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Detecting sources of anger in
automated driving:
driving-related and external
factor
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1Valeo BRAIN Division, Annemasse, France, 2LESCOT, IFSTTAR, Univ Gustave Ei�el, Univ Lyon, Lyon,
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Introduction: Anger while driving is often provoked by on-road events like

sudden cut-o�s but can also arise from external factors, such as rumination of

negative thoughts. With the rise of autonomous vehicles, drivers are expected to

engage more in non-driving activities, potentially increasing the occurrence of

anger stemming from non-driving-related sources. Given the well-established

link between anger and aggressive driving behaviors, it is crucial to detect and

understand the various origins of anger in autonomous driving contexts to

enhance road safety.

Methods: This study investigates whether physiological (cardiac and respiratory

activities) and ocular indicators of anger vary depending on its source (driving-

related or external) in a simulated autonomous driving environment. Using a

combination of autobiographical recall (AR) for external anger induction and

driving-related scenarios (DS), 47 participants were exposed to anger and/or

neutral conditions across four groups.

Results: The results revealed that combined anger induction (incorporating

both external and driving-related sources) led to higher subjective anger ratings,

more heart rate variability. However, when examined separately, individual anger

sources did not produce significant di�erences in physiological responses and

ocular strategies.

Discussion: These results suggest that the combination of anger-inducing

events, rather than the specific source, is more likely to provoke a heightened

state of anger. Consequently, future research should employ combined

induction methods to e�ectively elicit anger in experimental settings. Moreover,

anger detection systems should focus on the overall interplay of contributing

factors rather than distinguishing between individual sources, as it is this

cumulative dynamic that more e�ectively triggers significant anger responses.

KEYWORDS

anger sources, anger detection, physiological indicators, ocular behavior, subjective

evaluations, automated driving

1 Introduction

Anger is the most studied emotion in driving (Zepf et al., 2020) because it has a

detrimental impact on driving performance (Jeon et al., 2014) and visual attention (Zhang

et al., 2016). Angry drivers are more likely to exhibit aggressive behavior (Mesken et al.,

2007; Precht et al., 2017) and may experience delayed reaction times (Steinhauser et al.,

2018). Anger can also negatively impact automated driving, resulting in reduced takeover

performance (Sanghavi et al., 2020). Given the prevalence of anger and its harmful effects

on driving, a lot of research has been carried out in recent years to detect (Zepf et al., 2020)
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and prevent or mitigate it (Braun et al., 2021). Nevertheless, the

question of the source of anger is rarely addressed. This study

focuses on anger detection, asking whether the source of anger is

important for the detection process.

Adopting the perspective of appraisal theorists (Moors et al.,

2013), anger arises as a consequence of how we evaluate a situation

(Wranik and Scherer, 2010). This recursive evaluation as described

in Scherer’s principal components model (Scherer, 2009), is based

on several key factors:

• Relevance (to my objectives).

• Implication (what does it imply for me, who are the actors and

what are their motives).

• Coping (what are my reaction options).

• Normative significance (in line with my values and

social norms).

For instance, anger may flare up when another driver’s

inappropriate behavior (implication) blocks us (coping), making

us late for an important appointment (relevance). Also, when for

example, a driver uses the emergency lane to overtake during a

traffic jam (normative significance). Behaviors like weaving and

cutting are commonly reported as major triggers of driver anger

(Wickens et al., 2013). In automated driving, vehicle behavior can

also influence the driver’s emotional state (Alsaid et al., 2023).

When given the opportunity, some drivers may take control of the

vehicle to prevent anger (coping) if it does not behave as they expect

(relevance; Pan et al., 2024). This tendency is especially pronounced

under time pressure (implications; Techer et al., 2019).

While anger during driving often stems from the driving

environment, it is not exclusive to it, and may involve external

factors. In particular, ruminating on episodes of anger while driving

could also be a form of anger during driving that negatively affects

performance (Suhr, 2016). Furthermore, the rise of autonomous

vehicles, which will encourage more non-driving activities, may

introduce additional sources of anger. Consequently, anger behind

the wheel can arise from a variety of sources, both related and

unrelated to the driving environment.

Although theories have long diverged on the very definition

of emotion (for a short review, see Thanapattheerakul et al.,

2018), many agree, and it is the case in the component process

model (Scherer, 2009), that emotions involve subjective feelings

and physiological and behavioral responses. In autonomous

driving, the behavioral aspect of driving is only observable

when the driver is taking control. As a result, only physiological

and subjective cues remain. Detecting physiological variations

in the driver could thus provide clues to his/her emotional

state. Because of large inter-individual differences, monitoring

physiological variations to infer the driver’s emotional

state is a major challenge pursued both by industrial and

academic research.

With the same aim of studying anger during driving,

researchers employ various induction methods such as videos,

images, music, autobiographical recall and driving scenarios (Zepf

et al., 2020). Even though many of these techniques have been

evaluated as suitable to induce anger (Siedlecka and Denson, 2019),

they nevertheless rely on different sources of anger (inherent or

not to driving). Two questions arise: Do these distinct sources

of anger are accompanied by similar or different subjective and

physiological responses? Does being angry before being confronted

with anger-provoking road events increase the intensity of the

feeling of anger and the associated physiological responses?

Answering this question would help determine whether the source

of anger matters in detecting anger during driving, and whether

it should influence the design of future studies and driver state

monitoring systems.

Most research on recognizing drivers’ emotions relies on

cardiac signals, followed by electrodermal and respiratory data

(Zepf et al., 2020). The Autonomic Nervous System (ANS), which

regulates various bodily functions, plays a critical role. It is divided

into two main branches: the sympathetic and parasympathetic

systems, typically associated with arousing and calming effects,

respectively. Emotional arousal (whether positive or negative)

activates the sympathetic system, and these changes can be

observed in the cardiac and respiratory signals. As described in

Li and Zheng (2022), the standard deviation of all normal to

normal RR intervals (SDNN) reflects, in the time domain, the

balance between sympathetic and parasympathetic activity. RR

intervals correspond to the time between two heart beats [R

peaks on an electrocardiogram (ECG)]. The mean of the squared

successive differences between adjacent RR intervals (RMSSD) is

an indicator of parasympathetic activity. In the frequency domain,

high frequencies (HF) are indicative of parasympathetic activity,

while low frequencies (LF) mainly reflect sympathetic activity.

The LF/HF ratio thus represents the relationship between these

two activities. Negative emotions, such as fear and anger, are

typically linked to reduced parasympathetic activity, as indicated

by lower HF and RMSSD values. The relationship between anger

and sympathetic activity, measured by heart rate variability (HRV),

is more nuanced and remains a topic of debate (Gullett et al., 2023).

Although general trends linking ANS responses to emotions

have been observed (Kreibig, 2010), significant variations exist

across studies. These variations seem to be more pronounced for

studies presenting inductions unrelated to driving activity (see

Table 1). Using the driving scenario (DS) to induce anger, an

elevated heart rate (HR) was observed in Wan et al. (2017) and

Stephens and Groeger (2011) but no variation in Wang et al.

(2024) and Mesken et al. (2007). While anger is induced by

non-driving related methods such as autobiographical recall (AR)

or films, some authors found increased HR (FakhrHosseini and

Jeon, 2019; Marci et al., 2007; Rainville et al., 2006), decrease HR

(Lafont et al., 2018, 2019) or no variation (Francis et al., 2015;

Wu et al., 2019). On HRV indicators, when anger is induced by

DS, the anger group showed an increase in SDNN though no

significant changes in RMSSD, LF, HF, and LF/HF (Wang et al.,

2024). With non-driving related methods, Marci et al. (2007)

reported a decrease in HF while non-significant modulation was

measured in Rainville et al. (2006) and an increase is observed in

Francis et al. (2015). LF was increased in Francis et al. (2015) and

McCraty et al. (1995). A decrease in the LF/HF ratio alongside

an augmentation of RMSSD was also observed in Lafont et al.

(2019).

On respiration, breath rate (BR) was higher inWan et al. (2017)

and no different inWang et al. (2024) while regarding induction by

DS. BR was higher in Francis et al. (2015) and Rainville et al. (2006)

following non-driving-related induction.
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In addition to physiological data, eye behavior data can

provide valuable insights into a driver’s emotional and attentional

state (Skaramagkas et al., 2021). A major advantage for future

driver-monitoring systems is that this data can be accessed by

infra-red camera without obstructing the driver. Anger during

driving impairs the ability to perceive potential hazards (Zhang

et al., 2016; Pan et al., 2024) and delays the localization of road

elements (Jallais et al., 2014). However, there is no consensus

on which specific eye characteristics are the most reliable for

recognizing emotions (Lim et al., 2020). Despite this, multiple

studies, with more evidence for anger induced by DS, suggest

a common visual pattern associated with anger. For instance,

aggressive drivers have reduced horizontal visual scanning, reduced

saccade amplitudes and spend less time monitoring the peripheral

environment (Lafont et al., 2018; Li G. et al., 2020; Zhang

et al., 2016). They also tend to fixate more on the central field

of view (Huo et al., 2020). Pan et al. (2024) examined anger

induction in a study where participants had to regain control of

an autonomous vehicle in response to a system failure. Anger

induced using a video clip and AR, led to a narrowing of visual

scanning, reduced horizontal gaze variance, and prolonged fixation

durations. Expanding on this, rumination on negative thoughts

increases the likelihood of mind-wandering episodes (Albert et al.,

2022), which in turn leads to a narrowing of visual attention

while driving (He et al., 2011). Collectively, these findings suggest

that anger, regardless of whether it originates from driving or

unrelated factors, results in a narrowing visual scanning pattern,

impairing drivers’ ability to detect potential hazards. Consequently,

both sources of anger appear to be associated with similar

ocular behaviors.

To summarize, it would appear that anger induced by DS or
AR generally increases HR and BR and leads to a narrower visual

scanning. HRV data most often show increased cardiac variability,

attributed to sympathetic activity (LF, LF/HF, SDNN). However,

less consistent findings in HRV and little evidence from ocular
behavior, are highlighted by studies inducing anger by methods

unrelated to the driving environment. Finally, being confronted

with irritating road events while already angry is not studied,
leaving the question open. A summary of the exposed literature is

provided in Table 1.

Are the physiological differences reported in these studies
due to the difference in anger induction methods? What are

the impacts of a combination of these methods? Are the signs

of eye behavior (i.e., reduced visual field) common to sources
of anger? This study aims to answer this by examining the

physiological and ocular markers of anger induced by driving-

related scenarios (DS) and/or external sources (Autobiographical

Recall, AR) in an automated driving context. We used autonomous

driving to minimize the impact of motor actions on physiological

responses, recognizing that anger can also arise without controlling

the vehicle (Techer et al., 2019). Subjectively, we hypothesize

that both DS and AR inductions will similarly elevate subjective

anger, marked by increased arousal and diminished valence and

perceived control, with combined inductions producing stronger

effects. Physiologically, we expect both AR and DS elevate HR

and BR with differences regarding variabilities: we expect DS-

induced anger provoking higher cardiac variability (increased

SDNN, LF, LF/HF and reduced HF, RMSSD) and respiratory

TABLE 1 Summary of physiological and ocular modulations depending

on the source of anger in the cited articles.

Indicators Anger induction method

Related to
driving

Unrelated to
driving

Cardiac

HR ↑ (Stephens and
Groeger, 2011; Wan
et al., 2017) ns (Mesken
et al., 2007; Wang et al.,
2024)

↑ (FakhrHosseini and
Jeon, 2019; Marci
et al., 2007; McCraty
et al., 1995; Rainville
et al., 2006)
↓ (Lafont et al., 2018,
2019)
ns (Francis et al.,
2015; Wu et al., 2019)

SDNN ↑ (Wang et al., 2024) ↑ (Francis et al., 2015)
ns (FakhrHosseini
and Jeon, 2019)

RMSSD ns (Wang et al., 2024) ↑ (Lafont et al., 2019)

LF ↑ (Wan et al., 2017) ns
(Wang et al., 2024)

↑ (Francis et al., 2015;
McCraty et al., 1995)

HF ns (Wang et al., 2024) ↑ (Francis et al., 2015)
↓ (Marci et al., 2007)
ns (McCraty et al.,
1995; Rainville et al.,
2006)

LF/HF ns (Wang et al., 2024) ↑ (McCraty et al.,
1995)
↓ (Lafont et al., 2018)

Respiratory

BR ↑ (Wan et al., 2017) ns
(Wang et al., 2024)

↑ (Francis et al., 2015;
Rainville et al., 2006)

Ocular

Saccade amplitude ↓ (Lafont et al., 2018)

Fixations ↑ fixations on front view
>dashboard (Li G. et al.,
2020) ↑ fixations on
front view (Huo et al.,
2020) ns vertical gaze
variance (Zhang et al.,
2016) ↓ horizontal gaze
variance (Zhang et al.,
2016)

↑ longer fixations
duration (Pan et al.,
2024)
↓ horizontal gaze
variance (Pan et al.,
2024)

↑ indicates a significant increase; ↓ indicates a significant decrease; ns indicates a non-

significant effect.

variability (reduced RMSSD) associated with excitatory activity.

We further expect that the combination of induction would

increase these variations. Regarding ocular data, we hypothesize

that, compared to a neutral state, anger whether induced

by AR or DS would lead to a decline in visual attention,

characterized by reduced horizontal scanning and fewer fixations

on rear-view mirrors. Finally, given the lack of consensus in

the literature regarding the relationship between subjective and

physiological manifestations, we aim to further investigate these

connections. Specifically, we hypothesize that self-reported levels

of anger and arousal will be strongly positively correlated with

the HRV indicators SDNN, LF, and LF/HF. The results could
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TABLE 2 Composition of groups: mean age (SD) and sex distribution and

experimental session assigned.

Characteristics Names of groups

aa na an nn

Associated inductions

Anger AR
Anger
DS

Neutral
AR

Anger DS

Anger
AR

Neutral
DS

Neutral
AR

Neutral
DS

N 13 12 12 10

Age (SD) 34.00 (10.93) 37.97 (14.95) 38.14
(13.46)

34.72 (11.18)

Driving experience 16.08 (12.72) 19.67 (15.49) 20.41
(13.19)

15.33 (11.47)

M 8 7 7 7

F 5 5 5 3

inform the design of in-car systems that monitor comprehensive

anger dynamics, contributing to safer driving conditions in

automated vehicles.

2 Materials and methods

2.1 Participants

Fifty-three French volunteers were involved. All were Valeo’s

workers and had a valid driving license for at least 3 years. Six

participants were removed from the analysis due to simulator

issues, a poor-quality cardiac signal (>15% of missing data) or

poor compliance with instructions. Participants were divided into

four groups (aa, an, na, nn), where each group experienced

different combinations of emotional induction (anger or neutral)

through two techniques: Autobiographical Recall (AR) and Driving

Scenario (DS). The group names reflect the specific conditions,

such as “na” for neutral AR and anger DS. Thirteen participants

remained in the aa group, 12 in na, 12 in an, and 10 in the nn group.

A detailed composition of the groups is presented in Table 2.

2.2 Experimental design

A between-subjects factorial design was employed with Group

(aa, an, na, nn) as the only factor.

2.3 Apparatus

Unity 3D software and a fixed-base driving simulator composed

of a Logitech G29 steering wheel and pedal set were used (Figure 1).

Participants were seated 220–240 cm (adjustable seat) from a 65-

in. screen. BIOPAC MP160 was used to collect measurements of

cardiac and respiratory signals (RSP) at a sampling rate of 500Hz.

The electrocardiogram signal (ECG) was collected from three pre-

gelled electrodes (Ag-AgCl) placed on the participant’s chest. The

respiratory signal was collected from a respiration belt placed right

under the chest. Finally, Fovio, a desktop eye tracker was used to

capture ocular metrics at a sampling rate of 62 Hz.

2.4 Anger induction materials

2.4.1 Autobiographical recall (AR)
The autobiographical recall technique consists in asking

individuals to write down a personal memory in which they

strongly experienced the targeted emotion. Similar to the study by

Jallais and Gilet (2010), participants were given 10min to complete

this task. The participants in the anger conditions were asked to

recall and write down a situation in which they had experienced

anger. They were encouraged to include as many details as possible

and to vividly recount the event. For the induction of a neutral

emotional state, participants were asked to describe their daily

routine for the same duration. Autobiographical recall was chosen

because it is the method that most closely approximates the

rumination of negative thoughts that individuals might experience

while driving.

2.4.2 Driving scenario (DS)
Participants were involved either in anger or neutral scenarios.

These scenarios were designed to be comparable. Since the ego

vehicle operated in autonomous mode, the speed and behavior of

both the ego vehicle and surrounding vehicles in the simulation

were fully controlled. Four specific events were created to provoke

anger in the anger scenario. A detailed description of these events,

along with their counterparts in the neutral scenario, is provided in

the Supplementary material.

2.5 Measures

2.5.1 Subjective measures
We asked participants to subjectively report their current

emotional state according to both dimensional and categorical

emotional scales. This double questioning allowed participants

to express their emotional state in different ways, giving us a

clearer picture. Also, as the autobiographical recall technique can

induce other closely related states such as sadness (Mills and

D’Mello, 2014), assessing individuals across multiple emotional

states allows us to confirm whether the targeted emotion is indeed

the predominant one felt.

2.5.1.1 Dimensional scales
The Self-Assessment Manikin (SAM; Bradley and Lang, 1994)

a simple visual questionnaire was employed to evaluate valence,

arousal and the control dimensions of their emotional state.

Definitions given to them were: “Valence, evaluate from negative

(left) to positive (right) your emotional state;” “Arousal, evaluate

from arouse (left) to calm (right) your emotional state;” “Control,

Evaluate from low (left) to high (right) the level of control you exert

on your emotional state.
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FIGURE 1

Overview of the driving simulator. Left (A) View of the cabin and screen, Right (B), (1) Position of the eye tracker system, (2) Position of the tactile

tablet used to transmit instructions and emotion questionnaires during the experiment.

2.5.1.2 Categorical scale
For the categorical scales, we asked participants to evaluate

from 0 (not at all) to 100 (totally) the level of anger, frustration,

joy, pleasure, sadness, disappointment, relief, and serenity felt.

The words were chosen to provide a broad spectrum of different

emotions to define their state.

2.5.2 Physiological and ocular measures
ECG, RSP and eye tracking data were collected from

participants all along the experiment. For the ECG and RSP

signals, the heart/breath rate (HR, BR) and heart/breath rate

variabilities (HRV/BRV) measures were used. The HRV and BRV

measures included the root mean square of successive difference

(RMSSD). HRV measures also included the standard deviation of

normal to normal interval (SDNN), the low and high frequencies

(LF and HF) and the ratio LF/HF. Eye metrics were relative

to the number of fixations on the peripheral (interior and side

mirrors) driving environment and the horizontal/vertical gaze

variance (HGV, VGV).

2.6 Protocol

After participants fulfilled the consent form, we equipped them

with all sensors. We then installed them comfortably in the driving

simulator cabin and we proceeded to calibrate the eye tracker. The

protocol is summarized in Figure 2 and the four steps of training,

baseline, AR and DS are documented below.

2.6.1 Training
Participants were trained for ∼5min to drive manually and

to switch on/off the autonomous driving mode while respecting

system alerts. They were also instructed on how to complete

dimensional and categorical emotion questionnaires on the tablet.

2.6.2 Baseline
We first conducted a 5-min rest baseline in which participants

were seated in the cabin and instructed to do nothing but keep

their eyes open. The baseline is further used for data normalization

(see Section 2.7.1).

2.6.3 Autobiographical recall (AR)
The anger/neutral emotion induction by the autobiographical

procedure was performed for 10min (see Section 2.4).

2.6.4 Driving scenario (DS)
Likewise, during the training phase, they were instructed to

drive in manual mode while following traffic laws and to switch the

autonomous driving mode on and off in response to system alerts.

They started in manual mode and quickly the system asked them

to give control. During the autonomous drive, four events were

manipulated in order to induce anger (see Section 2.4). Moreover,

in order to prolong the effect of the emotional induction, they had

to constantly think about their emotional experience as long as

the vehicle was in autonomous driving mode. The scenario lasted

10 min.
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FIGURE 2

Time course of the experiment. Subjective evaluations are assessed after the baseline, post AR and post DS. Anger e�ects in physiological and ocular

data are only measured from the last minute of the driving scenario.

After baseline, AR and DS phases, participants had to

report their emotional state by completing the dimensional and

categorical emotion assessments.

2.7 Data analysis

2.7.1 Data preprocessing
We applied a band-pass filter between 2 and 40Hz. The Python

toolbox Neurokit2 (version 0.2.0; Makowski et al., 2021) and hrv-

analysis (version 1.0.4; Champseix et al., 2021) was used in order to

find peaks in ECG and RSP signals then calculated corresponding

features (see Section 2.5). Because some peaks in ECG may be

misplaced or absent (e.g., in case of artifacts caused bymovements),

all ECG signals were manually checked and peaks were replaced

if the algorithm failed to do it. A time window of 60 s without

overlapping was used in features calculation.

Delta scores were calculated from subjective (emotion

questionnaires) and physiological (ECG, RSP) raw data.

The following transformation was employed for the

subjective data:

Delta(Post AR) = Raw(Post AR) − Raw(Baseline)

Delta(Post DS) = Raw(Post DS) − Raw(Baseline)

The following transformation was employed for the

physiological data (cardiac, respiratory, and electrodermal

activities):

Delta(Last minute of DS) =

Raw(Last minute of DS) − Mean(Baseline)

Mean(Baseline)

Concerning eye tracking, raw data were kept for analysis

because we did not instruct participants to watch the driving

environment during the baseline phase.

2.8 Statistical analysis

To determine whether anger induced from different sources

(unrelated vs. driving-related) leads to different subjective

and physiological responses, we analyzed the subjective and

physiological data feature by feature. The subjective data analyzed

in this section correspond to the categorical and dimensional

emotion assessments completed by participants. Delta scores

(difference from baseline) are compared between groups for each

moment (Post AR and Post DS) of assessment. For physiological

data, delta scores (ratio from baseline) are compared between

groups during the last minute of the automated driving scenario.

For ocular data, because of the difference between anger and

neutral DS, raw scores were compared between the groups aa-na

(anger DS) and an-nn (neutral DS) during the last minute of the

automated driving scenario.

The normality of residuals was not assumed for a large majority

of the features explored (checked visually from Q-Q plots and

calculated with Shapiro-Wilk statistical tests). Therefore, we used

the Kruskal-Wallis test, a non-parametric method enabling us to

assess differences between the scores of more than two independent

groups. R studio (version 2022.12.0) was used for data analysis.

Post-hoc comparisons were conducted using Dunn’s test with

Bonferroni corrections (with p < 0.05).

To further explore the relationship between subjective feelings

and physiological manifestations, we analyzed correlations

by calculating Spearman correlation coefficients. Bonferroni

corrections were applied with p < 0.05.

3 Results

3.1 Subjective evidence

3.1.1 Dimensional scales assessments
The results are described below and illustrated in Figure 3.
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FIGURE 3

Mean delta scores (di�erence from baseline) of Valence, Arousal and Control dimensional scale at the di�erent moments (Post AR, Post DS) of the

experiment and across the four groups. Error bars represent standard errors. Significant pairwise group comparisons (p < 0.05) are reported.

Post AR
Kruskal-Wallis test analysis revealed differences among groups

for the valence [χ2
(3) = 21.127, p < 0.001, η² = 0.422], arousal

[χ2
(3) = 16.044, p < 0.01, η² = 0.303], and control [χ2

(3) =

13.643, p < 0.01, η² = 0.248] dimensions. Post hoc test revealed

that the score of valence is lower in the aa and an groups

than both na and nn (aa-na, Z = −4.11, p < 0.001; aa-

nn, Z = −2.98, p = 0.017; an-na, Z = −3.12, p = 0.011).

The score of arousal is higher for aa and an groups only in

comparison to the nn group (aa-nn, Z = 3.32, p = 0.005; an-

nn, Z = 3.10, p = 0.012). The score of control is lower in aa

than nn and na groups (aa-nn, Z = −2.94, p = 0.020; aa-na,

Z =−2.66, p= 0.047).

Post DS
Kruskal-Wallis test analysis revealed differences among groups

for the valence [χ2
(3) = 12.827, p < 0.01, η² = 0.229], arousal

[χ2
(3) = 15.292, p < 0.01, η² = 0.286], and control [χ2

(3) = 7.943,

p < 0.05, η² = 0.115]. Post hoc test revealed that the score of

valence is lower in the aa group compared to the na and nn

groups (aa-na, Z = −2.78, p = 0.032; aa-nn, Z = −3.10, p =

0.012). The score of arousal remained significantly higher for aa,

na, and an compared to nn (aa-nn, Z = 3.78, p < 0.001; na-

nn, Z = 2.87, p = 0.025; an-nn, Z = 2.65, p = 0.049). Post hoc

tests did not reveal significant differences between groups for the

control dimension.

Because our hypotheses focus solely on the anger score,

and in order to facilitate reading, only significant pairwise

comparisons about anger evaluation are fully described

below and illustrated in Figure 4. Results of Kruskal-Wallis

tests for each categorical emotion are provided in the

Supplementary material.

3.1.2 Categorical emotion assessments
Post AR

Kruskal-Wallis test analysis revealed differences among groups

for anger [χ2
(3) = 32.873, p < 0.001, η² = 0.695], frustration [χ2

(3)

=12.467, p < 0.01, η² = 0.220], joy [χ2
(3) =17.202, p < 0.001,

η² = 0.330], pleasure [χ2
(3) = 20.388, p < 0.001, η² = 0.404],

sadness [χ2
(3) =10.712, p < 0.05, η²= 0.179], disappointment [χ2

(3)

=13.488, p< 0.01, η²= 0.244], and serenity [χ2
(3) =9.696, p< 0.05,

η² = 0.156]. Post hoc test revealed that the score of anger is higher

in the aa and an groups than both na and nn groups (aa-na, Z =
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FIGURE 4

Mean delta scores (di�erence from baseline) of the Anger emotion scale at the di�erent moments (Post AR, Post DS) of the experiment and across

the four groups. Error bars represent standard errors. Significant pairwise group comparisons (p < 0.05) are reported.

4.70, p < 0.001; aa-nn, Z = 4.16, p < 0.001; an-na, Z = 3.76, p =

0.004; an-nn, Z = 3.27, p= 0.006).

Post DS
Kruskal-Wallis test analysis revealed differences among groups

for anger [χ2
(3) = 10.441, p < 0.05, η²= 0.173] and disappointment

[χ2
(3) = 8.652, p< 0.05, η²= 0.131]. Post hoc test revealed for anger

that the difference aa-nn remained significant (Z= 3.17, p= 0.009).

Nevertheless, the na group did not differ significantly (Z = 2.27, p

= 0.140) from the control group.

3.2 Physiological and ocular evidence

3.2.1 ECG
Kruskal-Wallis test analysis revealed only differences between

groups inHRV_SDNN [χ2
(3) = 10.357, p< 0.05, η²= 0.171]. Nearly

significant differences are also observed for HRV_LF [χ2
(3) = 7.477,

p = 0.058, η² = 0.104]. Post hoc tests revealed that the aa group

showed an increase in SDNN compared to an (Z= 2.89, p= 0.023).

No significant results were obtained for HR, BR, LF/HF, HF,

HRV_RMSSD (ps > 0.150, see Supplementary material).

3.2.2 RSP
Kruskal-Wallis test analysis revealed nearly significant

differences between groups in BRV_RMSSD [χ2
(3) = 7.749, p =

0.052, η² = 0.110]. The score of RMSSD tended (Z = −2.56, p =

0.063) to be higher for the nn group than the na group.

3.2.3 Eye tracking
Neither Kruskal-Wallis tests of VGV, HGV and the number of

fixations on mirrors reached significance for the aa-na and an-nn

comparisons (ps > 0.217, see Supplementary material).

Significant results are illustrated in Figure 5 and summarized in

Table 3.

3.3 Correlations analysis between
subjective, physiological, and ocular data

Spearman correlations analysis were performed to examine

the relationships between subjective reports and physiological

variables (Table 4). Only strong correlations are observed within

subjective and cardiac data. Notably, the arousal dimension was

positively correlated with anger (rho = 0.55; p < 0.01) and

negatively correlated with valence (rho=−0.49; p< 0.05). Valence

is positively correlated with control (rho = 0.61; p < 0.001).

HRV_SDNNwas positively correlated with HRV_LF (rho= 0.64; p

< 0.001) and HRV_RMSSD (rho = 0.60; p < 0.001). HRV_LF was

also positively correlated with HRV_LF/HF (rho= 0.79; p < 0.001)

and HRV_RMSSD with HRV_HF (rho= 0.57; p < 0.01). However,

no significant correlations were observed between subjective and

physiological measures.
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FIGURE 5

Delta scores (rapport from baseline) across groups for HRV_SDNN, HRV_LF and BRV_RMSSD during the last minute of the driving scenarios. Error

bars represent standard errors. *p < 0.05; . < 0.10.

4 Discussion

Anger is prevalent in driving contexts (Underwood et al., 1999)

and can arise from both on-road incidents and external influences,

such as sudden cut-offs (Wickens et al., 2013) and negative

thought rumination (Suhr, 2016). Given the well-established

positive correlation between anger and aggressive driving behaviors

(Bogdan et al., 2016), monitoring the driver’s emotional state is

crucial to enhance road safety. To effectively detect and mitigate

anger during driving, it is imperative to understand how anger,

originating from both driving environments and external factors,

affects physiological responses and visual strategies. This study

aimed to explore these dynamics, focusing on how the individual

and combined effects of different anger sources impact subjective,

physiological responses and visual behavior in driving context.

Such understanding is essential to guide the development of

adaptive in-car systems and improve driver safety.

We investigated two distinct sources of anger: non-driving-

related anger induced via Autobiographical Recall (AR) and

anger triggered by driving-related events during automated

driving (Driving Scenario, DS). By employing automated driving,

motor activity’s influence on physiological signals was minimized,

ensuring a clearer assessment of emotional responses. AR

simulated rumination of negative thoughts while DS involved

realistic scenarios that could provoke anger during driving.

Each induction was followed by measurements using subjective

reports (dimensional and categorical scales). The physiological data

(ECG, RSP), and ocular behavior from the last minute of the

driving scenario were compared between groups to assess anger’s

impact comprehensively.

The results obtained here demonstrated that combined anger

sources elicited more pronounced emotional and physiological

responses than either source individually. Specifically, no

significant physiological and ocular differences were observed

between the two sources when tested separately; however, their

subjective emotional impacts varied. AR induced a wider range

of negative emotions, including frustration and sadness, while DS

revealed large individual variability in anger intensity.

After discussing the effectiveness of the anger induction

techniques used in this study, the subjective, physiological, and

ocular evidence highlighted in the results is discussed below and

some implications are given for the development of anger control

and regulation systems.

4.1 E�ectiveness of AR and DS induction

The effectiveness of AR in inducing anger was consistent

with literature findings (e.g., Jallais and Gilet, 2010). Participants

reported high arousal, alongside reduced valence and control

immediately after AR induction. Interestingly, while anger was

the dominant emotion, other negative feelings such as sadness

and frustration also emerged, consistent with (Mills and D’Mello,

2014). One interesting finding concerns the differences between

groups an-aa and an-nn. In an and aa, participants were first

induced in anger by AR and reported (in post AR measurement)

an increase in anger and arousal alongside a reduced valence. In

the an group (confronted to neutral DS), the anger and valence

modulations faded over time (in the post DS measurement)

while the increase in arousal remained. In the control group
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TABLE 3 Summary of significant results of Kruskal-Wallis tests regarding subjective (valence, arousal, control, anger), cardiac, respiratory, and eye

tracking data.

Indicators Moment χ
2 p η² Group

di�erences

Subjective

Anger Post AR 32.873 <0.001 0.695 aa > nn (Z = 4.16, p
< 0.001) aa > na (Z =

4.70, p < 0.001) an > nn
(Z = 3.27, p= 0.006) an

> na (Z = 3.76, p
= 0.004)

Post DS 10.441 <0.05 0.173 aa > nn (Z = 3.17, p=
0.009)

Arousal Post AR 16.044 <0.01 0.303 aa > nn (Z = 3.32, p
= 0.005) an > nn (Z =

3.10, p= 0.012)

Post DS 15.292 <0.01 0.286 aa > nn (Z = 3.78, p
< 0.001) an > nn (Z =

2.65, p= 0.049) na > nn
(Z = 2.87, p= 0.025)

Valence Post AR 21.127 <0.001 0.422 aa < na (Z =−4.11, p
< 0.001) an < na (Z =

−3.12, p= 0.011) aa <

nn (Z =−2.98, p
= 0.017)

Post DS 12.827 <0.01 0.229 aa < nn (Z =−3.10, p
= 0.012) aa < na (Z =

−2.78, p= 0.032)

Control Post AR 13.643 <0.01 0.248 aa < nn (Z =−2.94, p
= 0.020) aa < na (Z =

−2.66, p= 0.047)

Post DS 7.944 <0.05 0.115

Cardiac

HRV_SDNN Last minute of DS 10.357 <0.05 0.171 aa > an (Z = 2.89, p=
0.023)

HRV_LF Last minute of DS 7.477 0.058 0.104

Respiration

BRV_RMSSD Last minute of DS 7.749 0.052 0.110

(nn), no emotional modulation is observed. This suggests that

AR differently modulates anger, valence, and arousal over time.

Valence and anger are modulated over a short period, while

arousal is modulated over a longer period. Therefore, studies that

induce anger using AR and assess its effects solely through anger

levels (e.g., FakhrHosseini and Jeon, 2019) should also consider

arousal and valence levels to provide a more comprehensive

understanding. Additionally, future research should investigate the

duration of anger and valence post-induction to better understand

their temporal dynamics. To prolong the emotional impact of

AR-induced anger, future studies might benefit from integrating

emotionally charged music alongside AR (Braun et al., 2018;

Steinhauser et al., 2018) to sustain the induced emotional state for

longer periods.

For the DS, incorporating specific impeding events caused

minor increases in anger, arousal, and disappointment. Notably,

no modulation of valence was observed. While AR effectively

reduced valence levels at short-term, DS alone (in the na group)

did not produce the same effect. This finding should be considered

alongside the fact that AR induced sadness, an emotion with

negative valence, that DS did not trigger. Thus, although both

techniques influenced anger and arousal levels, only AR affected

the valence dimensions. Moreover, DS introduced more variability

in anger levels than AR did. This variability echoes the findings of

Cazes et al. (2024) on the different profiles of drivers in autonomous

driving. Faced with the same situations on the road, participants’

reactions differ, ranging from those wishing to take control at the

slightest complication to those letting the system handle everything

as long as there are no alerts. We therefore believe that the different

anger reactions of our participants are linked to these differences

in profiles. Those who felt little or no anger in the angry driving

scenario may be those who don’t want to be in control of the

vehicle, letting the system handle any situation. Conversely, those

with high anger scores may present a profile of drivers wanting to

regain control at all costs in any situation. We recommend that

future studies on the autonomous driving paradigm integrate the
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TABLE 4 Spearman correlations between subjective and physiological variables.

Variables

Variables 1 2 3 4 5 6 7 8 9 10

1. Anger

2. Valence

3. Arousal 0.55 −0.49

4. Control 0.61

5. HRV_SDNN

6. HRV_LF 0.64

7. HRV_LF/HF 0.79

8. HRV_RMSSD 0.60

9. HRV_HF 0.57

10. BRV_RMSSD

dimension of situational control, by assessing, for example, the

level of trust in automation (Körber et al., 2018) and the locus of

control (Özkan and Lajunen, 2005). Drivers with high takeover

willingness should be a focus of further study, as they are prone

to more aggressive behaviors during takeovers (Pan et al., 2024).

The differences observed in the emotions felt after AR and

DS inductions resonate with the study of Parkinson’s (2001).

Responses from questionnaires highlighted that anger experienced

while driving tends to be less intense but more distinct, with fewer

emotional blends, compared to anger unrelated to the driving

activity. The dimension of valence thus seems to be decisive

in understanding the source of anger. Research by Du et al.

(2020) suggests that emotional valence, regardless of arousal level,

significantly affects takeover performance in automated driving. In

our correlation analysis, the level of emotional valence was not

correlated with any of the physiological indicators investigated in

this study. This analysis was made between subjective measures

taken at post DS and physiological measures taken from the

last minute of DS. However, we have previously discussed

that valence modulation seems to occur in the short term

after AR induction. Thus, while changes in emotional valence

influence driving performance, they may not be easily captured by

heart/breath physiological measures. To enhance the sensitivity and

accuracy of in-vehicle emotional monitoring systems, it is crucial

to incorporate additional indicators that can capture emotional

valence. We suggest that future studies explore the use of facial

expression analysis as a promising approach. Recent advancements

in deep learning, such as those reported by Toisoul et al. (2021),

have shown encouraging results in detecting subtle changes in

facial expressions.

4.2 Evidence from physiological data

Our findings do not support the commonly reported elevation

in HR found in previous literature (e.g., FakhrHosseini and Jeon,

2019). Instead, they align with studies that report no significant

effects (e.g., Wang et al., 2024). However, HRV data underscored

autonomic nervous system activation. The double-induced group

presented increased heart rate variability (SDNN, LF (nearly-

significant) values) without any change in RMSSD and HF values.

These differences were particularly significant for SDNN when

comparing the aa group with the an group.

SDNN serves as a global measure of long-term sympathetic

and parasympathetic activity, while RMSSD and HF primarily

reflect parasympathetic modulation, and LF is more indicative of

sympathetic activation (Li and Zheng, 2022). Correlation analyses

in our study revealed strong associations between SDNN and

LF, SDNN and RMSSD, and SDNN and LF/HF. However, no

significant correlations were found between subjective emotional

responses and physiological measures. The relationship between

anger, and SDNN remains debated in the literature. Some studies

have reported an increase in SDNN following DS induction (Wang

et al., 2024), while others have found no effect of AR induction on

SDNN (FakhrHosseini and Jeon, 2019). In our study, neither AR

norDS alone significantlymodulated SDNN, but their combination

did. On average, anger scores increased by almost 20 points (out

of 100) for the an and na groups, and by almost 30 for the

aa group. In Wang et al. (2024) participants reported raw anger

scores between 49 and 76 in relation to the events in the driving

scenario. This suggests that anger may require a certain intensity

threshold before SDNN changes become evident. The observed

change may also be linked to regulatory strategies implemented

by the participants. Indeed, emotional regulation strategies could

influence SDNN outcomes. For instance, Francis et al. (2015) found

that SDNN increased following anger induction via arithmetic tasks

and video clips, but rather for participants who had previously

taken part in a biofeedback regulation exercise. Further research

is needed to clarify the relationship between anger and HRV. To

do this, it would be interesting to propose a regulation exercise to

the aa and nn groups and compare their SDNN values with the

initial groups.

Respiratory data revealed that the na group exhibited near-

significant lower RMSSD value compared to the nn group. This

supports findings fromRitsert et al. (2022) and Soni andMuniyandi

(2019), which noted higher RMSSD levels in relaxed individuals

or meditators. This marker could be worth exploring further
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to dynamically measure the effectiveness of regulation aimed at

calming an angry state.

Taken together, cardiac and respiratory results suggest that

anger predominantly activates the sympathetic system. However,

because physiological indicators of anger are only visible in

the double anger induced group, this also suggests that a

feeling of anger is not always associated with detectable

physiological manifestations.

According to Scherer’s Component Process Model (Scherer,

2009), emotions are dynamic states. They result from continuous,

multi-level evaluations of a situation. During the autobiographical

recall exercise, individuals might recount events where they felt

intense anger in the past but now have come to terms with

those experiences. As a result, the initial anger may be less

aroused and nuanced with less intense negative emotions, such as

sadness or disappointment. This could explain why lower levels

of felt anger do not always correspond with clear physiological

manifestations. For the DS induction, instead of looking at the

difference before/after, continuous monitoring of physiological

signals can provide a more nuanced understanding of emotional

changes in an angry detection model (Yan et al., 2018).

4.3 Evidence from ocular data

Contrary to initial expectations and the literature, angry

participants did not display a narrowing of visual attention. This

lack of effect may be attributed to autonomous driving when

environment supervision is required. However, in the study of Pan

et al. (2024) this narrowing of the visual field was also measured

in autonomous driving requiring supervision. The most likely

interpretation is related to trust in automation. Previous studies

(Hergeth et al., 2016; Körber et al., 2018) suggested that higher

trust correlates with lower road monitoring. Participants in Pan

et al. (2024) were taxi drivers and perhaps they present higher trust

toward automation than our participants. This highlights the need

for further exploration of the relationship between anger expression

and trust in automation.

4.4 Implications for anger detection and
regulation systems

Our findings suggest that the persistence of anger in the aa

group may reflect a threshold effect where, once a certain level

of anger is reached, anger is sustained with subsequent irritating

events. The emergence of anger as an emotion reflects a dynamic

process (Scherer, 2009), often preceded by related negative states

such as frustration (Bosch et al., 2020).

Our results have important implications for managing anger

in driving contexts. Preemptive strategies, such as mindfulness

exercises or creating a calming vehicle environment, should be

used to help drivers avoid reaching this threshold. However, when

anger crosses this threshold and becomes entrenched, longer-

term interventions, such as cognitive approaches (e.g., reappraisal,

Harris and Nass, 2011), or strong behavioral strategies that switch

attention away (in autonomous driving) may be necessary.

4.5 Limitations and future directions

Our study faced limitations, notably a small sample size

that restricted analysis of individual differences. Additionally,

conducting the study in a driving simulator may not fully replicate

real-world driving’s complexity and stressors. Future research

should aim for larger samples and incorporate real-world driving

tests to validate these findings. Anger traits were not assessed in

this study but could influence individual variability. The inclusion

of the Anger Rumination Scale (ARS; Sukhodolsky et al., 2001)

and the Driving Anger Scale (DAS; Deffenbacher et al., 1994)

in future research could help clarify these individual differences.

Moreover, assessing driver profiles based on locus of control (e.g.,

multidimensional traffic locus of control; Özkan and Lajunen,

2005) and trust in automation (e.g., Körber, 2019) could further

refine our understanding of anger’s impact on different driver types.

For the development of driver monitoring systems, the user

experience factors must be considered. Failures in automated

driving systems have been shown to reduce trust and positive

experiences, ultimately influencing willingness to use automated

vehicles (Liu et al., 2021). People generally agree that their mental

state should be monitored in the vehicle (Smyth et al., 2021), but

a main concern is that the system is too inaccurate to detect anger

(Li S. et al., 2020). To optimize in-vehicle anger regulation systems,

we recommend that future in-car systems assess drivers’ emotional

states upon entering the vehicle rather than solely in response to

road events.

For researchers, we encourage to employ a mix of methods to

most effectively induce an angry state. To further understand the

evolution of anger in this interplay, we recommend additionally

assessing the dimensions of valence and arousal, and monitoring

the emotional state after each annoying driving event as proposed

in Wang et al. (2024).

4.6 Conclusion

To conclude, while anger induced by driving-related events

and autobiographical recall yielded distinct subjective emotional

responses, physiological, and ocular responses were similar when

analyzed separately. The combination of both sources proved

more effective at eliciting and sustaining anger, as evidenced by

heightened subjective and physiological changes. These findings

emphasize that anger in driving contexts is often the result

of cumulative effects, where pre-existing anger can amplify

responses to frustrating road events. Rather than focusing on

differentiating between sources of anger, systems designed for

detecting and managing anger should consider the overall

dynamics of contributing factors. Future research should prioritize

examining these interactions in real-world settings to validate

these findings and optimize in-car systems for better emotional

monitoring and regulation support.
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