Abdi, 2010; Holm, 1979).

For each measure, Shapiro-Wilk tests were employed before
performing the ANOVA test, to assess normality. In cases of
non-normal distribution, such as for the SSS, SSS-Q, PERCLOS
and HRV data, non-parametric Friedman tests were carried out
separately for each of the two driving modes, if applicable. When
significant, the Friedman tests were followed by non-parametric
Conover post-hoc comparisons tests. When the Friedman test could
not be used (i.e., in the case of non-parametrically testing for an
interaction), paired Wilcoxon tests were carried out.

For RMSE lane position, a one-factorial (time section T1–T6)
repeated-measures ANOVA was used, as this was only possible
in the Manual condition. For parietal alpha, frontal beta and
theta PSD values, and DRT during driving, 2 (Driving Mode:
PAD vs. Manual) × 6 (Time: T1–T6) ANOVAs were used. For
PVT response times, a one-factorial ANOVA with three levels
(Time: baseline, after the 1st driving session, and after the
2nd driving session) was carried out. For the NASA-TLX, data
from all categories (Mental demand, Physical demand, Temporal
demand, Performance, Frustration, and Effort) were averaged for
all participants (Virtanen et al., 2022) and compared as a paired
t-test between driving modes (PAD vs. manual).

Results

For all EEG, driving simulator, eye tracking, and ECG data,
one participant was removed due to an error with the photo
diode timing correction, leaving 27 subjects for the analyses of
these parameters. Additionally, another subject was identified
as a statistical outlier and removed from the eye-tracking
(PERCLOS) analysis, leaving 26 subjects for the analysis of
PERCLOS data.

For the PVT, two subjects were not included due to technical
errors in the data collection, leaving 26 subjects for this analysis.
For the trEEGrid data, six subjects were removed in analyses which
used the FPz_M2 channel, due to excessive noise or disconnection
in this channel, leaving 21 subjects for the analysis of frontal theta
and beta power in the trEEGrids. Similar issues with bad channels
in the cap channels were dealt with by simply removing the channel
and interpolating it from neighboring channels. Therefore, for
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the analyses of the cap data of all 27 participants were included.
Channel interpolation is not possible for the trEEGrid system
because of the small number of channels, and their distance from
each other. For a detailed overview of all statistical results of the
post-hoc tests we refer to Supplementary Table S1.

Subjective questionnaires

NASA-TLX
The raw NASA-TLX scores for each of the six subscales were

aggregated and then averaged for each participant. Each subscale
contained 21 gradations ranging from 0 to 20 (Hart, 1986). Figure 5
depicts the results for the NASA-TLX. Evident from the plots is an
increase in task load demand for the Manual compared to the PAD
condition. A paired t-test revealed a significantly higher task load in
the Manual condition (M = 8.16) compared to the PAD condition
[M = 6.98;Mdiff = 1.18; t(27)=−2.69; p= 0.012].

Stanford sleepiness scale (SSS)
Figure 5 shows the results for the SSS questionnaire,

demonstrating an increase in sleepiness after both conditions
compared to the baseline, with slightly higher scores after the PAD
than Manual driving mode. A Friedman test showed a significant
effect of Mode [χ2 (2) = 36.57; p < 0.001]. Conover’s post-hoc

comparisons showed that compared to the baseline (M = 2.61), a
significant increase of sleepiness was found in both the PAD [M =

4.71; Mdiff = 2.11; t(54) = 5.73; p < 0.001] and Manual condition
[M = 4.29; Mdiff = 1.68; t(54) = 4.58; p < 0.001]. However,
the difference in sleepiness between PAD and Manual was not
significant [Mdiff = 0.43; t(54) = 1.15; p = 0.26]. A score of three
corresponds to “Neutral, okay, neither sleepy nor alert,” a score of
four to “Somewhat sleepy, not fully alert” and five to “Sleepy, but
no difficulty staying awake.”

Short stress state questionnaire SSS-Q
Figure 5 depicts the results from the SSS-Q for engagement,

showing the lowest engagement in the PAD mode, followed by
Manual. For engagement, a Friedman test showed a significant
effect of Mode [χ2 (2) = 16.71; p < 0.001]. Conover’s post-hoc

comparisons showed that compared to the baseline (M = 3.61) a
significant decrease in engagement for both PAD [M = 3.03; Mdiff

= 0.58; t(54) = 4.08; p < 0.001] and Manual [M = 3.23; Mdiff =

0.38; t(54) = 2.35; p = 0.045]. Although the level of engagement
was lower in the PAD compared to the Manual driving mode, the
difference did not reach statistical significance [Mdiff = 0.2; t(54)=
1.73; p= 0.09].

Figure 5 depicts the results from the SSS-Q for distress, showing
an increase in level of distress after both PAD and Manual driving
relative to the baseline measurement. For engagement, a Friedman
test showed a significant effect of Driving mode [χ2 (2) = 23.53; p
< 0.001]. Conover’s post-hoc comparisons showed that compared
to the baseline (M = 1.14) a significant increase in distress for both
PAD [M = 1.64; Mdiff = 0.5; t(54) = 4.18; p < 0.001] and Manual
[M = 1.7; Mdiff = 0.56; t(54) = 4.25; p < 0.001] but no difference

between the two driving modes [Mdiff = 0.06; t(54) = 0.07; p =

0.94].

Driving simulator measures

RMSE lateral position
RMSE lane position (in meters) relative to the center of the

right-hand lane in the Manual condition is plotted in Figure 6.
In the PAD condition lane keeping was controlled automatically
and is therefore not plotted nor analyzed. In the Manual condition
RMSE lateral lane position increased gradually over time reflected
in a significant effect of Time [F(2.14,55.64) = 6.67; p = 0.002; η

2
p

= 0.2]. Post-hoc paired t-tests indicated significantly higher RMSE
lane position at T5 (M = 0.60m) than T1 [M = 0.53m; Mdiff =

0.076m; t(26) = 3.83; p = 0.003] and T2 [M = 0.54m; Mdiff =

0.063m; t(26) = 3.18; p = 0.022]. Additionally, T6 (M = 0.62m)
showed significantly higher RMSE lane position than T1 [M =

0.53m;Mdiff = 0.095m; t(26)= 4.75; p < 0.001], T2 [M = 0.54m;
Mdiff = 0.082m; t(26)= 4.1; p= 0.001], and T3 [M = 0.56m;Mdiff

= 0.059m; t(26)= 2.98; p= 0.038].

Driving hazard detection task (DRT and accuracy)
Driving hazard detection task DRT (in seconds) is plotted

in Figure 6. Evident from the plot is relatively constant DRT
throughout the hour in the Manual mode. In PAD mode, DRT
is faster at the beginning and then slows down to a similar level
to the Manual condition around T3 and later. Here we found no
significant main effects of Mode [F(1,26) = 0.66; p = 0.42], or Time
[F(3.65,94.8) = 1.78; p = 0.15], but a significant interaction effect
[F(3.66,95.03) = 2.58; p = 0.047; η2p = 0.09]. As seen in Figure 6 DRT
is faster for PAD than Manual in T1 and T2 but post-hoc paired t-
tests corrected formultiple comparisons did not find any significant
differences between any condition in any 10-min time section (all
p’s > 0.1). Response accuracy was equally high in both the Manual
(M = 98.89%, SD= 1.97) and the PAD condition (M = 98.78%, SD
= 2.74) indicating that participants were able to distinguish both
types of parked cars and do the task well.

PERCLOS
PERCLOS data (in percentage) is plotted in Figure 7. Evident

from the plot is much higher values in the PAD thanManual mode,
and an increase for both over time. A main effect for Time was
found in both the PAD [χ2 (5) = 27.8; p < 0.001] and Manual
modes [χ2 (5) = 51.85; p < 0.001]. Conover post hoc tests between
times in the PAD condition indicated significant increases from T1
(M = 0.05) to T3 [M = 0.088; Mdiff = 0.038; t(125) = 4.33; p <

0.001], T4 [M = 0.081; Mdiff = 0.031; t(125) = 3.38; p = 0.012],
T5 [M = 0.077;Mdiff = 0.028; t(125) = 3.45; p = 0.01], and T6 [M
= 0.11;Mdiff = 0.064; t(125) = 4.48; p < 0.001]. Conover post-hoc
tests between times in the Manual condition indicated significant
increases from T1 (M = 0.019) to T3 [M = 0.029; Mdiff = 0.01;
t(125) = 3.67; p = 0.004], T4 [M = 0.031; Mdiff = 0.011; t(125)
= 3.67; p = 0.004], T5 [M = 0.036; Mdiff = 0.017; t(125) = 5.21;
p < 0.001] and T6 [M = 0.034; Mdiff = 0.015; t(125) = 6.09; p
< 0.001], as well as from T2 (M = 0.026) to T5 [Mdiff = 0.011;
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FIGURE 5

Results of the subjective measures obtained in the study. The NASA-TLX was conducted after each of the two driving conditions (PAD and Manual)
but not at baseline as there was no task to be evaluated. The Stanford Sleepiness Scale (SSS) and the Short Stress State Questionnaire (SSS-Q) were
administered at baseline (i.e., before driving) and then again after each driving condition (PAD and Manual). Error bars indicate standard error around
the mean. *Indicates significant di�erences between conditions which are at each end of the black bar. Y-axes are adjusted to narrow range for
better visualization of e�ects. The scores for the SSS can range from 1 to 7, for the SSSQ from 1 to 5, and for the NASA-TLX from 0 to 20.

FIGURE 6

Driving simulator measures. (Left): RMSE lateral positions over time in the Manual condition. (Right): Mean discrimination response time (DRT) to the
hazard detection task during driving in both conditions. Error bars indicate standard error of the mean. *Indicate significant di�erences between
conditions which are at each end of the black bar. Y-axes are adjusted to the relevant range of the actual data for better visualization of e�ects.

t(125) = 3.6; p = 0.005] and T6 [Mdiff = 0.009; t(125) = 4.48; p
< 0.001]. To check the interaction, we carried out paired Wilcoxon
tests between PAD and Manual at each time, finding significantly
higher PERCLOS in PAD in each time section [T1: Mdiff = 0.031;
t(25) = 3.87; p < 0.001; T2:Mdiff = 0.043; t(25) = 3.89; p < 0.001;
T3: Mdiff = 0.059; t(25) = 3.73; p < 0.001; T4: Mdiff = 0.05; t(25)
= 3.58; p < 0.001; T5: Mdiff = 0.041; t(25) = 3.89; p < 0.001; T6:
Mdiff = 0.08; t(25)= 3.56; p < 0.001].

Heart rate variability (HRV)
Figure 7 shows HRV (in milliseconds) during the driving tasks.

Evident from the plot is an increase over time for both conditions,
more so for the Manual than PAD condition. The data was found
to be non-normally distributed, therefore Friedman tests indicated
a significant effect of time in the Manual condition [χ2 (5)= 14.39;
p = 0.013] but not in the PAD condition [χ2 (5) = 9.52; p = 0.09].
Conover post-hoc comparisons for the Manual condition indicated
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FIGURE 7

(Left): Mean PERCLOS for PAD and Manual driving conditions. PERCLOS values range between 0 and 100%. Colored * indicate significant di�erences
from T1 in the respective condition. Colored + indicate significant di�erence from T2 in the respective condition. (Middle): Mean HRV for PAD and
Manual driving conditions. *Indicate significant di�erences between conditions which are at each end of the bar, with colors corresponding to
condition. (Right): Mean PVT response times at baseline, after the 1st driving session and after the 2nd driving session. * indicate significant
di�erences between conditions which are at each end of the black bar. Driving conditions were counterbalanced. Error bars indicate standard error
of the mean. Y-axes are adjusted to the relevant range of the actual data for better visualization of e�ects.

significantly higher HRV in T5 [M = 201.93; Mdiff = 39.38; t(130)
= 3.31; p = 0.018], and T6 [M = 192.86; Mdiff = 30.31; t(130) =
3.03; p= 0.042] compared to T1 (M = 162.55).

Psychomotor vigilance task (PVT)
Figure 7 depicts the RT results of the PVT task (in

milliseconds). Evident from the plot is an increase in RT after
the first and second hour of driving compared to the baseline
measurement. This is confirmed by a significant main effect of
Time [F(2,50) = 7.92; p = 0.001; η

2
p = 0.24]. Post-hoc tests

indicated increased response times relative to the baseline PVT
(M = 307.12ms) after the first 1 h driving session [averaged across
Manual and PAD;M = 323.2ms;Mdiff = 16.07ms; t(25) = −3.41;
p = 0.003] as well as after the second 1h driving session [averaged
across Manual and PAD; M = 323.57ms; Mdiff = 16.44ms; t(25)
= −3.49; p = 0.003]. However, there was no significant difference
between response times after the first and second driving session
[Mdiff = 0.37ms; t(25)=−0.078; p= 0.94].

EEG spectra

Parietal alpha
Parietal alpha power [in (V2)/Hz converted to dB] for the grids

in channel P4_M2 is plotted in Figure 8. Evident from the plot
is that parietal alpha is higher in the PAD condition than the
Manual condition. Additionally, parietal alpha increases over time
within both conditions. ANOVA tests confirmed this, as there was
a significant main effect of both Mode [F(1,26) = 19.29; p < 0.001;

η
2
p = 0.23], and Time [F(1.59,41.25) = 8.8; p = 0.001; η2p = 0.25], but

no interaction effect [F(1.89,49.25) = 0.73; p = 0.48; η2p = 0.005]. A
post-hoc t-test between the grid PAD and Manual (M = −98.25
dB) alpha power averaged over time indicate significantly higher
alpha power in the PAD condition [M = −97.01 dB; Mdiff = 1.24;
t(26) = 4.39; p < 0.001]. Post-hoc paired t-tests comparing each
time section to each other, while averaging over mode, indicate
significant alpha power increases from T1 (M = −98.29 dB) to T3
[M = −97.53 dB; Mdiff = 0.76 dB; t(26) = −4.15; p = < 0.001],
T4 [M = −97.42 dB; Mdiff = 0.87 dB; t(26) = −4.76; p < 0.001],
T5 [M = −97.39 dB; Mdiff = 0.91 dB; t(26) = −4.95; p < 0.001],
and T6 [M = −97.27 dB; Mdiff = 1.02 dB; t(26) = −5.57; p <

0.001]. Additionally, there was a significant difference in average
alpha power between T2 (M = −97.87 dB) and T6 [M = −97.27
dB; Mdiff = 0.6 dB; t(26) = −3.27; p = 0.015]. These differences
demonstrate, as can be seen in the plots, a sharp increase at the
beginning of the scenario, which plateaus toward the middle and
end of the scenario.

In the cap data, the same effects can be seen in Figure 8
for parietal alpha from channel P4, with higher power in the
PAD condition and an increase over time for both conditions. A
significant main effect was found for Mode [F(1,26) = 66.33; p <

0.001; η
2
p = 0.72] and Time [F(2.5,64.97) = 24.13; p < 0.001; η

2
p =

0.48], but no interaction [F(4.04,105.11) = 0.96; p = 0.48]. A post-hoc

t-test between the PAD and Manual (M =−94.04 dB) alpha power
averaged over time indicates significantly higher alpha power in the
PAD condition [M =−92.13 dB;Mdiff = 1.91 dB; t(26)= 8.14; p<

0.001]. Post-hoc paired t-tests averaging over mode and comparing
each time section to each other indicate significant alpha power
increases from T1 (M = −93.98 dB) to T2 [M = −93.3 dB; Mdiff
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FIGURE 8

PSD plots for mean alpha, beta and theta power [in (V2)/Hz converted to dB] with error bars indicating standard error in the measured electrode sites
for both grid data (top) and cap data (bottom); *Indicate significant di�erences from T1 in both conditions [PAD (red) and Manual (blue)] combined.
+ indicate significant di�erences from T2 in both conditions combined.

= 0.68 dB; t(26) = −4.86; p < 0.001], T3 [M = −92.93 dB; Mdiff

= 1.05 dB; t(26) = −7.5; p < 0.001], T4 [M = −92.86 dB; Mdiff =

1.12; t(26) = −7.96; p < 0.001], T5 [M = −92.80 dB; Mdiff = 1.18
dB; t(26)=−8.39; p< 0.001] and T6 [M=−92.65 dB;Mdiff = 1.33
dB; t(26)=−9.47 p< 0.001], as well as from T2 to T4 [Mdiff = 0.43
dB; t(26)=−3.09; p= 0.019], T5 [Mdiff = 0.5 dB; t(26)=−3.53; p
= 0.005], and T6 [Mdiff = 0.65 dB; t(26)=−4.6; p= 0.001].

Frontal beta
Figure 8 depicts frontal beta power [in (V2)/Hz converted

to dB] in the grid FPz_M2 channel. Evident from the plot is
significantly higher beta power in the PAD condition compared to
Manual driving, while both driving modes appear to increase over
time. Here we found a significant main effect of Mode [F(1,20) =
13.34; p = 0.002; η2p = 0.4] and Time [F(2.5,50.1) = 4.87; p = 0.007;
η
2
p = 0.196], but no interaction [F(2.94,58.78) = 0.65; p = 0.58, η

2
p

= 0.031]. A post-hoc t-test between the PAD and Manual (M =

−97.43 dB) beta power averaged over time indicated significantly

higher beta power in the PAD condition [M = −96.25 dB; Mdiff

= 1.18 dB; t(20) = 3.65; p = 0.002]. Post-hoc comparisons of time
sections, averaged over Mode, indicate significant increases in beta
power from T1 (M = −97.47 dB) to T3 [M = −96.63 dB; Mdiff =

0.84 dB; t(20) = −3.95; p = 0.002], T4 [M = −96.59 dB; Mdiff =

0.88 dB; t(20) = −4.12; p = 0.001], T5 [M = −96.67 dB; Mdiff =

0.80 dB; t(20) = −3.77; p = 0.004], and T6 [M = −96.74; Mdiff =

0.73 dB; t(20)=−3.42; p= 0.011].
In the beta power [in (V2)/Hz converted to dB] cap data at

channel Fz, similar effects can be seen at Figure 8. A significant
main effect was found for Mode (F(1,26) = 10.07; p = 0.004; η2p =
0.28) and Time [F(3.39,88.18) = 9.12; p < 0.001; η2p =0.26], but there
was no significant interaction [F(3.11,80.82) = 1.25; p = 0.3; η

2
p =

0.046]. Post-hoc tests in which we averaged over all time sections for
each mode found a significant difference between PAD (M=−97.3
dB) and Manual driving beta power [M = −98.0 dB; Mdiff = 0.69;
t(26) = 3.17; p = 0.004]. Post-hoc comparisons of time sections
which were averaged over mode, indicate significant increases in
beta power from T1 (M=−98.07 dB) to T3 [M=−97.46 dB;Mdiff
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= 0.61 dB; t(26) = −5.46; p < 0.001], T4 [M = −97.58 dB; Mdiff

= 0.5 dB; t(26) = −4.41 p < 0.001], T5 [M = −97.59 dB; Mdiff =

0.48 dB; t(26) = −4.26; p < 0.001], and T6 [M = −97.42 dB;Mdiff

= 0.65 dB; t(26)=−5.77; p< 0.001], and also from T2 to T6 [Mdiff

= 0.34; t(26)=−3.04; p= 0.032].

Frontal theta
Figure 8 depicts theta power [in (V2)/Hz converted to dB] in

the FPz_M2 channel. Evident from the plot is higher theta power
in the PAD than Manual condition, with the power increasing
with time in the PAD condition, and an inverted “U” shape in the
Manual condition. Here we found a significant main effect of Mode
[F(1,20) = 8.67; p = 0.008; η

2
p = 0.302], and Time [F(2.15,42.97) =

3.93; p= 0.025; η2p = 0.16], as well as a significant interaction effect
[F(2.53,50.57) = 3.88; p= 0.019; η2p = 0.16]. A post-hoc test comparing
the PAD to Manual driving, averaged over all time sections showed
a significant difference between PAD (M=−88.84 dB) andManual
[M = −89.99 dB; Mdiff = 1.14; t(20) = 2.94; p = 0.008]. Post-hoc
comparisons of time sections averaged over driving mode showed a
significant increase from T1 (M = −90.08 dB) to T4 [M = −89.07
dB; Mdiff = 1.01 dB; t(20) = −3.94; p = 0.002], T5 [M = −89.18
dB; Mdiff = 0.90 dB; t(20) = −3.49; p = 0.01], and T6 [M = 89.28
dB; Mdiff = 0.79 dB; t(20) = −3.09; p = 0.034]. However, these
effects may be superseded by the interaction effect. Therefore, we
conducted another paired comparison between all modes and time
sections. Here we found a significant increase theManual condition
T1 (M = −90.80 dB) to T4 (M = −89.48 dB; Mdiff = 1.32 dB;
−3.88; p = 0.009). No significant differences were found between
time sections within the PAD condition (all p’s> 0.05), but PAD (M
= −88.23 dB) was significantly higher than Manual (M = −90.33
dB) mode in T6 [Mdiff = 2.09 dB; t(20)= 4.34; p= 0.005].

In the theta power [in (V2)/Hz converted to dB] cap data at
channel Fz, similar effects to the grid can be observed. PAD appears
to have higher theta power than the Manual condition. Both
modes increase at the beginning, with the PAD mode continuing
to increase while the Manual mode shows a plateau after T3. Here
we found a significant main effect of both Mode [F(1,26) = 7.93; p=
0.009; η2p = 0.23], and Time [F(2.43,63.26) = 23.97; p < 0.001; η2p =

0.48], but no interaction [F(3.13,81.25) = 1.57; p= 0.2; η2p = 0.057]. A
post-hoc test comparing the theta power in PAD to Manual driving,
averaged over all time sections, showed a significantly higher power
in the PAD (M = −89.48 dB) than Manual [M = −90.03 dB;Mdiff

= 0.55 dB; t(26) = 2.82; p = 0.009] mode. Another post-hoc test
between time sections and averaging over mode found significant
increases from T1(M = −90.46 dB) to T2 [M = −89.96 dB; Mdiff

= 0.50 dB; t(26)=−4.41; p < 0.001], T3 [M =−89.63 dB;Mdiff =

0.83 dB; t(26) = −7.24; p < 0.001], T4 [M = −89.59 dB; Mdiff =

0.87 dB; t(26) = −7.63; p < 0.001], T5 [M = −89.52 dB; Mdiff =

0.44; t(26) = −8.22; p < 0.001] and T6 [M = −89.37;Mdiff = 1.09
dB; t(26) = −9.53; p < 0.001]. Additionally, significant increases
were found from T2 to T3 [Mdiff = 0.32 dB; t(26) = −2.84; p =

0.037], T4[Mdiff = 0.37 dB; t(26) = −3.22; p = 0.013], T5 [Mdiff =

0.44 dB; t(26) = −3.82; p = 0.002], and T6 [Mdiff = 0.59 dB; t(26)
=−5.12; p < 0.001].

Further analyses regarding theta power in cap electrodes FP1
and FP2 are shown in Supplementary Figure S1 to indicate an

inverted “U” shape in the Manual condition similar to the results
of the FPz_M2 channel of the trEEGrid.

Correlational analyses EEG and driving
performance

To further our understanding of the relationship between
brain activity and behavior, we were interested in the association
between Manual driving and EEG recorded with the trEEGrid.
Therefore, we computed correlations between individual RMSE
lateral position (index of driving performance) and the PSD values
for alpha (electrode P4_M2), beta (electrode FPz_M2) and theta
(electrode FPz_M2). The Pearson r correlation values are listed in
Table 1. Scatterplots for the correlation between the average RMSE
lateral position across all 6 time-sections and average beta and theta
are depicted in Figure 9. The results show that individuals with
higher beta and theta PSD values also show higher deviations from
the center of the lane.

Discussion

In this study, participants were asked to drive two 1-h scenarios
in a driving simulator, one in which they were manually controlling
the vehicle and one in which they monitored while the vehicle was
autonomously controlled. Participants also performed a concurrent
driving-relevant stimulus detection task and wore both a full-cap
EEG system and a novel, mobile EEG-electrode-grid system. To our
knowledge, this is the first study that investigates the viability of a
reduced channel EEG grid sensor system (trEEGrid) in measuring
vigilance during simulated driving, compared to a full-cap system
recording EEG simultaneously. The results from both EEG systems
indicate EEG-power increases in fatigue and vigilance-related EEG
frequency bands during PAD compared to manual driving, as
well as increases over time. These differences coincide with the
same pattern in physiological measures of fatigue (PERCLOS) and
decreased subjective ratings of task-load (NASA-TLX) during PAD.
Further, brain activity results from both the cap and trEEGrid
showed significant changes earlier than other measures of vigilance
and fatigue, indicating the potential for spectral EEG as a more
effective measure of vigilance during driving. In addition to further
our understanding of EEG parameters as important markers of
vigilance and changes thereof, the results underline that the novel
trEEGrid system can provide high-quality EEG data comparable
to traditional 10–20 EEG-electrodes. From a neuroergonomics
perspective this is of relevance as it brings the methodology of EEG
a step closer to real-world application.

Subjective questionnaires

In general, results from the questionnaires indicated that our
tasks were successful in inducing a monotonous and fatiguing
driving scenario thereby taxing the participants’ level of vigilance.
The SSS and SSSQ scales showed that participants were significantly
more fatigued, less engaged, and experiencing more distress after
both the PAD and Manual scenarios, compared to before the
scenarios. However, these measures did not show significant
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TABLE 1 Pearson r values and corresponding p-values of the correlation between EEG PSD values (alpha, beta, theta) recorded with the trEEGrid and

RMSE of the lateral position (LatPos) as index for driving performance for each time section (T1–T6) as well as the average across all time sections.

Correlation variables Alpha Beta Theta

r(25) p r(19) p r(19) p

EEG_T1 & LatPos_T1 0.346 0.077 0.432 0.05∗ 0.595 0.004∗

EEG_T2 & LatPos_T2 0.331 0.092 0.618 0.003∗ 0.544 0.011∗

EEG_T3 & LatPos_T3 0.342 0.081 0.597 0.004∗ 0.553 0.009∗

EEG_T4 & LatPos_T4 0.376 0.053 0.537 0.012∗ 0.464 0.034∗

EEG_T5 & LatPos_T5 0.335 0.088 0.610 0.003∗ 0.564 <0.008∗

EEG_T6 & LatPos_T6 0.370 0.058 0.563 0.008∗ 0.516 <0.017∗

EEG_avgT1T6 & LatPos_avgT1T6 0.356 0.068 0.623 0.003∗ 0.587 <0.005∗

∗p-value < 0.05.

FIGURE 9

Scatterplots (N = 21) visualizing the correlation between beta PSD (left) and theta PSD (right) in [(V2)/Hz dB] at electrode FPz_M2 (trEEGrid) with
RMSE Lateral Position (m) for average values across all six time sections.

differences between PAD and manual driving. While subjective
measures like the SSS are generally effective in detecting sleepiness
during driving (Cai et al., 2021), they can be subject to bias as
participants are required to remember their mental state during
the drive (McWilliams and Ward, 2021). Additional information
gathered from PERCLOS during the scenarios indicates that
participants were likely experiencing more physiological fatigue
in the PAD compared to the Manual condition. Furthermore,
the NASA-TLX, found significantly lower task load for the
PAD condition, which can lead to reduced task vigilance and
fatigue through cognitive underload (McWilliams andWard, 2021;
Thomson et al., 2015).

Driving measures

RMSE lateral position increased over time, similar to previous
findings in driving simulators (van der Hulst et al., 2001; Ting et al.,
2008; Thiffault and Bergeron, 2003) and on-road driving (Verster
and Roth, 2013). This is likely due to reductions in vigilance toward
the driving task as individuals tend to become more fatigued over
time and experience vigilance decrement as they start to deviate

from the center of the driving lane (Philip et al., 2005; Verster and
Roth, 2013).

No significant main effect of Time or Mode was found in
DRT of the concurrent hazard detection task, contrary to some
other dual-task driving studies, which found decreases in task
performance over time, especially in the PAD condition (Greenlee
et al., 2018, 2019, 2022). However, the significant interaction
effect indicates that our task effects did differentially change over
time between the Manual and PAD condition, with the DRT
increasing slightly over time for the PAD condition, while staying
relatively stable in the Manual condition. This result is similar
to previous results found by Greenlee et al. (2022) in the false
alarms and response sensitivity patterns in which responses to the
PAD condition showed performance decrements over time while
the Manual driving condition did not. This is consistent with
the Manual task being more engaging, promoting a stable level
of attention for the participants to perform the task. Meanwhile,
participants responded faster in the first 2 time periods (i.e., 20min)
of the PAD condition, likely due to the decreased workload required
to perform the driving task, allowing increased resources toward
the task. However, this benefit is not significantly different from
the Manual condition within these two time periods, and any
benefit dissipates after 20min, likely due to the fatigue and reduced
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vigilance over time associated with PAD driving (Greenlee et al.,
2018, 2019, 2022; Körber et al., 2015a,b; Mok et al., 2015).

Our results for the concurrent hazard detection task were not
as clear or pronounced, compared to previous driving simulator
vigilance tasks (Greenlee et al., 2018, 2019, 2022), with no main
effects and no significant post-hoc tests. This is possibly due to the
less challenging nature of our hazard detection task. In our task,
the roadside vehicles were visible until the driver’s vehicle passed
them, mimicking how this obstacle would appear in real life. This
made the task more realistic but also gave the participant a clearer
view of the vehicle as they drove closer, making the task easier.
This is also evidenced by somewhat slower DRT in our study than
in a similar previous study, in which the participants could only
see a simulated hazardous car for 200ms (Greenlee et al., 2018).
Additionally, performance accuracy was close to ceiling with an
error rate of under 2% in both conditions, making it too low to
reliably compare, but indicating that the task was not particularly
difficult. It appears that vigilance tasks during driving are sensitive
to difficulty, as other studies with relatively easy vigilance tasks have
also not found time-on-task effects in DRT (Körber et al., 2015a,b),
in some cases while also showing physiological signs of fatigue
(Körber et al., 2015a).

PERCLOS

As expected, PERCLOS values increased over time in both
conditions, and were significantly higher in the PAD condition
than during Manual driving. PERCLOS difference in driving mode
indicates that even though we did not see a significant difference in
the SSS questionnaire between the two drivingmodes, there is likely
an increase in drowsiness during PAD compared toManual driving
that the participants may not have had full awareness of. The
effect of driving mode is also consistent with previous literature, as
PERCLOS has also been shown to increase during various fatigue-
inducing driving scenarios, such as nighttime driving and after
sleep deprivation (for a review, see Abe, 2023). The time-on-task
effects were also not surprising, as PERCLOS has been shown
to increase over time during PAD (Heikoop et al., 2017; Jarosch
et al., 2019), as well as in Manual driving (Golz et al., 2010). The
range of PERCLOS values may have also been somewhat smaller
than in some other studies (e.g., Arefnezhad et al., 2022; Abe,
2023), as our participants were rested, while a lot of studies on
drowsiness during driving induced this drowsiness through some
type of sleep deprivation.

EEG spectra: e�ects of driving mode

In both EEG systems, PSD values of parietal alpha, and frontal
theta and beta were all higher during PAD compared to Manual
driving, throughout the driving task. This is likely due to the
reduced engagement required to perform automated driving, which
can result in cognitive underload, leading to fatigue and mind-
wandering, and therefore reduced vigilance toward the driving task
(McWilliams and Ward, 2021). Alpha power has been shown to
increase with reduced attentional processing, as well as during

lapses in attention toward external stimuli (Borghini et al., 2014;
Klimesch, 2012; McWilliams and Ward, 2021). Parietal alpha has
been shown previously to increase during PAD and has been used
as a measure of vigilance decrement during PAD tasks (Cisler
et al., 2019). Both parietal channel alpha and frontal channel beta
power have been observed to correlate negatively with vigilance and
attention (Sciaraffa et al., 2022), and frontal beta in particular has
been correlated with decrements in vigilance (Molina et al., 2013).
Additionally, alpha and theta power have been shown to enhance
during mind-wandering (Compton et al., 2019; Da Silva et al.,
2022), which is much more likely to be happening during PAD.

EEG spectra: time on task

In both EEG systems we found significant main effects of time
in our measures of parietal channel alpha as well as frontal channel
theta and beta. This was to be expected, as increases over time have
been shown for alpha during manual (Craig et al., 2012; Simon
et al., 2011) and PAD driving tasks (Cisler et al., 2019), as well as for
theta during manual driving (Arefnezhad et al., 2022; Awais et al.,
2014; Craig et al., 2012). Alpha and theta power have been shown
to increase with time on task (Wascher et al., 2014; Tran et al.,
2020) often marking the transition from wakefulness to drowsiness
(Awais et al., 2014; Stancin et al., 2021). Theta power has been
shown to increase in relation to increasing PERCLOS during a
driving task, with the relationship strong enough to use EEG to
predict PERCLOS levels (Arefnezhad et al., 2022). Theta increases
over time in cognitive tasks have been interpreted as being related
to increased mental effort to maintain task performance over time
(Wascher et al., 2014).

One unexpected finding was an interaction effect between
Mode and Time for theta power in the frontal grid channel
(FPz_M2), but not in the cap Fz channel. This may highlight a
slight difference in the information collected between the trEEGrid
and cap data, as the FPz_M2 channel of the trEEGrid is located
lower and more frontal on the forehead than the Fz channel of the
cap. In the grid data, theta power increased over time for the PAD
condition but appeared to decrease toward the end of the task for
the Manual condition. A similar change in power values over time
in the Manual condition was also observed for the cap channels
FP1 and FP2, which are also more frontal than Fz, although
statistically the interaction effect did not reach significance (see
Supplementary Figure S1). This inverse-U shape in the Manual
theta power is difficult to interpret but could possibly point to
some difference in the ability to regain vigilance after some time
in manual driving, as the task is more engaging than PAD. Some
studies have suggested that monotonous manual driving is safe up
to a limit of 80min (Ting et al., 2008). However, this is speculative
and requires further investigation.

Frontal beta power also increased over time during driving,
equivalently in both cap and trEEGrid data. Frontal beta has been
shown to increase over time during cognitive tasks (Pershin et al.,
2023; Tran et al., 2020), and driving (Craig et al., 2012). As increased
beta power has been associated with increased mental activity or
arousal (Andreassi, 2010), increased beta power over time has been
interpreted as an increase in mental effort to counteract increasing
fatigue levels caused by cognitive underload (Craig et al., 2012).
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Significant differences from T1 were shown as early as T2 in
the cap alpha and theta bands, as well as T3 for beta. In the grid
significant differences relative to T1 appeared as of T3 for alpha
and beta band activity. This demonstrates the potential of EEG data
to detect vigilance decrements earlier or equivalently to PERCLOS
(at T3), a frequently used measure of driver drowsiness (see Abe,
2023). However, as PERCLOS is an estimate of drowsiness and
not necessarily vigilance, it’s possible that spectral EEG is a more
wholistic measure of decrements to driver vigilance and drowsiness
than PERCLOS. Further, camera-based data such as PERCLOS
depend on visual information and can be challenged by lighting
conditions, as it relies on visibility to obtain information from the
driver’s eye. Both optimal illumination as well as good visibility
of the eyes can not always be guaranteed. Additionally, spectral
differences relative to the beginning were present at T3 or T4 for all
measured EEG frequency bands in both cap and grid data, showing
that changes in vigilance could be detected earlier in EEG data than
in the RMSE lane deviation data (i.e., driving performance), which
started to differ significantly from T1 only at T5 and T6, which
corresponds to at least 10min later or about 13 km when driving
at 80 km/h.

Importantly, the results of the correlational analyses between
the PSD values and lane deviation (Table 1) reveal the strong
relationship between the neuromarkers analyzed in this study and
actual behavioral performance during the simulated driving task.
This association provides additional support for the relevance
of EEG data as useful und informative methodology to obtain
information on vigilance while performing an everyday task.

The trEEGrid for EEG recording

This was the first study to use this version of the trEEGrid
sensor system to investigate cognitive changes such as vigilance
in a simulated real-world task such as driving. The EEG data
recorded with the trEEGrid support the original hypotheses stated
in the introduction: 1. PAD mode showed lower levels of vigilance
compared to manual driving, 2. levels of vigilance decreased with
time-on-task, 3. EEG changes linked to vigilance were detected
earlier than behavioral driving parameters and about the same
time as PERCLOS data, and 4. The effects detected with the 10–
20 EEG cap are comparable to the effects recorded with the mobile
trEEGrid. The last point highlights the value of the trEEGrid as it
demonstrates that in certain use-cases and depending on the EEG
parameters of interest, a mobile sensor system such as the trEEGrid
is capable of providing high quality data without the burden of
having to place and wear a full EEG cap. The comparability between
grid solutions and 10–20 electrode locations has also been found
in previous studies looking at different EEG parameters when
comparing 10–20 sytem EEG channels with cEEGrid (Craig et al.,
2012), and trEEGrid (Da Silva Souto et al., 2022). These results
taken together underline the potential of the mobile EEG grid
for research as well as applications in real-world settings where
comfortable, unobtrusive, and easy to use EEG sensor systems are
highly desirable. As shown here, this is relevant for driving, as well
as in professional contexts, but solutions like the trEEGrid open
possibilities to better understand and monitor mental processes

in safety-critical work environments thereby helping to improve
working conditions and safety aspects. Since behavior in real-
world contexts is complex, an EEG based monitoring system would
also benefit from additional parameters such as PERCLOS or
performance markers to capture safety critical changes in mental
states. Particularly in use-cases where safety is very critical a certain
level of redundancy is necessary to make a system more failsafe.

Limitations

This study used a driving simulator instead of real-car driving.
There is some evidence for the validity of driving simulators in
relation to real-world driving behavior (Risto and Martens, 2014;
Shechtman et al., 2009), and even that effects of fatigue can be
stronger in simulated driving (Philip et al., 2005). However, it is
possible that the driving task was not as salient as it would be in
a real car. Given the mobility of the here introduced EEG sensor
system (trEEGrid), conducting EEG studies while driving in real
scenarios can be easily realized.

Additionally, similar to many studies, our study sample may
not have been large or diverse enough with respect to age to
represent the driving population. Future studies should include
larger sample sizes and participants in more diverse age groups, in
order to better generalize changes in vigilance during driving to all
drivers. Additionally, future studies could go beyond the average
vigilance measures across all participants in order to assess the
consistency and applicability of these effects at the individual level,
as well as generalizability in real world scenarios.

There is evidence that eye blinks can influence EEG activity
in the delta and theta band (Hagemann and Naumann, 2001)
particularly in frontal electrodes. Even though ASR has been shown
to reduce the impact ocular artifacts (Blum et al., 2019; Chang et al.,
2018), it cannot be completely ruled out that remaining ocular
activity might have contributed to the recorded theta activity.
Future studies should investigate this further and control for
contamination by eye-blinks. However, the effects observed for
the beta and alpha band are likely not impacted by ocular activity
(Hagemann and Naumann, 2001).

While this experiment was designed such that it taxes vigilance
and the results reported are in line with effects observed in context
of vigilance and fatigue, it cannot be ruled out that training
effects could also play a role. However, the task itself is not too
complex and all participants were given a practice session in the
beginning to familiarize themselves with the task. Furthermore,
by counterbalancing the task sequence we attempted to mitigate
possible time-on-task training effects.

Conclusions

The results indicate that changes in vigilance can be detected
in brain activity earlier and possibly more accurately than in
behavioral or other physiological measures. Consistent with the
literature, spectral EEG data showed differences between the two
driving conditions which related to decreased engagement and
vigilance during PAD, as well as time-on-task effects which indicate
vigilance and fatigue changes over time in both conditions. The
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trEEGrid recorded high quality EEG data and showed the same
effect patterns compared to the 10–20 full-cap EEG-system. Even
though effect sizes were slightly smaller for alpha and theta in the
trEEGrid compared to the cap, both EEG sensor systems revealed
the same significant differences between the two driving conditions
as well as significant changes over time in the alpha, beta, and theta
EEG frequency bands. This highlights the potential for smaller and
more convenient mobile EEG solutions as vigilance monitoring
technologies in the future, thereby enhancing driver safety and the
safety of individuals in other safety-critical environments.
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