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Visualization and workload with
implicit fNIRS-based BCI: toward
a real-time memory prosthesis
with fNIRS

Matthew Russell*, Samuel Hincks, Liang Wang, Amin Babar,

Zaiyi Chen, Zachary White and Robert J. K. Jacob

Computer Science, Tufts University, Medford, MA, United States

Functional Near-Infrared Spectroscopy (fNIRS) has proven in recent time to be

a reliable workload-detection tool, usable in real-time implicit Brain-Computer

Interfaces. But what can be done in terms of application of neural measurements

of the prefrontal cortex beyond mental workload? We trained and tested a

first prototype example of a memory prosthesis leveraging a real-time implicit

fNIRS-based BCI interface intended to present information appropriate to a user’s

current brain state from moment to moment. Our prototype implementation

used data from two tasks designed to interface with di�erent brain networks: a

creative visualization task intended to engage the Default Mode Network (DMN),

and a complex knowledge-worker task to engage the Dorsolateral Prefrontal

Cortex (DLPFC). Performance of 71% from leave-one-out cross-validation

across participants indicates that such tasks are di�erentiable, which is promising

for the development of future applied fNIRS-based BCI systems. Further, analyses

within lateral and medial left prefrontal areas indicates promising approaches for

future classification.
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1 Introduction

This work specifically intends to push the boundaries of implicit BCI with prefrontal

cortex measurements using fNIRS. Implicit BCI centers on interactions where the interface

recognizes the current brain state of the user and adapts accordingly, without the human

user’s purposeful intent (George, 2010; Zander and Krol, 2014; Treacy Solovey et al., 2015).

These BCIs do not require conscious thought to direct the interface; they are like a helpful

assistant. Consider a screen that self-adjusts brightness levels depending on ambient light—

implicit BCI systems do just the same, but with brain state as the driving force of the

interface. fNIRS is a noninvasive and relatively portable tool (Ferrari and Quaresima,

2012) which measures changes in oxygenated and deoxygenated hemoglobin in the blood

(Izzetoglu et al., 2005).

A considerable number of fNIRS based implicit BCI studies have been done using

prefrontal cortex activation to approximate mental workload. Some have been real-time

tasks (Girouard, 2013; Afergan et al., 2014a, 2015, 2014b; Hirshfield et al., 2011, 2009b,a),

while others are offline studies attempting to distinguish brain states (Power and Chau,

2010; Strait, 2014). Most studies infer mental workload by first training a model based on

an N-Back task which later is used to modulate the difficulty of a separate task in real time

(Afergan et al., 2014a; Shibata et al., 2019; Strait, 2014; Yuksel et al., 2016; Afergan et al.,

2015, 2014b).
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Our study departs from the trend and instead follows the

paradigm established by Hincks (2019) in that, rather than infer

levels of workload, we instead developed specifically intended

to engage with the prefrontal cortex in different ways: to infer

Default Mode Network (DMN) activity through creativity (Beaty

et al., 2014), and Dorsolateral Prefrontal Cortex (DLPFC) activity

through working memory (Barbey et al., 2013). Demonstration

of an interface leveraging brain-network activation orientation for

classification can open the door for future useful adaptations based

on the balance of brain network activation patterns Hincks (2019).

In terms of application, our prototype system is motivated to

step toward the notion of a general brain-based “assistant” that

helps its user recall items by indexing them according to their

mental state and presenting relevant information automatically,

rather like the “memory prosthesis” first introduced in the work of

Rhodes (1997) and Lieberman (1995), but with passively measured

brain state as the storage and retrieval tag. We can envision in

the future a brain-based interface which is able to recognize and

adapt fluidly to a user’s brain state—such a system, as a memory

prosthesis, would both be able to store brain states associated with

important information, and to provide such information when the

user requires it.

Such an associative memory assistant could be useful in a

variety of common knowledge worker research tasks. Examples

range from examining and organizing text a body of legal

documents for a lawyer, to surveying papers for an academic

survey or policy analysis, to businesses analysis for acquisition or

valuation. In a conventional filing system, the user could store such

items in a bookmarked list as they are reviewed and then retrieve

them from it later.

Furthermore, bookmark creation will be able to be

automatically generated based on analysis of the brain signal.

Bookmarks will then be ordered by how well each one matches

the current brain state. Thus, whenever a user sees the list, they

will first see those items that they entered while in the same brain

state as they are in currently. The rationale is that these might be

the most relevant items for the user at the current moment. The

benefit is that the system would display them automatically and

continuously, without any user effort, without scrolling through

a variety of previously stored bookmarks nor having to enter tags

explicitly. The filing system index is simply the user’s passively

measured brain state. Of course, in a more practical system, the

filing system would permit other indexes as well.

Beyond the basic low-level interaction speed advantage of

having the top bookmarks preselected effortlessly, Gray and

Boehm-Davis (2001) provide experimental evidence of a direct

impact of such rapid, low-level, lightweight interaction on a user’s

higher level strategy and behavior; it can produce changes well

beyond the actual speedup of the improved low-level interaction.

They observe that a slight change in an interface can shift subjects

from a trial-and-error problem solving approach to a plan-based

one. Instead of displaying content near the user’s current state,

some work suggests that it might be better to display content

semantically far removed, in a creative ideation task (Chan et al.,

2017). Our system could directly support either approach.

As described below, our prototype is designed to take a step

toward this higher level vision while initially reducing some of

its complexities. We assume the user is alternating between only

two specific tasks; and for now, we use task-classification as a

proxy for bookmarking process. Our prototype runs in real-time to

demonstrate the general feasibility of our memory assistant design.

We defined two tasks that could be done by an experimental subject

without particular domain expertise and that were intended to

elicit two different measurable brain states, and we investigated our

ability to distinguish them passively and in real time.

2 Materials and methods

2.1 Task design

After iterative pilot testing, we chose to work with a broad task

that an at-home user might experience: designing a room in their

home or apartment. Participants were given three rooms to design:

a Living Room, Bedroom, and Dining Room. We subdivided the

broad task of room design into two phases—the inspiration phase

(Task A), in which the the goal was to observe images of a room

similar to the one they were being asked to design—and the

furniture selection phase (Task B), wherein they chose furniture

for their room. We chose these two tasks precisely in an attempt

to interface with the prefrontal cortex in different ways, and for

their similarity with real-world tasks a user might perform in their

home. Both of our experimental tasks are open-ended by design,

and require a complex set of thought processes that are unscripted

and non-trivial.

2.1.1 Visualization phase
During the Visualization phase, participants were provided

a sidebar of small image links of the room they were assigned

to design. We gathered stock photos of example Living Rooms,

Bedrooms, and Dining Rooms. During this phase, the participant’s

task was explicitly limited to clicking on the sidebar image links,

observing the larger images that would appear as a result of

clicking on the links, and considering what they would like for their

own room. Although visual prompts were provided, participants

were instructed to use these images as inspiration for their own

internal thoughts of what they would like to create; that is, this

task was specifically designed to engage spontaneous cognition and

internally directed thought (Buckner et al., 2008; Bartoli et al.,

2024), and therefore is a proxy for applied DMN-based tasks.

2.1.2 Furniture selection phase
During this phase, participants were tasked with browsing

items from the Ikea website. They were further responsible for

keeping track of items they would like to purchase in a Google

Sheets spreadsheet. During this task, participants were assigned a

budget of $750 USD per room, which they were trying to maximize

use of. Similar to Task A, we also provided a sidebar with photo

links, but these were of Ikea furniture items that linked to the

corresponding items on the website (instead of to an image viewer

program)—each of these items, we mentioned to participants, were

to be discounted by 50%. They were to calculate prices using a

calculator or spreadsheet calculator if desired, and keep track of

the totals in the spreadsheet. Participants were asked to choose at
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least five items during each phase. Through the combination of

multitasking, numeric calculation, and high time pressure, this task

was specifically designed to engage with the DLPFC (Modi et al.,

2020; Mahesan et al., 2023).

2.2 Equipment

We used a Multichannel ISS Imagent fNIRS device

(Champaign, IL) for our data acquisition. We used a single

probe pad with two detectors and eight light source positions

(see Figure 1 for details). Two source positions were close

sources (1.5 cm) used for near source-detector pair adaptive

filtering (Zhang, 2007). The probe pad was positioned over

the left eyebrow at approximately the left prefrontal cortex

Brodmann 10 region (Figure 2). Due to the probe pad geometry,

one set of three light source positions was over a relatively

lateral aspect of Brodmann 10, and the other set of the light

sources were over a relatively medial aspect. However, the

detector itself was in the center of source positions. Outside of

the near sources, the closest 4 source positions were each 3cm

from the detectors, and the furthest two source positions were

3.61 cm from the detectors. Each light source position had two

sources which emit infrared light at one of two near-infrared

wavelengths (830 nm and 690 nm) (Kocsis et al., 2006). Raw

Alternating Current (AC), Direct Current (DC), and Phase

values were converted via the Modified Beer-Lambert Law

to Delta Oxygenated and Deoxygenated Hemoglobin values

(HbO and HbR) (Kocsis et al., 2006). Data was acquired at

approximately 5.8 Hz; real-time data were bandpass filtered

from 0.1 to 0.4 Hz (Kirilina et al., 2012), which enables us to

isolate the physiologically relevant hemodynamic response signals

from cardiac and Mayer waves (Naseer, 2015; Seghouane and

Ferrari, 2019). Unfortunately, we encountered data acquisition

issues in one of the two detectors, therefore only a single

detector was used for this study. Although the single detector

was able to capture prefrontal data from relatively lateral and

medial aspects of the prefrontal cortex, the limitation of the

single detector reduced our ability to capture the vertical spatial

distribution of hemodynamic responses over the prefrontal

area. The second detector would have allowed for more

comprehensive mapping of activation patterns and potentially

improved classification accuracy by providing both redundancy

in some aspects of measurement and broader spatial coverage

in others.

2.3 Participants

After initially prototyping our study with 6 participants (4

male, aged 18 to 23 years, mean age 20.1, sd 1.2), we recruited

8 participants for the study (6 male, aged 18–27 years, mean

age of 20.6, sd 2.8). All participants reported being right-handed.

None reported having had either traumatic head injury or

learning or reading disability. All reported normal/corrected-to-

normal vision.

FIGURE 1

fNIRS probe geometry. Eight source locations with two detector

locations (A, B). Each source location contains two light sources,

one at 830 nm and the other 690 nm. Source locations 7 and 8 are

used only for short source-detector pair adaptive filtering to remove

extracerebral data. Short sources are 1.5 cm from each detector; for

each detector, the nearest 4 source locations (outside of the short

sources) are each 3 cm from the detector, and the furthest two

source locations are 3.61 cm from the detector. Due to technical

issues data could only be collected from the B detector for this

study.

FIGURE 2

fNIRS headband on a participant (photo taken with consent). The

probe pad is placed over the left eyebrow at approximately the

Brodmann 10 region.
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FIGURE 3

Overview of task flow. Task A refers to the Visualization phase (looking at images), and Task B refers to the furniture selection phase. Each set of A/B

consisted of designing a living room, dining room, or bedroom. The adaptive filter coe�cients, scaling coe�cients, and SVM model are

learned/trained after the first set of tasks, and during the final group of two tasks they are tested in real-time by a Python thread that extracts data for

classification every 20 s.

2.4 Experiment design

Participants sat in a comfortable chair in front of a computer

terminal running Red Hat Enterprise Linux 7.7. (Solovey et al.,

2009), read and signed a consent form, and filled out a demographic

questionnaire. We then explained the tasks to the participants and

fitted the fNIRS headband. They then completed two groups of

room design tasks, where each group contained one trial of type A,

a rest period of 2min, then one of type B, then a rest period of 2min.

We chose an extended rest period length of 2 min for two reasons:

first, to ensure complete dissipation of post-stimulus overshoot

of from the BOLD signal (Schroeter et al., 2006), and second, to

provide participants with a substantive break time to mentally relax

between tasks. See Figure 3 for a visual representation of the task

flow. Brain data from the first two groups of tasks were used to train

a machine learning model; during the last group of tasks the model

was used in real time to classify the user’s brain state every 20 s—

the user-interface would update to show the links corresponding

with the brain state predicted by the model. After the three sets of

tasks participants filled out a post-survey questionnaire and were

compensated with $25 USD.

2.5 Interface details

During the start of each task a window would appear on the

user’s screen with two buttons—Images and Catalog (see Figure 4).

Users were instructed to press the Images button during Task A,

and to press the Catalog button in Task B. The appropriate images

or catalog links would only appear upon pressing the button.

During Task A, clicking on the image links would pop out a larger

image into an image viewer - users could zoom in to more closely

observe the inspiration image if desired. At the beginning of Task

B, we opened a Firefox window with two tabs—a Google sheets

spreadsheet tab for the participant to keep track of their purchases,

and a basic Google web calculator tab (see Figure 5). The sidebar

contained images which were links that would open a new tab in the

same browser window which would go directly to the Ikea website

to an item that was on sale. Participants were given an incentive

to select the sidebar links by being instructed to maximize the

number of items selected while staying under budget; these sidebar

items were discounted at 50% off. During Task B, users were freely

allowed to browse the entire Ikea web interface, but they were not

allowed to depart from it and the other tabs we had opened. During

the last set of trials, machine learning was used to automatically

select the sidebar option of interest.

2.6 Data filtering and preprocessing

For each trial we used a Recursive Least Squares adaptive filter

with our near-channels to remove the effects of neurovascular

coupling and movement artifacts (Zhang and Rolfe, 2012; Zhang,

2007). Per Zhang (2007), we filtered HbR and HbO separately.

Further, one filter was used for each of the relatively lateral and

medial sides of the probe, where each filter associated the near-

source with the outer three sources nearest it. Data from the first

two groups of trials were used to train coefficients of the RLS filters

for HbR and HbO (Zhang, 2007). After filtering the data, we scaled

each channel by removing mean and scaling to the unit variance

(Pedregosa et al., 2011).
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FIGURE 4

Example sidebar presented in Task A (Visualization phase). Clicking

on an image would expand it full-screen.

We then divided the data into segments of 100 (17.24 s).

This window frame size was chosen in consideration of the

balance between temporal resolution and data quality. That is,

we use a window which should be able to capture the full

dynamics of a single hemodynamic response (Voss, 2016), while

maintaining a time-window length within which we can perform

useful classification in the context of a real-time interface. We

then extracted the max and mean values of each channel for each

window (Naseer, 2015). Feature selection and machine learning

were implemented via the scikit-learn library (Pedregosa et al.,

2011). Specifically, the SelectKBest algorithm (Pedregosa et al.,

2011), which leverages F-test results to identify the K most

statistically significant features from the original feature set, was

used for features selection with the parameter K=10. We then

input the data to a Support Vector Machine (SVM) with a

Linear Kernel (Solovey et al., 2011), using default parameters

including L2 regularization (C = 1.0), squared hinge loss, and 1,000

maximum iterations.

2.7 Online classification

We selected the final two trials to perform real-time (“online”)

classification. During the final two trials data was extracted every

100 frames (17.24 s), adaptive filter coefficients learned from the

training data were used to filter the data, scaling coefficients from

the training data were used to scale the data, feature set size was

reduced to the same features used in the training set, and data was

then classified by the pre-trained SVM. The result of classification

led to immediate presentation of the stimulus the participant was

attempting to work on: that is, correct classification would show

the “correct” links, and incorrect classification required the user to

scroll to the top of the list and press the button corresponding to

the task they were completing.

2.8 O	ine classification

We also conducted additional offline analyses to provide more

comprehensive results. This analysis allows us to leverage the

entire dataset, rather than be limited to a single participant’s data

for classification.

2.8.1 Leave-one-out cross-validation
We implement participant-level Leave-One-Out Cross-

Validation (LOO-CV) to evaluate classification performance. This

validation procedure consists of multiple folds, where in each

fold we exclude one participant’s complete dataset for testing

and exclusively use the training cohort’s data to determine the

preprocessing pipeline parameters, including adaptive filter

coefficients and scaling factors. Following preprocessing, model

hyperparameters are optimized through an inner cross-validation

procedure conducted solely on the training participants. Model

results are then generated for the test set. Final classification results

are computed by aggregating results across all participant-specific

test sets.

2.8.2 Brain-network dependent classification
To investigate the functional specificity of source locations

in conjunction with our tasks we conducted analyses within the

context of reduced source sets: specifically, in addition to all

source data, we also tested removing either the relatively medial

or lateral sources. This analysis enables us to explore the utility of

relatively lateral and medial aspects of prefrontal cortex activation

as associated with the tasks at hand.
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FIGURE 5

Task B; task tabs on the left, and images on the right would link to the Ikea website; these images were of furniture which would be discounted by

50%.

2.8.3 Feature selection
For offline classifications we modified our feature selection

strategy with a number of improvements. First, we expanded the

feature set to include standard deviation, skew, and slope of the

linear regression. Second, we tested varying data window sizes,

by attempting [50, 100, 150, 200, 250, 300], equivalent to [8.62,

17.24, 25.86, 34.48, 43.1, 51.72] seconds, respectively. Unlike our

previous approach, we opted not to utilize the SelectKBest function

for feature selection.

2.8.4 Model selection
Following the most successful models used in fNIRS

classification from (Naseer et al., 2016), we added K-Nearest

Neighbors (KNN) (Bzdok et al., 2018; Naseer et al., 2016),

Linear Discriminant Analysis (LDA) (Xanthopoulos et al., 2013),

Quadratic Discriminant Analysis (QDA) (Qin, 2018), and Artificial

Neural Networks (ANN) (Thanh Hai et al., 2013). Based on

further classification in (Huang et al., 2021) we further added

Random Forests (RF) (Breiman, 2001). Although deep learning

approaches have demonstrated promising results for fNIRS-based

BCI (Eastmond et al., 2022), we decided against using these

methods due to the substantial time investment required for model

preparation and training. However, we recognize the potential

value of deep learning methods for future research in this area; to

facilitate such work, we will make our dataset publicly available

alongside our paper.

We tuned hyperparameters for somemodels: the KNN classifier

was implemented with varying neighborhood sizes (3, 5, 7, and 9);

SVM regularization parameter C was evaluated at levels (0.1, 1,

and 10); the QDA regularization parameter was tried with levels

(0.1, 0.5, 1); ANN was assessed one internal layer of either 10 or 50

nodes, and used fixed maximum iteration count of 5000 to ensure

convergence; and the RF classifier was tested with varying numbers

of decision trees (10, 50, 100, and 200).

2.9 Classification metric

All results reported, for both online and offline results,

are macro average F1 scores, which represents the unweighted

harmonic mean of precision and recall. Formally, for a K-class

problem, macro-averaged metrics are:

Macro-Precision =
1

K

K∑

i=1

TPi

TPi + FPi
(1)

Macro-Recall =
1

K

K∑

i=1

TPi

TPi + FNi
(2)

Macro-F1 =
1

K

K∑

i=1

2× Pi × Ri

Pi + Ri
(3)
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where TPi, FPi, and FNi denote true positives, false positives,

and false negatives for class i. By giving equal weight to each class,

macro-averaging highlights model performance across all classes

(Opitz, 2022).

3 Results

3.1 Real-time results

See Table 1, Figure 6. Notably, the model’s performance varies

significantly across different participants. The most successful

results were achieved with PID 3, with F1-scores of 0.966 and

0.963 for visualization and workload classes respectively, and a

macro average F1-score of 0.964. However, overall performance

across participants was inconsistent. Several participants (1, 2, 4,

and 6) showed particularly poor results, with F1-scores of 0.000

for one or both classes. The average macro performance across

all participants was 0.516 with a substantial standard deviation of

0.282, highlighting the high variability in the model’s effectiveness.

The confusion matrix in Figure 6 shows that the model overall

performed better in classifying Visualization (class 0) compared to

Workload (class 1) tasks, although the results table indicates that

this pattern was not consistent across all participants. Overall, the

realtime results indicate that model used was not sufficiently robust

for reliable real-time classification across different users.We believe

that the lack of substantial training data is the largest factor in the

low overall scores.

3.2 LOO-CV results

See Table 2 and Figures 7, 8 for LOO-CV results. The RF

classifier demonstrated the best performance overall per-window

of 0.710 in the largest window size of 300, and achieved a mean F1-

score of 0.667 across all window sizes. The model that produced

this performance included a best overall F1 classification for

the visualization task of 0.721, and similarly strong classification

for the workload task of 0.704. However, SVM, KNN, and

QDA all showed comparable overall effectiveness, with mean

F1-scores of (0.669, 0.663, 0.665), respectively, across window

sizes. The SVM classifier exhibited its best performance of 0.700

with a 200-sample window, KNN and QDA both performed

best at the 250 sample window, each with top scores of 0.690.

The ANN and LDA classifiers demonstrated the lowest overall

effectiveness, with mean F1-scores of 0.623 and 0.580, respectively.

While the ANN showed occasionally stronger performance with

a maximum score of 0.660 at window size 100, LDA consistently

underperformed compared to other methods, showing a maximum

score of 0.630 at window size 100. Across models we observe a

slight trend of better performance in visualization task detection

compared to workload classification. Additionally, although most

models showed improved performance with larger window

sizes, this relationship is not strictly monotonic; further, the

classification accuracies were similar enough such that a trade-

off of slight accuracy for faster classification may be preferred in

realtime contexts.

TABLE 1 Per-participant results for the online real-time classification.

Participant Class Precision Recall F1-Score

0 Visualization (0) 1.000 0.786 0.880

Workload (1) 0.824 1.000 0.903

Macro average 0.912 0.893 0.892

1 Visualization (0) 0.000 0.000 0.000

Workload (1) 0.364 0.571 0.444

Macro average 0.182 0.286 0.222

2 Visualization (0) 0.500 1.000 0.667

Workload (1) 0.000 0.000 0.000

Macro average 0.250 0.500 0.333

3 Visualization (0) 0.933 1.000 0.966

Workload (1) 1.000 0.929 0.963

Macro average 0.967 0.964 0.964

4 Visualization (0) 0.481 0.929 0.634

Workload (1) 0.000 0.000 0.000

Macro average 0.241 0.464 0.317

5 Visualization (0) 0.500 0.929 0.650

Workload (1) 0.500 0.071 0.125

Macro average 0.500 0.500 0.388

6 Visualization (0) 0.000 0.000 0.000

Workload (1) 0.417 0.714 0.526

Macro average 0.208 0.357 0.263

7 Visualization (0) 0.733 0.786 0.759

Workload (1) 0.769 0.714 0.741

Macro average 0.751 0.750 0.750

Participant macro 0.516 ± 0.282

Despite strong results for some participants, these data suggest that our initial model

paradigm does not sufficiently capture patterns within the data suitable for realtime

classification. Bold values indicate macro average F1-score per-participant.

3.3 Brain-network dependent classification

Comparative analysis of lateral and medial source sets are

presented in Table 3 and visualized in Figures 9, 10. Several notable

patterns are visible across both source locations and temporal

windows in the data. The lateral source data showed particular

sensitivity to window size selection, with the best performing

models demonstrating improved performance at larger temporal

windows: SVM had the strongest overall performance, with a

maximum F1-score of 0.705 at a 250-sample window, and an

average F1-score of 0.671 across window sizes. This performance

was closely matched by RF with a score of 0.695 at 300 samples,

and a slightly lower overall performance across windows of 0.642.

QDA presented an interesting departure from the trend of higher

classification accuracies with larger window sizes, demonstrating

its best performance of 0.690 at window size of 150—while

its overall accuracy of 0.662 was better than RF, its maximum

performance was not as good. As with the full-source data, LDA and
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FIGURE 6

Confusion matrix across all participant predictions in the realtime experiment. Although the model classified a relatively high number of 76

visualization tasks correctly, it struggled to correctly identify workload tasks with only 56 correct classifications. Likewise, it incorrectly classified 56

workload samples as visualization and 36 visualization samples as workload. These results suggest that the model is not capable for usable realtime

classification.

TABLE 2 Performance comparison across six machine learning models over varying window sizes in LOO-CV using all source data, showing F1-scores

per-class for visualization and workload.

Model Metric Window size Mean

50 100 150 200 250 300

RF Visualization (0) 0.618 0.702 0.684 0.708 0.695 0.721 0.688

Workload (1) 0.560 0.677 0.616 0.657 0.664 0.704 0.646

Average 0.590 0.690 0.650 0.680 0.680 0.710 0.667

KNN Visualization (0) 0.632 0.665 0.669 0.690 0.704 0.680 0.673

Workload (1) 0.622 0.653 0.632 0.668 0.669 0.652 0.649

Average 0.630 0.660 0.650 0.680 0.690 0.670 0.663

SVM Visualization (0) 0.659 0.663 0.669 0.707 0.694 0.691 0.681

Workload (1) 0.601 0.638 0.660 0.688 0.681 0.667 0.656

Average 0.630 0.650 0.665 0.700 0.690 0.680 0.669

QDA Visualization (0) 0.639 0.658 0.701 0.685 0.698 0.664 0.674

Workload (1) 0.648 0.654 0.668 0.663 0.676 0.644 0.659

Average 0.640 0.660 0.680 0.670 0.690 0.650 0.665

LDA Visualization (0) 0.592 0.570 0.636 0.584 0.581 0.619 0.597

Workload (1) 0.539 0.537 0.622 0.561 0.535 0.579 0.562

Average 0.570 0.550 0.630 0.570 0.560 0.600 0.580

ANN Visualization (0) 0.632 0.691 0.663 0.670 0.623 0.618 0.650

Workload (1) 0.584 0.626 0.582 0.606 0.576 0.598 0.595

Average 0.610 0.660 0.620 0.640 0.600 0.610 0.623

Results indicate promising performance across multiple models, including RF, KNN, SVM, and QDA. LDA, and ANN showed the least effectiveness in classification. Bold values indicate macro

average F1-score across window sizes per-model.
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ANN underperformed by comparison to the other models, with

accuracies of 0.622 and 0.648, respectively.

FIGURE 7

LOO cross validation results. Test set scores are produced based on

the best model per-participant after inner hyperparameter

optimization. Although Random Forest with a window size of 300

performed best with 71%, it showed similar results across multiple

window sizes. QDA, KNN, and SVM likewise performed well overall.

Results from the medial sources revealed different patterns

from the lateral. At lower window sizes of 100 and 150, RF

demonstrated the best performance overall of 0.717 and 0.723,

besting the best performance from all models trained across both

datasets. RF also demonstrated the highest classification accuracy

across window sizes, with an average of 0.689. Performance

disparity between source sets was largest for QDA, which

maintained 0.63-0.69 with the lateral sources but decreased to

0.55–0.59 with the medial sources. Although LDA showed the

most consistent performance across both source sets, maintaining

F1-scores between 0.59-0.65 regardless of location, the overall

performance of this classifier was lower than other methods.

The asymmetry in classifications among the better-performing

models suggests that there are significant differences in the

underlying data distributions between source locations as related to

task-based activation.

We believe that our findings suggest an opportunity for

enhanced performance through meta-classification approaches.

Specifically, the data shows that each source location exhibits

unique strengths in capturing task-related neural states: of most

notable distinction, the medial source set demonstrates exceptional

performance with RF, reaching F1-scores of 0.72 at moderate

window sizes, while the lateral source set shows particular strength

with SVM, achieving F1-scores of 0.70 with larger windows. This

performance asymmetry, as hypothesized by Hincks et al. (2017),

supports the importance of considering network interactions,

but suggests a novel approach to leveraging these interactions.

Rather than rely on simultaneous bilateral measurements for

direct network comparison, our results indicate that independent

classification streams from each source location and temporal

FIGURE 8

Confusion matrix for the best performing model from the LOO-CVV using all probes: RF, which achieved 0.710 at a window size of 300. The model

predicted visualization and workload similarly well, correctly predicting 89 visualization samples, and 82 workload samples. The matrix also reveals

relatively balanced misclassification patterns, with 31 visualization tasks misclassified as workload and 38 workload tasks misclassified as visualization.
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TABLE 3 Model performance when trained on subsets of only the relatively medial or lateral sources across varying window sizes.

Model Source set Window size Mean

50 100 150 200 250 300

RF LATERAL 0.616 0.607 0.626 0.643 0.664 0.695 0.642

MEDIAL 0.635 0.717 0.723 0.693 0.694 0.670 0.689

KNN LATERAL 0.583 0.605 0.612 0.641 0.659 0.642 0.624

MEDIAL 0.621 0.620 0.621 0.583 0.614 0.592 0.609

SVM LATERAL 0.641 0.636 0.691 0.664 0.705 0.687 0.671

MEDIAL 0.613 0.622 0.650 0.656 0.628 0.612 0.630

QDA LATERAL 0.630 0.673 0.690 0.667 0.656 0.654 0.662

MEDIAL 0.578 0.582 0.586 0.565 0.547 0.584 0.574

LDA LATERAL 0.616 0.632 0.651 0.624 0.589 0.621 0.622

MEDIAL 0.592 0.619 0.630 0.622 0.621 0.641 0.621

ANN LATERAL 0.586 0.580 0.568 0.572 0.563 0.637 0.584

MEDIAL 0.625 0.668 0.682 0.656 0.635 0.622 0.648

FIGURE 9

Performance comparison of models across window sizes using lateral and medial source sets, showing F1-scores for task classification. The

heatmaps reveal distinctions in performance across probes for some models, with particular increases in performance for RF at lower window sizes

for the medial probes, whereas SVM performed notably better using the lateral probes’ data at higher window sizes.

samples could be combined through a meta-classifier architecture.

This approach would capitalize on the complementary strengths

we observed from different models based on probes: RF with

the medial probes, and SVM and QDA with the lateral probes.

Further, the distinct temporal window preferences between source

sets (medial probes performing optimally at 100–150 samples,

lateral probes at 250–300 samples) could further be supported by

a meta-classification approach over multiple window lengths.

4 Conclusion

We developed a real-time implicit fNIRS-BCI study based

on the vision of the leveraging of brain networks toward

a next-generation memory prosthesis interface using fNIRS.

Although our online real-time classification was not superb, offline

simulations of real-time classification which leveraged a larger

dataset, longer window times, and a wider feature set show great

promise for future tasks leveraging brain-network based tasks for

applied BCI which are suitable for cross-participant classification

across multiple classifiers. Further, our results suggest a promising

direction for future system development: implementing parallel

classification streams that independently process signals from each

source location, and potentially at different window lengths, then

combining these predictions through a higher-level meta-classifier.

Such an architecture could maintain the benefits of bilateral

monitoring while accounting for distinct information patterns to be

captured at each location. We believe that future extension of such

interfaces with broader access to the brain will be able to provide

wider and more comprehensive interfaces based on more complex
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FIGURE 10

Confusion matrix for the best performing model from the LOO-CVV data when using limited source sets: RF, which achieved 0.723 at a window size

of 150 when using data only from the medial source locations. As seen in the confusion matrix for the all-source data, proportions of classifications

of both visualization and workload were similar, however in this case the workload task was correctly classified more often (200) than the

visualization task (182), and workload was more often incorrectly classified (82) than visualization (64). Note that, given that the window size is half of

that in Figure 8, the sample size is approximately double. In fact it is slightly larger, given that one extra sample could be gathered per-trial with this

smaller window size.

sets of human state information. While real-time performance

requires further optimization, this study represents a significant

advancement in brain network-based BCIs, potentially leading to

more intuitive interfaces that facilitate information access based on

mental states.
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