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Introduction: The perception of physical comfort is one of the important

workplace design parameters. Most comfort perception studies have mainly

relied on subjective assessments and biomechanical techniques, with limited

exploration of neural brain activity.

Methodology: The current study investigates this research gap by integrating

the rating of perceiving physical comfort (RPPC) with brain network indices in an

arm flexion task across di�erent force levels. The applied arm forces, EEG-based

neural responses, and the RPPCweremeasured, and the corresponding network

theory indices were calculated. The following correlations were evaluated: (a)

RPPC and applied forces, (b) network theory indices and applied forces, and (c)

RPPC and network theory indices.

Results and discussion: Results for (a) revealed a significant negative correlation

between RPPC and the applied force for the arm flexion task. This shows that as

the exerted force di�culty increases to an extremely hard level, the perception

of physical comfort decreases till it reaches no comfort level. Results for (b)

showed a positive correlation between the applied forces and global e�ciency

for the alpha network coherence during an extremely hard task. In contrast, a

negative correlation was found between applied forces and path length for beta

coherence during a light task. Findings from (b) suggest that the brain is more

e�cient in transmitting information related to cognitive functioning during a

highly demanding force exertion task than a light task. Results from (c) showed

a negative correlation between RPPC and global e�ciency for alpha coherence

during an extremely hard force exertion task. Moreover, a positive correlation

was observed between RPPC and local e�ciency for beta coherence during

a somewhat hard task. Findings from (c) also indicate that perceiving a low-

comfort physical task might increase task alertness, with the corresponding

neural network exhibiting a high level of internal brain organization.

Conclusions: The study results contribute valuable knowledge toward

understanding the neural responses underlying the perception of physical

comfort levels.

KEYWORDS

brain network, coherence, EEG, network indices, perception of physical comfort, static

force exertion, arm flexion

1 Introduction

Comfort is a complex concept that can be defined from different perspectives,

including physical, psychological, sociological, and technological (Dumur et al., 2004).

Physical comfort relates to the absence of pain or discomfort. Psychologically, comfort

involves the feeling of wellbeing, safety, satisfaction, or relaxation perceived by humans
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in a working environment. Sociologically comfort encompasses

a sense of support and acceptance of that individual experience.

Technological comfort involves the role of technology in enhancing

comfort. Designing a comfortable physical environment in the

workplace reduces health risk issues resulting mainly from work-

related musculoskeletal disorders (WMSDs). WMSDs are one of

the most frequent disorders in occupational health, leading to

long-term sick leave. Ensuring a comfortable environment in the

workplace is a very complex task since it depends on human’s

psychological and physiological states and the surrounding

environmental conditions (Slater, 1985). Despite the numerous

previous ergonomics studies addressing comfort, the perception

of comfort during physical activity continues to be insufficiently

understood. Perceptions have a measurable effect on the sense of

physical comfort (Rahman et al., 2023). Measuring the perception

of comfort during a physical task continues to be insufficient for

decoding the whole perception (Alessandro et al., 2014) because

it is affected by subjective judgment (Richard, 1980; Hernandez

et al., 2002). Previous studies have claimed that objective measures

have several advantages compared to subjective measurements for

assessing comfort (Lee et al., 1993). Although a large body of

knowledge about objective measures has been gathered over the last

decades, the neurophysiological bases remain poorly understood,

leading to the ignorance of some useful brain information (Shortz

et al., 2012). Therefore, the current study significantly contributes

to the existing body of knowledge on the neurophysiological basis

of physical comfort perception by investigating the relationship

between physical comfort and brain activity during various

force levels.

Network Science provides advances in understanding complex

phenomena of any system (Watts and Strogatz, 1998; Amaral and

Ottino, 2004). In network science, a brain network is modeled as

a graph G (N, E), with N denoting the number of nodes that are

connected through edges E in graph G. Nodes represent individual

neurons or brain regions, while edges represent nodes interactions

(Newman, 2003). Edges convey the brain connectome classified

into structural, functional, and effective brain connectivity (Sporns

et al., 2005). Functional connectivity analyzes the statistical

dependence among brain regions on a fast time scale (Sporns,

2013), especially after advances in neuroimaging techniques,

mainly electrophysiological (EEG) techniques.

Different functional connectivity analysis methods and their

interpretational pitfalls are reviewed in Bastos and Schoffelen

(2016). The Coherence method is a promising approach for

estimating the functional connectivity patterns and interactions of

brain data (Andrew and Pfurtscheller, 1999; Canteroa et al., 1999;

Nolte et al., 2004; Sauseng et al., 2005; Comani et al., 2013; Bowyer,

2016; Storti et al., 2016). Previous studies have demonstrated its

effectiveness in various areas, such as evaluating physiological

abnormalities (Adler et al., 2003; Wang et al., 2014), quantifying

executive processes (Sauseng et al., 2005), assessing pain levels

(Modares-Haghighi et al., 2021), detecting mental fatigue (Qi

et al., 2020), studying motor learning (Dal Maso et al., 2018) and

evaluating performance in physical tasks (Di Fronso et al., 2018;

Tamburro et al., 2020; Visser et al., 2024). For instance, Di Fronso

et al. (2018) found higher EEG coherence values at rest than cycling

across all electrodes pairs. This indicates that focusing attention

stimulates various parts of the brain region and improves the

participant’s performance in physical activity. However, a sustained

mental task increases EEG coherence but does not improve the

performance efficiency (Chen et al., 2014). Another study showed

a higher alpha EEG coherence in both bilateral parietal-frontal and

parietal-central regions in successful compared to unsuccessful golf

put activity (Babiloni et al., 2008).

The application of Graph theory is promising for analyzing the

brain network through mathematic models represented as graphs

(Stam and Reijneveld, 2007; Bullmore and Sporns, 2009). Various

network measures quantifies meaningful information regarding

the brain network topological properties (Bastos and Schoffelen,

2016; Sporns and Betzel, 2016; Vecchio et al., 2017; Sporns, 2018;

Farahani et al., 2019; Ismail and Karwowski, 2020). Four network

indices are commonly used, namely average clustering coefficient,

characteristic path length, global network efficiency, and local

network efficiency. The clustering coefficient represents the extent

to which a node’s neighbors are also connected to each other,

forming a clique. A high clustering coefficient node has neighbors

that are highly connected. In Figure 1a, the node labeled with

“high clustering coefficient node” (red) has a total of five neighbor’s

nodes (orange) that are connected by seven existing edges between

neighbors only. A low clustering coefficient node has neighbors

that are lightly connected to each other or no connection at all. In

Figure 1b, the node labeled with “low clustering coefficient node”

(red) has a total of three neighbor nodes that are not connected. The

characteristic path length is the global average distance between all

pairs of network nodes. Figure 1c, the two red nodes are connected

to each other by three edges in red. This is an indication of a low

shortest path length between these specific two nodes. Figure 1d,

shows the same two nodes connected to each other by nine edges

in blue. This is an indication of a high shortest path length between

these specific two nodes. Global network efficiency measures the

network efficiency of transmitting information. Local efficiency

measures the efficiency of information integrated between the

neighbor networks in the local subgraph.

The study investigates the relationship between human

perception of comfort and brain activity regarding brain network

indices in static force flexion tasks. This study provides a novel

application of network indices in comfort research contributing

to the existing body of knowledge on the neurophysiological basis

of comfort perception, which had not been explicitly explored in

prior research.

This work is an extension of a previous study we presented in

Ismail et al. (2022). In this regard, the current study aims to answer

the following research questions (RQ):

• RQ1: Whether a correlation exists between subjective scores

using RPPC and applied forces?

• RQ2: Whether a correlation exists between the applied forces

and brain network indices?

• RQ3: Whether a correlation exists between subjective scores

using RPPC and brain network indices?

To the best of our knowledge, this is the first study

exploring the neural correlation of the perception of physical

comfort during physical activity utilizing global and local network
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FIGURE 1

Basic network metrics: A network with 13 nodes and 22 edges. (a) The node labeled with “high clustering coe�cient node” (red) has in total of five

neighbors (orange) that are connected by seven existing edges between neighbors only. Thus, the clustering coe�cient of the labeled node is (0.71).

(b) The node labeled with “low clustering coe�cient node” (red) has in total of three neighbor’s nodes (oranges) that are not connected to each

other. Thus, the clustering coe�cient value of this node is 0, because there are no existing edges among its three neighbors (oranges). (c) Two red

nodes are connected to each other by three edges (red lines), this is an indication of a low shortest path length between these specific two nodes. (d)

Two red nodes are connected to each other by nine edges (blue lines), this is an indication of a high shortest path length between these specific two

nodes.

indices for two frequency bands, alpha, and beta, in healthy

female participants.

The rest of the paper is organized as follows: Methodology is

presented in Section 2; The data collection includes anthropometric

data, applied force data, subjective comfort scoring and brain

network indices in Section 3. The results for three correlation

analysis are explained in Section 4. The discussions and limitations

are in Section 5. Finally, Section 6 demonstrates the study

limitations and considerations. Finally, Section 7 concludes

the study.

2 Methodology

2.1 Location of data collection and
participants

The data were collected in a computational neuroergonomics

lab at the University of Central Florida, USA. The Institutional

Review Board approved the study. Twelve female participants

(mean age 28 ± 6 years) who met the inclusion criteria

were recruited. The study focused on female subjects only to

minimize variability related to gender based neurophysiological

and biomechanical differences that could confound the

interpretation of brain connectivity and comfort perception

under physical activity.

This design choice was particularly important for a preliminary

investigation seeking to explore novel neurophysiological

correlations of physical comfort.

Exclusion criteria included pregnancy, neurological or

psychological disorders, history of cardiovascular problems,

chronic physical disorders, no exercise within 48 h before EEG

recording, and no consumption of coffee or alcohol for 24 h before

EEG recording. All the participants provided informed consent and

demonstrated an adequate understanding of the study procedure.

2.2 Experiment design and protocol

The study was designed to experimentally measure the

participants’ (a) EEG signals, (b) applied forces, and (c) comfort

levels during an arm flexion task for female subjects at five

predefined levels of exertion selected based on Borg scale (Borg,

1982). Participates were provided a standardized instructions

before conducting the experiment and were given brief description

on how to interpret and use the RPPC scale to precisely use it and

reduce response bias. Participants were firstly requiring applying

the maximum voluntary contraction (MVC) for 3 s for three trials,

with a 30 s rest period between each trial. Then, participants

were asked to apply force by pulling the chain upward for 3 s by

using their flexed arms without any body movement. This was

repeated three times with a 30-s rest period between them. Random

sequences of force levels were used to avoid potential learning

biases. This protocol has been previously used by Chaffin et al.

(1978). The experiment was designed on three trials in which each

participant performed three repetitions of arm flexion force then

ratings collected comfort level after each trial. The final RPPC for

each force level was averaged across trials for reducing the influence
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of outlier responses and increasing statistical reliability. The arm

flexion task was performed with the Jackson Strength Evaluation

System (Jackson, 1994), and applied force was collected using a

TORBAL FC5k force measurement device calibrated in Newton

(N). Then, participants assessed their comfort levels using an 11-

point unidimensional comfort scale as follows: (0 = No comfort;

1= very low comfortable; 3 = fair comfortable; 5 = moderate

comfort; 6 = more than moderate comfort; 8 = high comfortable;

10 = very high comfortable). This subjective physical comfort

scale has been developed specifically to measure physical comfort

in manual handling tasks and has been validated in previous

studies (Karwowski et al., 1992, 1999; Genaidy et al., 1998; Kee and

Karwowski, 2001a,b; Yeung et al., 2002; Rahman et al., 2023; Diniz

et al., 2024).

2.3 EEG recording and preprocessing

64 Ag-AgCl scalp electrodes were set on the scalp according

to the international 10–20 system, and the linked earlobe was

used as a reference. During the data acquisition, participants

were instructed to avoid unnecessary body movements or eye

blinks. The recorded data were acquired using Cognionics

acquisition software (Cognionics, Inc, 2024). A proposed EEG

data preprocessing pipeline proposed by Ismail et al. (2022).

Impedance was maintained below 10Ω , and signals were sampled

at 500Hz with a bandpass filter of 0.1–100Hz. EEG time series

data were pre-processed using EEGLAB (version 14.1.2b; Delorme

and Makeig, 2004), an open-source toolbox that runs on MATLAB

R2019b software (MathWorks, Natick, MA). EEG cross spectra

were extracted based on Fast Fourier Transform using Hanning

windows with 10% onset. The cross spectra were averaged across

the 50% overlapping windows, considering two frequency bands:

alpha (8–13Hz) and beta (13–30Hz) for each participant.

All experiments were conducting in a temperature-

controlled laboratory to minimize environmental variability

and brain artifacts.

3 Data collection

3.1 Anthropometric data

The mean value for all participants anthropometric data

were calculated as follows: age 27.4 years, body weight 60.2 kg,

shoulder height 135.85 cm, hip height 98.04 cm, Knee height 51.65,

arm height 106.26 cm, knuckle height 73.98 cm, and body height

163 cm.

3.2 Force flexion data

After collecting the force flexionmeasures from all participants,

the mean and the standard deviations were calculated through the

3 s period of exerted force in each condition as percentages of each

participant’s MVC as follows: extremely hard (67.35, 35.25), hard

(41.83,18.9), somewhat hard (34.58, 16.7), light (13.61, 6.76), and

extremely light (8.04, 5.32). This ensures that exertion levels were

relative to individual physical capabilities rather than absolute force

values which helped to normalize the data across participants.

3.3 Rate of perceived comfort

Subjective comfort scores were collected from all participants

by ranking their rate of perceived physical comfort (RPPC). The

mean and standard deviations of RPPC at each window trial for

three trials at each applied force level were as follows: extremely

light (8.23, 2.30), light (7.750, 2.11), somewhat hard (5.729, 1.68),

hard (5.375, 1.63), and extremely hard (4.583, 1.48).

3.4 Coherence calculations and brain
network indices

A proposed pipeline by Ismail and Karwowski (2020) has

been used to calculate brain functional connectivity and network

indices (Figure 2). The coherence method was selected to obtain

the functional Connectivity for alpha and beta networks using an

exact low-resolution brain electromagnetic tomography, an inverse

solution with exact zero localization error (Pascual-Marqui, 2007).

Four network indices were selected to characterize each network’s

topological properties: clustering coefficient, characteristic path

length, global efficiency, and local efficiency. The Clustering

coefficient (CC) is used to describe the degree to which a node

in the graph tends to cluster together; the Local efficiency (El)

measures how well a node is connected to its neighbors in

a network; the characteristic path length (PL) is the average

minimum distance traveled between two nodes for all possible

pairs in a network; the global efficiency (Eg) is the inverse

of the average distances between all pairs of nodes (Watts

and Strogatz, 1998; Newman, 2003). Brain network indices

were calculated using the Brain Connectivity Toolbox (http://

www.brain-connectivity-toolbox.net) (Rubinov and Sporns, 2010).

Network coefficient values, including clustering coefficient, path

length, global efficiency, and local efficiency for the alpha network

at each force level, including extremely hard, hard, somewhat hard,

light, and extremely light, are summarized in Table 1. Network

coefficient values, including clustering coefficient, path length,

global efficiency, and local efficiency for the beta network at each

force level, including extremely hard, hard, somewhat hard, light,

and extremely light, are summarized in Table 2.

4 Results and analysis

Sstatistical analyses were conducted using Minitab for

spearman correlation and Python for Locally Estimated Scatterplot

Smoothing. Given the ordinal nature of the comfort ratings (RPPC)

and the relatively small sample size (n = 12), a nonparametric

method to examine the relationships between subjective comfort

rating, applied force, and brain network indices. Spearman’s rank

correlation and Locally Estimated Scatterplot Smoothing (LOESS)

analyses were conducted. Spearman’s correlation was used to

quantify monotonic associations, while LOESS was applied to

visually assess potential nonlinear trends. These nonparametric
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FIGURE 2

Schematic illustration of the pipeline for the construction of a functional brain network based on EEG data using graph theory. The green line defines

the first approach, termed the “sensor signal” or “individual channels” method, while the red line defines the second approach, denoted as “EEG

source connectivity.” (a) Place the cap containing electrodes on the scalp. (b) Record the EEG time series. (c) Preprocess the data by cleaning,

filtering, removing artifacts, and epoching. (d) Solve the inverse problem by first estimating or imaging the head model (method 2). (e) Reconstruct

the electrical potential time source (method 2). (f) Parcel the source reconstructed epochs into the ROI (method 2). (g) Define the ROI for the

(Continued)
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FIGURE 2 (Continued)

epochs. (h) Develop the connectivity matrix for the selected ROI. (i) Develop the connectivity matrix for the selected EEG channels (method 1).

(j) Apply the threshold value(s) to binarize the connectivity matrix (methods 1 & 2). (k) Construct the scalp functional brain network between EEG

electrodes. (l) Construct the cortex functional brain network within the ROI. (m) Apply the network topological properties to calculate graph theory

measurements. (n) Apply statistical analysis methods. (o) Classify di�erent states, if needed.

TABLE 1 Network coe�cient values for di�erent force levels for alpha coherence network.

Applied Force Clustering coe�cient (CC) Path length (PL) Global e�ciency (Eg) Local e�ciency (El)

Extremely hard 0.2516 1.436 0.1715 0.278

Hard 0.251 1.446 0.1694 0.2765

Somewhat hard 0.2508 1.448 0.1694 0.276

Light 0.251 1.448 0.1694 0.2765

Extremely light 0.251 1.446 0.1695 0.2765

TABLE 2 Network coe�cient values for di�erent force levels for beta coherence network.

Applied Force Clustering coe�cient (CC) Path length (PL) Global e�ciency (Eg) Local e�ciency (El)

Extremely hard 0.2445 0.89205 0.2522 0.3238

Hard 0.244 0.89195 0.2524 0.3235

Somewhat hard 0.2441 0.89202 0.2523 0.32355

Light 0.2441 0.89203 0.2523 0.32345

Extremely light 0.2439 0.8919 0.25235 0.3234

statistical tests are suitable for small sample sizes to mitigate

assumptions about normality and enhance the robustness of

the findings.

4.1 Correlation between the RPPC and
applied forces

The results for all arm applied forces and related RPPC scores

at five applied force levels across all subjects (Figure 3). Spearman

correlation coefficients were calculated to determine whether there

is a correlation between RPPC and the applied forces (addressing

RQ1). The spearman correlation analysis revealed a significant

negative correlation between the RPPC and applied force (r =

−0.963; p < 0.01) (Figure 4). The LOESS curve supports that

comfort and force have an inverse relationship but not necessarily

linear (Figure 5).

4.2 Correlation between applied force and
network indices

Spearman correlation coefficients were calculated to investigate

the possible relationship between applied forces (N) and network

Indices (addressing RQ2). Significant results were found only for

global efficiency in the alpha coherence network and the path

length for the beta coherence network for two applied forces.

The extremely hard level of applied force positively correlated

with global efficiency in the alpha coherence network (r = 0.629,

p = 0.028, Figure 6) but did not correlate with any other network

indices. Figure 7 shows that the alpha coherence remains stable at

lower applied force levels and shows a nonlinear increase in middle

force levels. However, at the extremely hard level a slight decrease

occurs, suggesting a diminishing return in network efficiency

under extreme physical stress. At the light force level, there was a

negative correlation with path length in beta coherence network

(r = −0.643, p = 0.024, Figure 8). No significant correlations

were found between network indices and the other applied forces,

including somewhat hard, hard, and extremely light levels. Figure 9

demonstrates that LOESS curve is not perfectly straight for the light

force level and path length in beta coherence network.

4.3 Correlation between RPPC and network
indices

Spearman correlation coefficients were calculated to investigate

a possible relationship between the RPPC and network indices

(addressing RQ3). Meaningful results were only found extremely

hard and somewhat hard. At the extremely hard applied force

level, negative correlations were observed between comfort scores

and global efficiency for alpha coherence (Figure 10). Results from

LOESS curve shows a negative trend where low RPPC is associated

with lower alpha network coherence, possibly due to increased task

demand related to applied force (Figure 11).

On the contrary, at the somewhat hard applied force level,

positive correlations were found between comfort scores and

local efficiency for beta coherence (Figure 12). No significant
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FIGURE 3

Applied arm forces and rate of perceived physical comfort (RPPC) scores bar plot at di�erent applied force levels across all subjects.

FIGURE 4

Correlation of rate of perceived physical comfort (RPPC) and force

applied in Newton.

correlations were found between network indices and the other

force applied forces, including hard, light, and extremely light

flexion levels. LOESS curve at Figure 13 was developed revealing

a quite flat, indicating a minimal trend for non-linearity.

5 Discussion

The study aimed to explore the correlation between network

indices and subjective rating of perceived comforts (RPPC) in

response to physical activity. To achieve this, it was crucial to

quantify the association between RPPC and the applied forces

concerning different force levels. In addition to the association

between the applied forces with network indices. Participants were

required for an arm flexion task with different force levels to

rate their physical comfort using a subjective comfort rating scale

FIGURE 5

The LOESS curve of rate of perceived physical comfort (RPPC) and

force applied in Newton.

(Karwowski, 2018). Using the EEG technique, Neural data were

collected and quantified using network indices. The study focused

on quantifying the alpha and beta frequency bands since they

are the most frequently examined in physical activity demandable

tasks. For instance, the power for the alpha and beta bands increases

after exercise (Mima et al., 2000), mainly in prefrontal and motor

cortices (Maceri et al., 2019). Similar results were found after

an intense exercise (Bailey et al., 2008). However, Robertson and

Marino (2015) found an increase in the alpha wave at the prefrontal

but maintained for motor cortices.

Different methods were used to quantify the brain function in

physical activity, and these methods have been highly successful.

For example, the coherence between EEG and electromyography

has been widely used to investigate the synchronization between

muscle activity and motor cortex during motor tasks (Cisotto et al.,
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FIGURE 6

Correlation between extremely hard applied force and global

e�ciency for alpha coherence network (aEg_alpha_coh).

FIGURE 7

The LOESS curve of extremely hard applied force and global

e�ciency for alpha coherence network (aEg_alpha_coh).

2018). This method has shown successful results in rehabilitation

studies for improving the quality of life (Kim et al., 2017; Nakano,

2021) and artifact detection (Luu et al., 2024).

Recent advances in neural signal analysis methods have made

it possible to analyze the EEG data at a source level, especially

after establishing LORETA‘s families (Pascual-Marqui, 2007). This

led researchers to evaluate the functional brain connectivity of

EEG data (Stam and Reijneveld, 2007) such as in arm exertion

task (Ismail et al., 2022), cycling task (Tamburro et al., 2020; Lin

et al., 2021), exercise-induced modulations (Büchel et al., 2021),

combining working memory and exercise task (Porter et al., 2019),

and motor imaginary task (Alanis-Espinosa and Gutiérrez, 2019).

FIGURE 8

Correlation between light applied force and path length for beta

coherence network (aLp_beta_coh).

The novel contribution of our study was to explore the brain

network indices associated with the human perception of physical

comfort in static force flexion tasks. EEG coherence were previously

obtained for alpha and beta networks using eLORETA (Ismail and

Karwowski, 2023). Brain network indices were calculated using

the Brain Connectivity Toolbox (http://www.brain-connectivity-

toolbox.net) (Rubinov and Sporns, 2010), for the alpha and beta

network at each applied force level. For this purpose, the correlation

between the following was calculated and discussed. As some brain

network indices do not relate to perception of physical comfort

in a uniform manner, LOESS smoothing trends were applied to

explore the possibility that the relationship between comfort and

neurophysiological responses may not follow a strict linear pattern.

5.1 The correlation between RPPC and
applied forces

Based on our explorative findings, we observed that as the

difficulty of the force required for an arm flexion task increase, the

RPPC decreases (i.e., comfort decreases). Similar to our findings,

Lindegård et al. (2012) found a significant association between poor

perceived comfort and the increase of upper extremity disorders.

A LOESS curve fit revealed a nonlinear pattern, a LOESS curve

was developed, indicating a nonlinear but mostly downward trend,

reinforcing that comfort and force have an inverse relationship—

but not strictly linear.

5.2 The correlation between the applied
forces and network indices

A positive correlation between the extremely hard applied

force and global efficiency for alpha network was observed.

This finding aligns with studies that focus on the effect of

physical task complexity on brain network indices. During

an incremental-intensity exercise, the network efficiency first
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FIGURE 9

LOESS curve of light applied force and path length for beta

coherence network (aLp_beta_coh).

FIGURE 10

The correlation between the RPPC at extremely hard applied force

and global e�ciency for alpha coherence network (aEg_alpha_coh).

increases at low-moderate conditions and then decreases at

exhaustive exercise conditions (Porter et al., 2019). The result

might suggest that the brain is more efficient in transmitting

information during a high demandable force task but not an

exhaustive exercise conditions (Gu et al., 2023). A more efficient

network is associated with enhanced cognitive processing (Stanley

et al., 2015). Vigasina et al. (2023) found an increase in the

global efficiency of the alpha band for the left hemisphere

during a hand movement voluntary task, demonstrating that

it might be connected to executive functions. Furthermore,

authors support the existence of a small world network structure

during hand movement voluntary task. Therefore, at the

highest applied force levels, the increased cognitive and motor

demands may lead to a shift in neural processing patterns,

indicating a state of cognitive effort to sustain task performance

despite low comfort. To further investigate the relationship

between perceived task comfort and alpha coherence, we applied

FIGURE 11

The LOESS curve of RPPC at extremely hard applied force and

global e�ciency for alpha coherence network (aEg_alpha_coh).

FIGURE 12

Correlation between the RPPC at somewhat hard applied force and

local e�ciency for beta coherence network (aELoc_beta).

LOESS smoothing curve resulting in a nonlinear consistent

upward trend.

A negative correlation was found between the light force and

path length for the beta network. Generally, a reduction in the

network path length suggests a faster information transmission

between brain regions (Latora and Marchiori, 2003). Since beta

frequency is more related to cognitive function (Von Stein et al.,

1999), the reduction of the path length for the beta band

reflects a faster cortical activation during an extremely hard force

task. Our findings are similar to a recent article that showed

an improved cognitive function performance during physical

activity (Rodríguez-Serrano et al., 2024). Furthermore, a recent

study by Yuk et al. (2024) observed an increase in frontal beta

activity with higher resistance exercise, concluding that these

potential changes are an indication of changes in mood-related

symptoms. Therefore, a lower applied force a localized when

comfort remains high the brain maintains an efficient but localized

communication pattern.
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FIGURE 13

The LOESS curve of RPPC at somewhat hard applied force and local

e�ciency for beta coherence network (aELoc_beta).

5.3 A correlation between RPPC and
network indices

The negative correlation between RPPC and global efficiency

of alpha coherence at extremely hard force levels suggests that

as comfort decreases, the brain’s network becomes more efficient

in global information transfer, possibly indicating high cognitive

functional due to discomfort. A study concluded that increased

global efficiency in the alpha network during a cycle exercise

is attributed to increased alertness and readiness to respond

to stimuli during exercise (Tamburro et al., 2020). Accordingly,

perceiving a low-comfort physical task might indicate an increase

in the alertness of the brain activity. Lastly, positive correlation

between RPPC and local efficiency of beta coherence at somewhat

hard force levels suggests that higher comfort is associated with

more effective localized processing, reflecting a more balanced

neural response during s doomist hard exertion level. A mental

task study that used network indices to differentiate between a

mental task and a resting task indicated a high local efficiency

in beta frequency during a play task compared to a resting

task (Huang et al., 2016). The authors justify that high local

efficiency during the play task results from the involvement of

the task execution; thus, the brain network shows a prominent

level of internal organization. Consequently, we also may suggest

a more concentrated attentiveness in perceiving somewhat hard

physical comfort. The interpretations drawn from this study

remain hypothetical and based on previous literature findings

and should be confirmed with mediation analysis or causal

modeling techniques.

6 Study limitations and future
consideration

The application of network indices in engineering applications

is gaining attention, but their relationship to behavior still needs

to be better understood. Certain relationships remain unclear, such

as whether the increase in global efficiency enhances cognitive

functioning performance. Is the high local efficiency related to

better cognitive functioning processing? Does the relationship

differ with other connectivity measures, such as age, gender, task

intensity, force difficulty level, mental or physical workload, etc.?

A previous study highlights the importance of contextual exercise

variables (Büchel et al., 2021). Despite the significance of previous

research findings, a gap remains in the literature. The current

study is crucial step to providing a pathway to these unclear

behavioral relationships.

Our study is the first to compute the correlation between brain

network indices and physical comfort during a physical task that

requires different arm flexion force levels for female participants.

The findings provide novel neurophysiological metrics for assessing

ergonomic comfort perception. The study contributes to the

current body of knowledge by providing empirical evidence that

perception of physical comfort is associated with brain network

indices. This attempt could provide benefit to understanding

physical comfort perception not just based on subjective scales but

also through real-time neural monitoring. Real-time monitoring

provides benefits for break rescheduling and real time adjustment

to workload level. The findings of the study would also enhance

ergonomics and workplace design by minimizing the excessive

flexion force, particularly in repetitive or high-force demandable

tasks to ensure comfort threshold during physical task execution

and prevent WMSDs. Consequently, the approach will help in

minimizing employees with high risk to overexertion injuries,

muscle fatigue and strain.

This work underscores the need for further research,

particularly increasing the sample sizes and considering other

experiments with male participants (Yuk et al., 2024). Although

previous EEG studies have included modest number of participants

(Gutmann et al., 2015; Churchill et al., 2016; Zhang et al., 2021;

Wu et al., 2025) increasing the sample size and more diverse

participants is better for further generalization across populations.

This study is among the first to investigate the relationship between

brain responses and comfort perception during exertion tasks, and

our results are preliminary. Significant differences in brain results

were found in previous studies related to gender difference (Corsi-

Cabrera et al., 1993; Cantillo-Negrete et al., 2016; Hashemi et al.,

2016; Cave and Barry, 2021). Additionally, significant differences

in comfort perception, biomechanical differences, and judgments

between gender were observed (Karwowski, 1991; Rahman et al.,

2023). We also stress the importance of considering age differences

in future studies, as age is associated with different cognitive shifts

(Stanley et al., 2015). Although the current study was conducted

in a temperature-controlled laboratory to ensure data quality

and consistency due to brain signal artifacts, we recognize that

this might impact the ecological validity of the findings. Future

research should expand to more realistic or occupational settings.

This expansion will provide a deeper understanding of how
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environmental variables influence neurophysiological responses

and comfort perception during physical tasks. Additionally, some

psychological factors (e.g., stress, fatigue, motivation) were not

accounted for by the study, however, they may influence comfort

ratings or EEG results thus future work may consider mood

assessments scales.

Many previous studies have assessed brain functional

connectivity in cognitive complexity tasks (O’Connell and Basak,

2018), with minimal focus on physical activities related to work,

not just sports and exercise research. The literature offers a variety

of methods to quantify rhythmic functional connectivity (Bastos

and Schoffelen, 2016), and we urge the consideration of these

different methods to further our understanding of brain network

indices. While the current study primarily focuses on the alpha

and beta frequency bands, which are associated with motor activity

and sensorimotor processing. Future work should consider theta

and gamma bands as they are critically involved in high cognitive

processing, attention studies, working memory, andmental fatigue.

The nonlinear patterns observed from the LOESS curve highlight

the complexity of brain-comfort relationships indicating that

brain responses are not always linear to physical demand. The

findings are critical neuroergonomics research demonstrating that

future studies should consider larger and heterogeneous samples

using advanced statistical approaches such as mixed-effects

models or mediation analysis to better capture brain’s response.

Future studies should employ more comprehensive statistical

models such as partial correlations and multiple regression

analysis accounting into account the effect of confounders

such as body proportions (e.g., limb length), and muscle

mass distribution.

Finally, results from this study might be integrated with

novel mechanical assist devices such as exoskeletons for reducing

excessive exertion levels to maintain comfort, especially in

applications that requires prolonged force application. Moreover,

future studies might combine artificial intelligence technology for

creating an intelligent and adaptive workstation setup based on

real-time neuro physiological feedback.

7 Conclusions

The present study investigated the correlation between (a) the

rate of perceived physical comfort [RPPC and isometrically exerted

forces (IEF)] in an arm flexion task, (b) IEF and network theory

indices, and (c) RPPC and network theory indices. Results for

(a) showed a significant negative correlation between RPPC and

the applied forces. Results for (b) showed a positive correlation

between the IEF and global efficiency for the alpha network

coherence during an extremely hard arm flexion task. However,

during a light force flexion task, a negative correlation with

the path length of the EEG-beta coherence network was found.

The above indicates that highly demanding arm flexion tasks

result in a more efficient brain network activity, especially in

transmitting information related to cognitive processing. Results

for (c) showed a negative correlation between RPPC and global

efficiency for alpha coherence during an extremely hard task. On

the other hand, a positive correlation was found between RPPC

and the local efficiency of the beta coherence network during a

somewhat hard flexion task. Accordingly, we conclude that the

brain network demonstrates high level of internal organization

for arm flexion tasks perceived as highly comfortable. The

current findings provide important insights into understanding the

neurophysiological mechanism of human perception of comfort in

physical activities.
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