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One size does not fit all: a
support vector machine
exploration of multiclass
cognitive state classifications
using physiological measures

Jonathan Vogl*, Kevin O’Brien and Paul St. Onge

United States Army Aeromedical Research Laboratory, Warfighter Performance Group, Fort Novosel,

AL, United States

Introduction: This study aims to develop and evaluate support vector machines

(SVMs) learning models for predicting cognitive workload (CWL) based on

physiological data. The objectives include creating robust binary classifiers,

expanding these to multiclass models for nuanced CWL prediction, and

exploring the benefits of individualizedmodels for enhanced accuracy. Cognitive

workload assessment is critical for operator performance and safety in high-

demand domains like aviation. Traditional CWL assessment methods rely on

subjective reports or isolated metrics, which lack real-time applicability. Machine

learning o�ers a promising solution for integrating physiological data to

monitor and predict CWL dynamically. SVMs provide transparent and auditable

decision-making pipelines, making them particularly suitable for safety-critical

environments.

Methods: Physiological data, including electrocardiogram (ECG) and

pupillometry metrics, were collected from three participants performing

tasks with varying demand levels in a low-fidelity aviation simulator. Binary

and multiclass SVMs were trained to classify task demand and subjective CWL

ratings, with models tailored to individual and combined subject datasets.

Feature selection approaches evaluated the impact of streamlined input

variables on model performance.

Results: Binary SVMs achieved accuracies of 70.5% and 80.4% for task

demand and subjective workload predictions, respectively, using all features.

Multiclass models demonstrated comparable discrimination (AUC-ROC: 0.75–

0.79), providing finer resolution across CWL levels. Individualized models

outperformed combined-subject models, showing a 13% average improvement

in accuracy. SVMs e�ectively predict CWL from physiological data, with

individualized multiclass models o�ering superior granularity and accuracy.

Discussion: These findings emphasize the potential of tailoredmachine learning

approaches for real-time workload monitoring in fields that can justify the

added time and expense required for personalization. The results support the

development of adaptive automation systems in aviation and other high-stakes

domains, enabling dynamic interventions to mitigate cognitive overload and

enhance operator performance and safety.
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1 Introduction

Technological advancements have increased functionality and

complexity of systems across a variety of domains. However,

these advancements often translate to increased burden on the

human operator. For example, a system that once required

a single operator to manually control one system component

may now require the operator to monitor three automated

systems. Monitoring task demands and identifying overload, loss

of situational awareness, and/or fatigue can minimize negative

impacts of these advanced systems on operator and overall

system performance. Operator state monitoring (OSM) research

aims to yield a system composed of wearable physiological

sensors that feed into machine learning algorithms that ultimately

classify an operator’s cognitive state. The system would then

trigger a countermeasure to prevent performance decline and

increased mishap risk. This paper presents the resulting OSM-

driven cognitive workload classification algorithms from a novel

methodology exploration project that captured physiological data

while operators engaged with varying demand levels presented

in a low-fidelity aviation-like simulator. Additional information

regarding the psychophysical analysis of the performance data from

the simulator can be found in Temme et al. (2025) and additional

information regarding the desktop simulator utilized in the study

can be found in Vogl et al. (2024a).

1.1 Cognitive workload assessment

Cognitive workload (CWL) is a critical concept in

understanding human performance in complex environments,

yet a universally accepted definition remains elusive (Cain, 2007).

For this work, we adopted the resource-demand framework

(Van Acker et al., 2018), which defines CWL as a “subjectively

experienced physiological processing state, revealing the interplay

between one’s limited and multidimensional cognitive resources

and the cognitive work demands [these resources are] being

exposed to.” This definition encapsulates the core components

of CWL: dependence on the interaction between an individual

and their environment, roots in resource limitations, and dual

manifestation as both a physiological and subjective state. Such

a framework builds upon foundational theories of attention

and effort (Kahneman, 1973) and resource allocation models,

including Multiple Resource Theory (Wickens, 2008), to explore

how humans adapt to and are constrained by cognitive demands.

The relationship between workload, performance, and resource

supply is visualized in the region model depicted in Figure 1.

The operational quantification of CWL has historically relied

on three primary measurement domains: task performance,

physiological responses, and subjective appraisals. Each domain

offers unique advantages and limitations. Performance metrics,

for example, provide non-intrusive assessments of task efficiency

but often lack the sensitivity to detect subtle changes in cognitive

workload, particularly in regions where task performance remains

stable (e.g., regions A1, A2, and A3 in Figure 1; Young et al., 2015).

Physiological measures, including heart rate variability, pupil

diameter, and brain activity metrics like electroencephalography

(EEG) and functional near-infrared spectroscopy (fNIRS), allow

researchers to observe autonomic nervous system changes in (near)

real-time, even during periods where performance metrics may

be less sensitive (such as in region A3, Backs, 1995; Aghajani

et al., 2017). However, these measures are often susceptible to

interference from other physiological states, such as fatigue or

anxiety, and may vary in diagnostic precision depending on the

metric. Finally, subjective appraisals, such as the widely used

multidimensional NASA-TLX scale (Hart and Staveland, 1988) or

unidimensional Crew Status Survey (CSS, Ames and George, 1993),

provide introspective insights. However, subjective approaches are

typically retrospective and may introduce recall biases or cause task

interference if completed during task performance.

Given these trade-offs, composite measures combining

performance, physiological, and subjective data have emerged

as a promising approach to CWL assessment. The concept of

association, insensitivity, and dissociation (AID) among these

metrics has been explored to better understand inconsistencies and

complementarities across measurement domains (Hancock and

Matthews, 2019). For example, associations occur when multiple

measures indicate converging trends in CWL, while dissociations

highlight discrepancies that may provide deeper insights into

individual cognitive strategies or measurement limitations.

Composite CWL assessments aim to leverage the diagnostic

capacity of physiological measures, the contextual relevance of

performance metrics, and the introspective accuracy of subjective

data (Cain, 2007). Furthermore, the integration of multiple data

streams allows researchers to address the multidimensional nature

of CWL and better predict transitions toward critical thresholds,

such as cognitive overload or performance breakdown (Van Acker

et al., 2018; Longo et al., 2022).

1.2 Machine learning in OSM

Various machine learning models have been utilized in OSM

research, each offering unique advantages and challenges. Deep

learning techniques, such as convolutional neural networks (CNNs)

and recurrent neural networks (RNNs), have been increasingly

popular for processing complex physiological signals. These

models excel at identifying subtle patterns in high-dimensional

data but often require large datasets, significant computational

resources, and can lack interpretability due to their “black-

box” nature (Aghajani et al., 2017; Craik et al., 2019). In

contrast, traditional machine learning approaches, such as decision

trees, random forests, and SVMs, provide more structured and

interpretable outputs. Decision trees and random forests offer ease

of implementation and intuitive visualization but exhibit high

sensitivity to small changes in training data and are typically

used for nominal categorization in low-dimensional feature space

(Breiman, 2001). SVMs, on the other hand, offer an ideal balance

between complexity and performance. They are particularly well-

suited for binary and multiclass classification tasks in high-

dimensional feature space, where they maximize the margin

between decision boundaries, ensuring robust generalization even

with limited training data (Cortes and Vapnik, 1995). Unlike deep

learning models, SVMs allow for transparent decision-making

processes, where the model’s outputs can be audited and explained.

This capability is crucial in regulatory-heavy industries such as
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FIGURE 1

Depiction of the performance-cognitive workload relationship (from Vogl et al., 2022).

aviation, where understanding why a system made a particular

decision is as important as the decision itself.

Specific to OSM research, binary SVM models have been used

to classify cognitive workload states based physiological signals,

achieving high accuracy with interpretable results (Aricò et al.,

2017; Aghajani et al., 2017). Trinary classification tasks, such as

distinguishing between low, medium, and high workload levels,

have also been effectively implemented using multiclass SVMs

(Cervantes et al., 2020). Multiclass SVMs have demonstrated

notable promise in OSM, especially for applications requiring

nuanced predictions of cognitive states across multiple levels.

Unlike binary SVMs, which focus on dichotomous classifications,

multiclass SVMs extend this capability to handle more complex

classification tasks by employing strategies such as one-vs-rest

or one-vs-one. Using a one-vs-rest approach, a separate binary

classifier is trained for each class, distinguishing that class from

all others, and the class with the highest confidence score among

the classifiers is selected as the prediction (Rifkin and Klautau,

2004). The one-vs-one method involves training a binary classifier

for every possible pair of classes, and the final prediction is

determined by a voting scheme, where the class that wins the

most pairwise comparisons is selected (Hsu and Lin, 2002). These

approaches enable the modeling of CWL and related states on a

continuum, offering granular insights that are critical for real-world

applications, such as monitoring fatigue, stress, or workload in

high-stakes environments (Cervantes et al., 2020).

One of the primary challenges in implementing multiclass

SVMs for OSM lies in their ability to maintain high performance

across all classes. Physiological data often exhibits overlapping

features between adjacent cognitive states, leading to reduced

separability and imbalances in precision and recall across classes

(Aricò et al., 2017). Despite these challenges, multiclass SVMs have

proven effective in addressing this issue through careful feature

selection and preprocessing techniques. For example, hybrid

approaches combining SVMswith feature extractionmethods, such

as principal component analysis (PCA) or wavelet transforms, have

enhanced class separability and reduced noise in physiological

datasets (Craik et al., 2019; Bashivan et al., 2016).

1.3 Study aims

This study aims to build upon this rich body of research by

developing and comparing binary and multiclass machine learning

models for CWL prediction using physiological data. Specifically,

the aims are threefold: (1) to establish robust SVM binary classifiers

as a baseline for predicting high versus low CWL states, (2) to

expand this framework into multiclass SVM models capable of

finer granularity in workload prediction, and (3) to explore the

advantages of reduced feature sets and individualized SVMmodels

tailored to specific users. By focusing on key measures, such as

task demand and subjective workload ratings, this work seeks to

bridge gaps in operational workload assessment and contribute to

the development of adaptive systems for complex environments

like aviation and healthcare. These models offer the potential to

predict workload in (near) real time, thereby enabling preemptive

interventions to maintain optimal performance and safety.

For each aim, the models predicted two different values:

USAARL MATB demand level and CSS average workload values.

The demand level represents the experienced task demand as a

function of 10 different demand levels built into the USAARL

MATB (see Table 1). This metric served as a tangible ground

truth value for what was presented to the subject during the

simulation. The CSS average workload value was reported by

subjects upon completion of the task, and provided a subjective

reflection of what the subject believes they experienced in terms of

Frontiers inNeuroergonomics 03 frontiersin.org

https://doi.org/10.3389/fnrgo.2025.1566431
https://www.frontiersin.org/journals/neuroergonomics
https://www.frontiersin.org


Vogl et al. 10.3389/fnrgo.2025.1566431

TABLE 1 Events rates by demand level.

Task Demand level

1 2 3 4 5 6 7 8 9 10

System monitoring 25 30 35 40 45 50 55 60 65 70

Communications 7 8 8 9 9 10 10 11 11 12

RM shutoffs 3 4 5 6 7 8 9 10 11 12

RM failures 6 7 8 9 10 11 12 13 14 15

Tracking 3 4 5 6 7 8 9 10 11 12

Event rates listed for the discrete event tasks (everything but the tracking task) are the number of events per a 5-min period. Tracking indicates the magnitude of the circle motion in the

tracking task.

cognitive workload. The CSS scale ranges from values of 1, easy,

to 7, difficult. Accurate predictions of the CSS value would be

akin to “reading the subject’s mind” by predicting their conscious

reflection of the workload they experienced from their unconscious

physiology alone.

To address the first aim, a standard binary classification

model (as often seen in the open literature) was developed to

distinguish between high and low levels of workload. To do this,

the multiclass nature of the predicted values was compressed

into two classes representative of high and low levels of task

demand and subjective workload responses. For the binary demand

level classifier, high and low demand conditions were created

by parsing the data into two categories with demand levels 1–3

representing low demand and demand levels 8–10 representing

high demand. This level of separation is consistent with the JND

values observed in the USAARL MATB Temme et al. (2025). The

CSS values were binarized by separating responses <5 representing

low workload and 5 or greater representing high workload. This

separation boundary was chosen as it identifies when subjects

were approaching performance decrements as indicated by the

description accompanying the CSS rating of 5.

The second aim focused on expanding the modeling effort

to a multiclass classifier using the full dataset. This approach

explored the feasibility of predicting CWL at a finer resolution.

Such a model offers deeper insights into the dynamics of workload

transitions, enabling the detection of subtle shifts in cognitive

demand that signal an approach to the “redline”—the point

at which workload exceeds manageable levels. By leveraging

physiological data alone, this effort not only assessed the predictive

power of such models but also examines their practical utility

in scenarios where subjective self-reports or external workload

indicators may not be available. This finer resolution of prediction

could lead to the development of proactive workload management

systems, capable of dynamically adapting to individual needs in

real time, improving safety, efficiency, and performance across

various domains, such as aviation, healthcare, and other high-stakes

decision-making environments.

The third aim focused on developing individualized models to

enhance predictive accuracy, representing a critical step forward in

tailoring CWL prediction systems. These models were personalized

by accounting for individual differences among subjects and

incorporating feature importance to refine the selection of

relevant physiological metrics. Individualizing models addressed

the inherent variability in human responses to CWL, which

can be influenced by factors such as cognitive capacity, stress

tolerance, and baseline physiological states. Such advancements

have significant implications for real-world applications, enabling

systems to provide more reliable and user-specific insights,

particularly in high-stakes environments where CWLmanagement

is critical. This effort also contributes to the broader understanding

of how physiological data reflects workload at an individual level,

paving the way for innovations in adaptive training, operational

safety, and performance optimization.

2 Method

A detailed description of the methodology and experimental

setup employed to collect the data utilized in the classification

model can be found in Temme et al. (2025). A brief summary of

the methodology as it pertains to the development of the CWL

classification models is provided here.

2.1 Subjects

A total of 3 subjects, 1 female and 2 males, participated in the

study. The subjects’ ages ranged from 24 to 47. The small number

of subjects was balanced by the large number of simulation trials

that each subject completed. Subjects engaged in enough trials

to result in 6.8 to 10.8 h of data collection per subject. Subjects

included research team members, as traditionally is the case in the

psychophysical assessment context the data was collected under

(see Temme et al., 2025). Subjects were non-military civilians with

no aviation experience (as no aviation experience was required to

perform the task).

U.S. Army Medical Research and Development Command

Institutional Review Board reviewed and approved this protocol

(USAARL number 2020-013) on 21 Jan 2021 under number

M-10881. Before any testing, each volunteer went through the

informed consent process individually in a private setting with a

properly credentialled study team member.

2.2 Materials

2.2.1 USAARL MATB
The low-fidelity aviation-like simulator employed for this study

was the United States Army Aeromedical Research Laboratory

Multi-Attribute Task Battery (USAARL MATB). The USAARL

Frontiers inNeuroergonomics 04 frontiersin.org

https://doi.org/10.3389/fnrgo.2025.1566431
https://www.frontiersin.org/journals/neuroergonomics
https://www.frontiersin.org


Vogl et al. 10.3389/fnrgo.2025.1566431

MATB, created by Vogl et al. (2024b), is a custom designed

version of the MATB originally developed by NASA (Comstock

and Arnegard, 1992). The USAARL MATB was designed to both

replicate the original tasks utilized in the original MATB while

also enabling more efficient parameter generation, data analysis,

and integration of customized features. The USAARL MATB

features four subtasks: system monitoring, communications,

tracking, and resource management. Subjects interact with the

tasks using a joystick (system monitoring and tracking) and a

mouse (communications and resource management). While the

USAARL MATB has the capability for subtasks to be automated,

no automation systems were allowed to be employed during this

study. Custom modifications for loading the experiment specific

parameter files were made for the execution of the study, but

these modifications did not change the nature of the original

NASA MATB subtasks. For a review of additional details on the

functionality of the USAARL MATB, see Vogl et al. (2024b). Each

trial of the USAARL MATB lasted 5-min. Performance data, task

markers, and the task demand level was automatically streamed

through a network outlet managed by Lab Streaming Layer (LSL;

Kothe et al., 2024) software for recording and synchronization with

physiological metrics.

While the USAARLMATB does allow for custommodifications

of the task demand presented across all the tasks, only the 10 default

demand levels were utilized in this study (Table 1). Demand level is

defined by event rates for the discrete event tasks throughout the

simulation. Additionally, the continuous rate at which the target

circle for the tracking task randomly drifts increases with each

demand level step. Demand level was recorded for each simulation

to serve as a target variable for model prediction.

2.2.2 Pupillometry
Pupil diameter was measured using the Pupil-Labs Core

Binocular (Pupil-Labs, Berlin, Germany) head-mounted eye

tracking system; a video-based, infrared (860 nanometer) system

that utilizes two head-mounted eye cameras suspended just below

the left and right eyes. The pupil was identified and measured

using a custom algorithm developed by Pupil Labs (Kassner et al.,

2014). The subject completed a five-point calibration process prior

to each session to allow the system to calibrate a 3-dimensional (3D)

model of the eye relative to the subject’s eye measurements. Due to

the eye camera being fitted to the subject’s head (akin to wearing

glasses), the distance between the subject’s eye and the eye camera

remained constant. This prevented measurement error of pupil size

caused by movement closer to or further from the camera. Any

change in this distance (such as the subject accidentally bumping

the camera during task engagement) was compensated for by the

3Dmodel used in the algorithm and was flagged appropriately. The

eye cameras recorded the subject’s pupil size using 400× 400-pixel

resolution eye images to derive a pupil diameter measurement in

pixels (and convert it into millimeters [mm]) at a sample rate of

120 Hz.

2.2.3 Electrocardiogram (ECG)
ECG was recorded continuously, at a sampling rate of 512Hz,

using the Shimmer 3 composed of four leads to electrodes adhered

to the subject’s chest, specifically, on the clavicles and one electrode

between the sixth and seventh intercostal space on each the left and

right sides of the torso. The Shimmer 3 used a Bluetooth connection

from a small, battery powered, subject-worn transmitter to send

data to the computer.

2.2.4 Crew Status Survey (CSS)
The CSS is a CWL assessment scale, originally validated and

verified using trained pilots and aircrew members (Ames and

George, 1993). Operators are asked to assess their perceived average

CWL level using a response on a seven-point scale (1 = low

workload; 7= high workload; Table 2). The CSS was administered

at the completion of each 5-min trial. The average subjective CWL

value was of primary interest for analysis and served as a target

variable for the resulting SVM classifiers.

2.3 Procedure

Subjects were research team members who were instrumented

with the eye tracking and ECG physiological sensors for each

session. Each subject would schedule time for a data collection

session, with each session typically lasting between 70 and 90min

(amounting to roughly 14 to 18 trials per session). Subjects’

input their subject ID and the number of trials they wanted to

complete, pressed “start”, and then began a series of simulation

trials presented in sequential order. Trial duration was 5min

and demand level was randomly assigned. The task demand was

modulated across successive trials. During each trial, data was

captured and synchronized using LSL, which compiles and saves

the data (along with timing information for synchronization) in

one master file. Each trial’s data included performance data from

the USAARLMATB, physiological recordings from the eye tacking

and ECG systems, and a subjective appraisal of workload using the

CSS following completion of each trial.

2.4 Physiological feature extraction

In preparation for model development, a custom data

processing and feature extraction pipeline was developed using

the Python language. The LSL output containing event markers

TABLE 2 Anchor number and description used in the CSS.

Level Description

1 Nothing to do; no system demands

2 Light activity; minimal demands

3 Moderate activity; easily managed considerable spare time

4 Busy; challenging but manageable; adequate time available

5 Very busy; demanding to manage; barely enough time

6 Extremely busy; very difficult; non-essential tasks postponed

7 Overloaded; system unmanageable; essential tasks undone; unsafe
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and physiologic recordings was an XDF file. Using the pyxdf

(v.1.16.3; Boulay et al., 2020) library, each XDF file was converted

into a set of dictionaries containing each stream of data that Lab

Recorder (an LSL software) stored. Opening these files required

setting the flags for “synchronize_clocks,” “handle_clock_resets,”

and “dejitter_timestamps” to true when opening the physiological

data to apply the appropriate synchronization across the different

physiological devices.

Custom classes were written to parse the USAARL MATB,

ECG, CSS, and pupillometry recordings. Physiological recordings

were segmented using a sample window of approximately 12.3 s

(based on trial segmentation employed for other tasks performed

within the laboratory this work was conducted). Although the

USAARLMATB does not have regular stimulus intervals, the start-

time of a trial was pulled from the recording and a matching

temporal segmentation was performed using an assumed constant

5-stimulus window of 2.46 second intervals. This allowed the

physiological processing pipeline to be utilized across multiple

task analyses. The parsers also aggregated any needed information

from matching text files, extracted and parsed the subject IDs,

task settings, CSS ratings, and stored filenames for linking between

sources of summary data.

The ECG recordings were extracted from the XDF file and

reformatted into a data frame using the Pandas (v1.1.3; McKinney,

2010) library. Because the ECG recordings include waveforms

from multiple leads, preliminary visualizations of the raw ECG

traces were used to visually identify a channel which presented

minimal high frequency noise, and the trace from that channel

was consistently used throughout the analysis. The R-wave peaks

were identified in the ECG trace using the Neurokit2 library

(v0.2.0; Makowski et al., 2021). The time difference between

successive peaks was used to calculate inter-beat intervals (IBIs)

which were fed into the hrvanalysis (v1.0.3; Champseix et al.,

2021) library to generate a set of commonly used heart rate

variability (HRV) metrics. Leveraging this library, provided time

domain features (mean NNI, SDNN, SDSD, NN50, pNN50, NN20,

pNN20, RMSSD, median NN, range of NN, CVSD, CV NNI, mean

HR, max HR, min HR, and standard deviation HR), geometrical

domain features (triangular index, and TINN), frequency domain

features (LF, HR, VLF, LH/HF ratio, LF nu, HF nu, total power),

and non-linear domain features (CSI, CVI, modified CSI, SD1,

SD2, SD1/SD2 ratio, sample entropy). These features were output

as an exploratory examination of which ECG features may be

important in cognitive workload prediction. These features were

down selected to relevant cognitive workload metrics known to

correlate to changes in ECG signals (e.g., heart rate, heart rate

variability, ECG frequency information, etc.; Vogl et al., 2020).

Tabular pupil diameter values were extracted from the

pupillometry channel of the XDF recordings and converted to

Pandas data frames. A custom filter was developed to drop values

representing blink artifacts, loss of tracking, or other sources of

error. Differences in successive diameters were first divided by

differences in successive timestamps to calculate a velocity metric.

This process was repeated with successive velocities to calculate an

acceleration metric. Two masking variables were created, the first

identified frames where the measured pupil diameter was below

1.0mm and the second labeled frames where the absolute value of

the calculated acceleration exceed 10,000 millimeters per squared

second (mm/s2). For each frame in a recording, the Boolean OR

of these two masking variables was used to generate a variable

representing a pupillometry failure, and adjacent frames were

additionally marked. Any frame marked as a pupillometry failure

or adjacent to a pupillometry failure was thenmarked and dropped.

Leveraging the original indices from the Pandas data frames,

lengths of sets of frames with sequential indices were calculated

and any set with fewer than 50 sequential frames was dropped.

After this filtering, right and left eye pupil diameter metrics (mean,

median, minimum, maximum, standard deviation, and kurtosis)

were calculated.

For each session, the task metrics described above were

aggregated into a CSV file. Within a recording, for each moving

window, the HRV and pupillometry metrics were calculated for

that time period and stored as successive rows in spreadsheets. In

both these intermediate analysis outputs, the corresponding XDF

filename was incorporated as a column, which permitted joint

operations to be performed at the model construction stage.

2.5 CWL model development

The goal of model development for this project was the

prediction of observed: (1) objective USAARL MATB task demand

level and (2) subjective CSS ratings directly from physiological

sensor data (ECG and pupillometry). Given the long-term

operational goal of real-time estimation of cognitive workload

in military aviators, there were two additional constraints. First,

any models developed need to leverage techniques that are

non-proprietary to be modular open system approach (MOSA)

compliant. Second, any models must have fully auditable behavior,

as this is a regulatory requirement for any major aviation sub-

system. Given these constraints, themodels developed for this effort

were SVMs.

SVMs were built, trained, tested, and validated using the

scikit-learn (v.1.1.1; Pedregosa et al., 2011) library. A one-vs-rest

classifier method was used with a maximum of 2,000 training

iterations. Hyperparameters for regularization, kernel type, and

kernel coefficient were iteratively tested using a grid search

function, which tests all permutations of specified hyperparameter

options. Initial exploratory testing showed better performance

when using the radial basis function (RBF) kernel than with

a linear, second-order polynomial, or third-order polynomial

kernel under all conditions, so only the RBF kernel was used

for final model construction for both tasks. For final MATB

modeling, values for the “C” hyperparameter (which is the

inverse of regularization strength) were 1 and 5 through 50 in

increments of 5 while values for “gamma” (kernel coefficient)

were 0.1 to 1.0 in steps of 0.1. The range of hyper parameters

were chosen to balance the thoroughness of the grid-search

approach against the realistic limits of available computational

resources and analysis time. At the extreme values of our chosen

hyperparameter range, it was common to either hit the 2,000

training iteration maximum without converging to stable support

vectors or to quickly converge with poor classifier performance.

More optimizations can be achieved in future iterations of

this work by using more sophisticated search algorithms.
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For each grid search, the best performing hyperparameters

are included in tabular form for comparison or replication

(Table 3).

Both binary and multiclass SVMs were constructed for each

individual subject as well as an aggregate across subjects. The

SVM utilized a balanced weighting approach to account for

the potential variance in the number of trials performed across

subjects. The USAARL MATB demand level and the CSS average

workload score were binarized and used as a label for each of the

individual members of the one-vs-rest classifiers. The pupillometry

and heart rate variability metrics for each of approximately 12.3 s

moving windows were used as features for the model training

after dropping TINN (which was returned as missing data by the

TABLE 3 Grid search hyperparameters for best fitting models.

Model Feature set Subject(s) C Gamma

Binary CSS All 1, 2, and 3 5 0.6

Top 10 1, 2, and 3 5 1

Classic CWL 1, 2, and 3 1 1

Binary DL All 1, 2, and 3 5 0.7

Top 10 1, 2, and 3 10 1

Classic CWL 1, 2, and 3 5 0.9

Multiclass CSS All 1 5 0.2

All 2 5 0.1

All 3 5 0.1

All 1, 2, and 3 1 0.5

Top 10 1 5 0.6

Top 10 2 20 0.7

Top 10 3 10 0.7

Top 10 1, 2, and 3 1 0.7

Classic CWL 1 10 0.5

Classic CWL 2 25 0.5

Classic CWL 3 10 0.5

Classic CWL 1, 2, and 3 1 0.5

Multiclass

demand level

All 1 5 0.2

All 2 20 0.1

All 3 10 0.1

All 1, 2, and 3 5 0.5

Top 10 1 10 0.7

Top 10 2 20 0.7

Top 10 3 20 0.7

Top 10 1, 2, and 3 10 0.7

Classic CWL 1 20 0.5

Classic CWL 2 50 0.5

Classic CWL 3 25 0.5

Classic CWL 1, 2, and 3 10 0.5

hrvanalysis library because the TINN calculation requires longer

durations of IBIs). Additionally, rows with missing data were

dropped, as SVMs cannot be trained without imputing missing

values, and imputation of variability metrics is methodologically

unsound. An 80:20 train/validate split was performed prior to

the grid search and each model in the grid search was trained

using a 5-fold cross-validation. After the grid search, the highest

accuracy model was used to conduct predictions by taking the

label of the individual classifier in the one-vs-rest set with

the highest calculate probability of a positive observation. This

ensured a single predicted MATB demand level, and the CSS

average rating were returned for each of the moving windows

in the testing set. The highest accuracy model, as defined by the

hyperparameters presented in Table 3, was validated utilizing a 5-

fold cross validation approach to obtain a distribution of model

accuracy for further assessment.

From each model, feature importance was derived utilizing

a model-agnostic approach that evaluates the importance by

quantifying how much the model’s performance decreases when

a feature’s values are randomly shuffled. Multiple permutations of

the model were performed with modified versions (i.e., randomly

shuffled) of a feature to essentially break its association with

the target variable. Model performance with the modified feature

was then compared against baseline to determine how much of

a performance drop occurred due to the modification of the

feature. Larger drops in performance indicate higher levels of

importance the original feature had within the original model.

This process was repeated multiple times across all features to

derive a rank ordering of feature importance for each model. The

resulting rank order provided means to conduct the same approach

to building a second model that utilized only the top 10 most

important features for continued refinement and understanding of

the classification problem.

The predicted USAARL MATB demand level and CSS average

were matched with the actual USAARL MATB demand level and

reported CSS workload ratings to generate a confusion matrix

for the construction of accuracy, precision, recall (also termed as

sensitivity or the true positive rate), and Matthews Correlation

Coefficient (MCC) values to assess final model performance. The

MCC is a single metric that evaluates the quality of classifications

by considering true and false positives and negatives, with values

ranging from −1 (perfect disagreement) to 1 (perfect agreement),

and 0 indicating no better than random prediction. Additionally,

receiver operating characteristic (ROC) curves and the area under

these curves (AUC-ROC) were generated and plotted for each

model as this is a standard representation of model skill across

machine learning techniques. The area under the AUC-ROC

represents the average ability of the classifier to distinguish between

each pair of classes; here it is calculated as a macro-average using a

one-vs-rest scheme. For each individual classifier, precision [true

positives / (true positives + false positives)], recall [true positives /

(true positives+ false negatives)], AUC-ROC, and MCC values are

derived for both demand level and CSS rating predictions.

Although there are 10 possible demand levels for the

MATB and 7 possible ratings for workload, not all values were

experienced and/or reported by all subjects. When calculating

fitness metrics for each model, rows and columns of zeros
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were inserted where appropriate to ensure identical dimensions

before merging. Additionally, to make comparisons across sample

sizes more intuitive, the confusion matrices were converted from

counts to proportions before the fitness metrics were calculated

(Note: Neither of these procedures impacts the calculated model

fitness metrics.).

The same approach was utilized to provide classification results

with more simplified models that were calibrated by the feature

importance results of the feature rich SVM previously utilized. The

top 10 rank-ordered features were selected for each subject and

the combined subject models. This means, the resulting model was

tailored specifically to each subject (and combination of subjects)

based on their unique physiological importance responses. These

top features were included in the feature set to train a new series

of SVMs to predict the same demand level and CSS values. As a

final complexity reduction, a third feature set was developed based

on common metrics utilized in the field of cognitive workload

assessment. The included features in the third feature set were:

right and left pupil diameter means, mean heart rate, two heart

rate variability metrics (root mean square of successive differences

[RMSSD] and the ratio between low and high frequency cardiac

data [LF-HF ratio]). Three feature sets (All Features, Top 10

Features, and Classic CWL Metric Features) were used across

models to predict demand level and CSS values.

3 Results

3.1 Binary classification model
performance

The resulting confusion matrices for the binary demand level

and CSS prediction models are presented in Table 4. The confusion

matrices provide the proportion of observations from the reserved

testing data that correspond to each combination of truth (rows;

i.e., the demand level experienced in the USAARL MATB and the

participant’s reported average workload rating on the CSS) and

classifier prediction (columns). True positives occur when the truth

and prediction are matched, and these occur diagonally across the

matrix. The values listed in Table 4 are proportions, rather than

counts, the sum of the matching truth/prediction values along the

diagonal is the exact match accuracy of the model.

The two SVM models for demand level and CSS predictions

demonstrated fair (AUC-ROC: 0.70–0.80) to good (AUC-ROC:

0.80–0.90) discrimination between binary classes, highlighting

the models’ ability to distinguish between categories effectively.

The resulting test scores of the binary classification models

are summarized in Table 5. For demand level prediction, the

model achieved an accuracy of 0.7052 (Recall: 0.6911; Precision:

0.7196; AUC-ROC: 0.77; MCC: 0.4097) when using all available

features to discriminate the data, demonstrating strong predictive

performance. However, accuracy dropped to 0.6034 [Recall: 0.5839;

Precision: 0.6081; AUC-ROC: 0.64, indicating poor discrimination

(0.50–0.70); MCC: 0.1905] when relying solely on the classic CWL

metric feature set. Gross subjective CSS class prediction achieved

higher accuracy overall, with the model reaching 0.8042 (Recall:

0.6967; Precision: 0.7977; AUC-ROC: 0.84; MCC: 0.4840) using

all features and maintaining strong performance at 0.7906 (Recall:

TABLE 4 Confusion matrices for binary classification models.

Model True value All feature
Model

prediction

CWL metrics
Model

prediction

Low
DL

High
DL

Low
DL

High
DL

Demand

level

True Low DL 0.4658 0.0716 0.4425 0.0995

True High DL 0.2186 0.2394 0.2971 0.1609

Model True value All feature
Model

prediction

CWL metrics
Model

prediction

Low
CSS

High
CSS

Low
CSS

High
CSS

CSS True Low CSS 0.6764 0.0343 0.6637 0.0470

True High CSS 0.1615 0.1278 0.1624 0.1269

Bold values highlight correct predictions.

TABLE 5 Performance metrics for USAARL MATB binary classifiers across

all subjects.

Model
features

Metric Demand level
(DL1-3 vs.
DL8-10)

CSS
CSS<5

vs. CSS≥5

All Accuracy (Exact) 0.7052 0.8042

Recall 0.6911 0.6967

Precision 0.7196 0.7977

AUC-ROC 0.77 0.84

MCC 0.4097 0.4840

Top 10 Accuracy (Exact) 0.6458 0.8111

Recall 0.6329 0.7489

Precision 0.6481 0.7747

AUC-ROC 0.65 0.83

MCC 0.4641 0.5230

Classic CWL

metrics

Accuracy (Exact) 0.6034 0.7906

Recall 0.5839 0.7666

Precision 0.6081 0.6863

AUC-ROC 0.64 0.75

MCC 0.1905 0.4456

Recall and precision are calculated as macroaverage values.

0.7666; Precision: 0.6863; AUC-ROC: 0.75; MCC: 0.4456) when

using the reduced classic CWL metric feature set.

ROC visualizations are included (Figure 2) for each

classifier, including micro- and macro-average curves. The

ROC curve illustrates the trade-off between the true positive

rate (sensitivity) and the false positive rate (1-specificity) across

varying classification thresholds. These visualizations are typically

interpreted relative to a diagonal line (which is included) that

represents a model with skillless performance (i.e., random chance

predictions). A perfectly predictive model would be represented by

a vertical line rising from the origin and a horizontal line starting

at the point (0,1) and continuing to the point (1,1), indicating
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FIGURE 2

Exemplar ROC visualizations of the binary CSS classifiers for the complete and CWL metric feature sets.

perfect discrimination between classes. The area under the curve

(AUC), included in the legend, quantifies the overall performance

of the model, with a value of 1.0 indicating perfect prediction

performance and 0.5 indicating completely random prediction

performance. The ROC visualization intuitively highlights the

performance between the model’s tasks and allowed feature sets.

The AUC-ROC for the demand level classifier drops from 0.77

to 0.64 between the feature sets. In fact, the ROC presented for

the classic CWL metric feature set in Figure 2 demonstrates how

poorer performance leads to the curve falling toward the diagonal.

On the other hand, the AUC-ROC for the CSS classifier 0.84 to 0.75

between the feature sets, generally maintaining predictive accuracy.

Given the limitations of the demand level prediction model

when reduced to the smaller feature set, only the CSS classifier was

examined in more depth. Of particular interest is the performance

of the CSS prediction model in identifying when subjects would

be likely to report that the demand they experienced was at a

5 or higher on the CSS (a threshold indicating high cognitive

workload). While a statistically significant drop in performance,

t(4) = 3.4, p = 0.028, was observed between the complete

feature set (M = 0.8217, SD = 0.0062) and the classic CWL

metric feature set (M = 0.7960, SD = 0.0153), the minor deficit

should be examined with an eye toward the benefits of reduced

complexity of the classifier. To further explore the CSS model’s

feature contributions, an importance permutation was conducted.

The resulting feature importance ranking is depicted in Figure 3.

The shift from the entire feature set of 39 physiological features

was reduced to a total of 5 classic cognitive workload metrics,

representing a large reduction in model complexity while yielding

only minor reductions in performance. Of particular note, the

feature importance of the heart rate variability metrics appears to

be quite small relative to mean heart rate and the pupil diameter

means. This implies that the HRV metrics that were expected to

be important features a priori may be less important to cognitive

workload prediction in the evaluated context.

3.2 Multiclass classification model
performance

The multiclass classifier was tested to determine the accuracy

with which fine resolution predictions could be made and

utilized. Methodological deviations from the binary approach

are highlighted here, but the same structure of results and

visualizations are presented. In the multiclass prediction, the truth
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FIGURE 3

Feature importance for binary CSS model.

space expands from two possible states to 10 states for the demand

level classifier and 5 states for the CSS classifier. As such, the

random chance of the classifier to correctly predict the true state

drops from the 0.50 chance at the binary level to 0.10 for the

demand level predictions and 0.2 for the CSS value predictions.

Accuracy values were assessed against these adjusted levels of

random chance.

The included confusion matrices (Tables 6, 7) show the

proportion of observations from the reserved testing data that

correspond to each combination of truth and classifier prediction.

Missing values, represented with “not applicable (N/A),” occur

when there were no ratings of the corresponding value given by the

subjects. In this case, subjects did not utilize the full CSS scale when

making their subjective workload judgements, omitting the use of

ratings 1 and 7 completely.

The overall accuracy of the combined subject model for

predicting USAARL MATB demand level was 0.4680 (Recall:

0.4458; Precision: 0.5052; AUC-ROC: 0.79; MCC: 0.3924); while
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TABLE 6 Confusion matrix–USAARL MATB for predicting USAARL MATB demand level.

True value Prediction

1 2 3 4 5 6 7 8 9 10

True 1 0.1222 0.0109 0.0081 0.0123 0.0046 0.0075 0.0075 0.0121 0.0075 0.0084

True 2 0.0293 0.0418 0.0029 0.0023 0.0013 0.0033 0.0015 0.0042 0.0048 0.0012

True 3 0.0178 0.0046 0.0211 0.0042 0.0012 0.0023 0.0044 0.0058 0.0019 0.0017

True 4 0.0255 0.0050 0.0019 0.0433 0.0038 0.0046 0.0050 0.0082 0.0067 0.0023

True 5 0.0184 0.0017 0.0017 0.0021 0.0270 0.0017 0.0004 0.0042 0.0019 0.0023

True 6 0.0253 0.0046 0.0017 0.0033 0.0021 0.0301 0.0023 0.0065 0.0040 0.0013

True 7 0.0230 0.0050 0.0029 0.0029 0.0008 0.0031 0.0362 0.0038 0.0038 0.0035

True 8 0.0357 0.0054 0.0033 0.0071 0.0036 0.0044 0.0035 0.0692 0.0058 0.0036

True 9 0.0249 0.0042 0.0017 0.0067 0.0013 0.0023 0.0056 0.0073 0.0433 0.0013

True 10 0.0180 0.0013 0.0025 0.0040 0.0019 0.0008 0.0017 0.0021 0.0008 0.0336

Bold values highlight correct predictions.

TABLE 7 Confusion matrix–USAARL MATB for predicting CSS average workload score.

True value Prediction

1 2 3 4 5 6 7

True 1 N/A N/A N/A N/A N/A N/A N/A

True 2 N/A 0.0397 0.0245 0.0650 0.0186 0.0033 N/A

True 3 N/A 0.0084 0.0924 0.0894 0.0332 0.0058 N/A

True 4 N/A 0.0119 0.0301 0.1889 0.0395 0.0054 N/A

True 5 N/A 0.0015 0.0184 0.0807 0.1548 0.0063 N/A

True 6 N/A 0.0019 0.0052 0.0280 0.0144 0.0326 N/A

True 7 N/A N/A N/A N/A N/A N/A N/A

Bold values highlight correct predictions.

the overall accuracy of the model for predicting CSS responses was

0.5061 (Recall: 0.4681; Precision: 0.5507; AUC-ROC: 0.75; MCC:

0.3553). The resulting accuracy metrics can be found in Tables 8,

9. The reported recall and precision are the macroaverages of the

class-wise precision and recall, respectively. There is no included

microaverage precision or recall because those metrics are identical

to accuracy in a multiclass classification where all observations are

predicted as a single class.

3.2.1 Individualized models
The confusion matrix values presented in Tables 6, 7 represent

the accuracy based on a model derived from all three subjects. In an

effort to explore between subject differences, individualized models

were developed utilizing the same SVM development process

while using only a single subject’s data. Further individualization

was conducted in the feature selection process, to examine

the difference in the most important feature contributions to

each subject’s individualized model. The feature importance

graph (Figure 4) highlights how features were selected to further

individualize each subject’s model. After creating the classifier

using the entire feature set, the top 10 features were selected from

the output (all features above the black dashed line in Figure 4)

and were included as the only features in a new classifier built

specifically for that subject. This process resulted in 3 different

feature sets: all features, Top 10 features, and classic CWL metrics.

Tables 8, 9 present the accuracy metrics for each model across each

subject, including the combination of all subjects to serve as a

generalized model comparison.

Figures 5, 6 depict the accuracy values across each model.

Additionally, another metric labeled as Accuracy (Exact ± 1) is

depicted as extensions of each accuracy bar. The Accuracy (Exact±

1) metric represents how accurate the model is when its predictions

are close to the true value. To derive the Accuracy (Exact ± 1)

metric, the diagonal of the confusion matrices is summed with the

neighboring prediction proportions. For example, in Table 6, the

true positive value of demand level 5 is the sum of prediction 4,

5, and 6 proportions in the True 5 row. Of course, this artificially

heightens the accuracy value but leads to potentially interesting

discussion points relevant to safety-critical domains.

No significant deviations in normality were found among the

cross validated accuracy distributions using a Shapiro-Wilk test (W

= 0.775, p = 0.05, for the most offending distribution set), so a

parametric test was chosen for model comparison. The differences

between accuracy values as a function of feature set were evaluated

using Student’s paired t-tests to identify where statistical differences

in model performance occurred. The results of the statistical model
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TABLE 8 Performance metrics for USAARL MATB classifiers showing

accuracy for predicting USAARL MATB demand level when using all

features.

Model
features

Metric Subject ID

1 2 3 1+2+3

All Accuracy (Exact) 0.5627 0.5621 0.5517 0.4680

Accuracy (±1) 0.6355 0.6610 0.6498 0.5595

Recall 0.5350 0.4610 0.5065 0.4458

Precision 0.5945 0.5349 0.5391 0.5052

AUC-ROC 0.89 0.86 0.88 0.79

MCC 0.4970 0.4658 0.4934 0.3924

Top 10 Accuracy (Exact) 0.6218 0.6271 0.7048 0.5123

Accuracy (±1) 0.6897 0.7232 0.7799 0.5894

Recall 0.5992 0.5519 0.6936 0.5199

Precision 0.6307 0.5779 0.7049 0.5329

AUC-ROC 0.91 0.91 0.95 0.87

MCC 0.5667 0.5495 0.6674 0.4499

Classic

CWL

metrics

Accuracy (Exact) 0.5627 0.5749 0.5344 0.3368

Accuracy (±1) 0.6355 0.6808 0.6392 0.4647

Recall 0.5213 0.4852 0.5239 0.3458

Precision 0.6150 0.5596 0.5478 0.3645

AUC-ROC 0.90 0.91 0.89 0.77

MCC 0.4973 0.4832 0.4750 0.2546

Recall and precision are calculated as macroaverage values.

comparisons are included in Figures 5, 6, represented as linked

comparisons significant at p-values < 0.01 (∗) and < 0.001 (∗∗).

Significant differences between model accuracy scores were

found between feature sets consistently within the demand level

classifier. The Top 10 featuremodels performed significantly higher

than the complete and CWL metric feature sets, with an average

increase in accuracy equal to 0.1003 over the other feature sets

(All: 0.5361; Top 10: 0.6165; CWL: 0.5022). Another significant

difference was observed between the complete feature set (M =

0.4590, SD= 0.0083) and the CWLmetric feature set (M = 0.3756,

SD = 0.0099) in the combined subject model, t(4) = 14.6, p <

0.001. The complete feature set performed significantly better than

the CWL feature set, with an average difference in accuracy equal

to 0.0834. Individual subject models of demand level prediction

demonstrated no significant differences between the entire feature

set and the reduced CWL metric feature set, indicating that the

reduction in model complexity did not significantly alter the

model’s predictive accuracy.

The CSS classifier accuracy values also showed significant

differences between feature sets. No significant differences were

found across feature sets for subject 2’s models, even when

individualized to their data and top features. Again, the Top

10 feature set performed at higher levels of predictive accuracy

compared to the complete or CWL metric feature sets for subjects

1 and 2. An average of 0.0826 difference in accuracy scores

persisted between these feature sets (All: 0.6316; Top 10: 0.7158;

CWL: 0.6349). A small, but statistically significant, difference also

TABLE 9 Performance metrics for USAARL MATB classifiers showing

accuracy for predicting a CSS rating when using all features.

Model
features

Metric Subject ID

1 2 3 1+2+3

All Accuracy (Exact) 0.6543 0.6455 0.6086 0.5061

Accuracy (±1) 0.8242 0.9053 0.8297 0.8067

Recall 0.6128 0.5658 0.6040 0.4681

Precision 0.6636 0.6678 0.6062 0.5507

AUC-ROC 0.86 0.84 0.85 0.75

MCC 0.5361 0.4628 0.4965 0.3553

Top 10 Accuracy (Exact) 0.6880 0.6525 0.7435 0.4141

Accuracy (±1) 0.8477 0.9082 0.8732 0.7532

Recall 0.6437 0.5759 0.7397 0.3732

Precision 0.6744 0.6525 0.7326 0.4414

AUC-ROC 0.89 0.87 0.93 0.87

MCC 0.5819 0.4758 0.6712 0.2323

Classic

CWL

metrics

Accuracy (Exact) 0.6103 0.6412 0.6153 0.3857

Accuracy (±1) 0.8113 0.8715 0.8344 0.7200

Recall 0.5682 0.5483 0.6153 0.3537

Precision 0.6152 0.6605 0.6195 0.4325

AUC-ROC 0.85 0.86 0.86 0.67

MCC 0.4789 0.4556 0.5044 0.2023

Recall and precision are calculated as macroaverage values.

occurred between the complete feature set (M = 0.5883, SD =

0.0090) and CWL metric feature set (M = 0.6222, SD = 0.0146)

in subject 3’s individualized models, t(4) = −5.05, p = 0.007. The

CWL metric feature set provided an increase of accuracy equal to

0.0339 relative to the complete feature set, indicating that themodel

performed better with less input data. In the combined subject

CSS classifiers, the complete feature model performed significantly

better than the Top 10, t(4) = 6.12, p= 0.004, and CWLmetric, t(4)
= 9.13, p< 0.001, feature sets, with an average increase of 0.1062 in

accuracy. In fact, each step down in feature set complexity yielded

a statistically significant reduction in the combined subject model

accuracy [t(4) = 4.64, p = 0.010: between the Top 10 and CWL

metric feature set].

ROC visualizations are included (Figures 7, 8) for each classifier

(demand level and CSS, respectively) using the complete feature set,

showing curves for each individual class as well as microaverage

and macroaverage curves across classifications. As visible in

Figures 7, 8, differences in predictive performance occur between

the multiclass structure of the models. To explore this further,

recall, precision, and AUC-ROC values were calculated for each

individual class to better understand the nature and potential

causes of these differences. Table 10 provides these metrics for

each corresponding ROC curve, providing a measure of predictive

accuracy for each class.

The cells in Table 10 are highlighted as a heatmap to

demonstrate where high and low values of the accuracy metrics

are distributed throughout the individual class classifiers. This

emergent feature demonstrates the trend of the combined subject

Frontiers inNeuroergonomics 12 frontiersin.org

https://doi.org/10.3389/fnrgo.2025.1566431
https://www.frontiersin.org/journals/neuroergonomics
https://www.frontiersin.org


Vogl et al. 10.3389/fnrgo.2025.1566431

FIGURE 4

Feature importance for each classifier type across all subjects (S1 + S2 +S3).

model having a general reduction in recall, precision, and AUC-

ROC. It is also interesting to note that the lower values propagate

more toward lower-level classes that are more representative of

low CWL conditions. Lastly, the balance between the micro

and macroaverage values in the AUC-ROC scores suggests that

models perform similarly well across all classes. No single class

disproportionately skews the overall performance, and there are

likely no classes with extremely poor or exceptionally high

discrimination, relatively speaking.

4 Discussion

Aviation has consistently been at the forefront of CWL research

due to its high-stakes environment, where variability in cognitive

demand can lead to critical errors with devastating consequences.

This study demonstrates that even brief periods of physiological

data can predict task demands and subjective workload ratings

with surprising accuracy. Unlike traditional methods that rely

heavily on subjective self-report or limited objective metrics,

the models in this work leveraged machine learning to process

physiological signals and provide granular workload predictions.

Across accuracy, precision, recall, AUC-ROC, and MCC metrics,

the models demonstrated high predictive capacity, comparable to

or exceeding prior literature employing binary or trinary CWL

ratings (Hart and Staveland, 1988; Gevins and Smith, 2003).

Furthermore, SVMs offer a fully auditable production pipeline,

providing transparency in the decision-making process—a key

advantage over more opaque deep learning methods that dominate

the current literature and a necessity in safety-critical or otherwise

regulated applications.

The study’s first aim focused on developing binary classifiers

as a baseline to evaluate the potential of physiological data for

workload prediction. The binary classifiers demonstrated strong

performance, with AUC-ROC values of 0.77 for demand level

and 0.84 for CSS ratings using all features. These metrics reflect

the models’ capacity for fair to good discrimination, particularly

in distinguishing between high and low workload conditions.
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FIGURE 5

Demand level prediction accuracy across models. *p < 0.01, **p < 0.001.

FIGURE 6

CSS prediction accuracy across models. *p < 0.01, **p < 0.001.

Interestingly, the binary CSS classifier consistently outperformed

the demand level classifier across all metrics, includingMCC values

(0.4840 vs. 0.4097), which further supports prior findings that

subjective CWL ratings often exhibit stronger correlations with

physiological data than objective task demands (Cain, 2007; Hart

and Staveland, 1988). The CSS classifier’s superior performance

underscores its potential for real-time operational monitoring,

where subjective experiences may better reflect cognitive strain

than external task metrics that may be more difficult to access and

assess accurately.

Feature selection emerged as a critical determinant of model

performance. For binary classifiers, the All Features model

demonstrated the strongest overall performance, achieving an exact

accuracy of 0.7052 for demand level predictions and 0.8042 for CSS

ratings. However, the Top 10 Featuresmodel provided a compelling

alternative, achieving comparable performance while reducing the

dimensionality of the input data. For example, the binary CSS

classifier achieved an AUC-ROC of 0.83 and an MCC of 0.5230

with the Top 10 feature set, suggesting that these features retained

the most critical physiological indicators of workload. In contrast,

the Classic CWLMetrics model consistently underperformed, with

AUC-ROC values dropping to 0.64 for demand level and 0.75 for

CSS. This finding aligns with literature emphasizing the importance

of tailored feature selection in optimizing model performance

(Guyon et al., 2002). By reducing model complexity while

maintaining robust predictive power, the Top 10 Features model

offers a practical balance between interpretability and accuracy,

particularly for applications requiring efficient processing.
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FIGURE 7

ROC visualizations for demand level classifiers built using all features across all subjects.

Across all models, descriptive pupil diameter metrics, such as

mean, minimum, and maximum values, consistently demonstrated

high levels of feature importance. Of the ECGmetrics collected, the

mean heart rate had consistently high levels of feature importance

for each model. This contrasts with the heart rate variability

metrics that were a priori expected to be influential features in

the model development. As such, two out of the five classic

CWL metric feature set were inconsistent with past literature

where the metrics did yield success in identifying CWL changes.

This difference may be due to the transient nature of the two

physiological metrics being captured in this study. Pupil diameter

changes operate across short time intervals, reacting dynamically

to changes in the environment. Heart rate variability, however, is

less dynamic and may demonstrate more consistency over short

intervals, such as the small ∼12 s sliding window and 5-min trials

employed in the current study. Longer task durations or across-

session analysis may provide better insight to the value of heart

rate variability in the context of its inclusion in future iterations of

these models.

Building on the binary classifiers, the study’s second aim

expanded the scope to multiclass classification, offering greater

granularity in CWL predictions. While binary models dichotomize

CWL into high and low states, multiclass models provide finer

resolution, capturing CWL levels along a spectrum. In the context

of the region model, the binary classification models provide a

classification between region A2 (optimal CWL) and region B

(overloaded CWL) with region A3 (increasing CWL) fuzzily split

between the two groups. The multiclass classifiers provide finer

resolution to the fuzzy split of region A3, providing classifications

along the continuum of increasing CWL up to the red line

boundary between regions A3 and B. This build up to the red

line is particularly valuable in real-world applications, where early

remedial actions to reduce CWL can have significant operational

implications. For example, in aviation, identifying the progression

from moderate to high CWL could enable adaptive automation

systems to intervene before overload occurs, improving safety and

efficiency (Wickens and Hollands, 2000). Similarly, in healthcare,

detecting incremental increases in CWL could help clinicians
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FIGURE 8

ROC visualizations for CSS classifiers built using all features across all subjects.

manage cognitive fatigue during complex procedures (Gevins and

Smith, 2003).

Despite the increased complexity, the multiclass models

demonstrated reasonable performance relative to their binary

counterparts. The combined-subject demand level classifier

achieved an AUC-ROC of 0.79, while the CSS classifier reached

0.75. These values indicate fair discrimination, albeit lower than

the binary models, which achieved AUC-ROC values of 0.77

and 0.84, respectively. The Matthews Correlation Coefficient

(MCC) further highlighted this trade-off, with the Top 10 Features

model achieving MCC values of 0.4499 for demand level and

0.3553 for CSS in the multiclass setting, compared to 0.4641

and 0.5230 for their binary equivalents. These findings suggest

that while multiclass classification sacrifices some predictive

accuracy, it provides valuable granularity that can enhance the

interpretability and applicability of workload predictions in

dynamic environments.

Class-specific analysis revealed important insights into the

challenges of multiclass classification. Both demand level and

CSS classifiers struggled with low and moderate CWL conditions,

as evidenced by lower precision and recall values for classes

representing these states. For example, the demand level classifier’s

AUC-ROC for classes 1–3 averaged approximately 0.71 in the

combined model, while precision and recall for class 3 were

notably low (e.g., precision: 0.5020, recall: 0.4276). These results

suggest that physiological signatures for low and moderate CWL

states are less distinct, leading to greater overlap in feature spaces

and reduced separability. Conversely, higher CWL conditions

consistently achieved the highest performance metrics, likely

reflecting the stronger physiological responses associated with

cognitive overload, such as increased heart rate and pupil dilation

(Wickens and Hollands, 2000; Chen and Epps, 2013). These

trends align with the resource supply hypothesis, which posits

that physiological changes becomemore pronounced as individuals

approach cognitive capacity limits.

The third aim of this study explored the potential for

individualized models to enhance multiclass classification

performance. Combined-subject models, while valuable for

generalization, inherently face challenges in accommodating

inter-subject variability. Physiological responses to CWL are highly
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TABLE 10 Individual class recall, precision, and AUC-ROC values.

Subject Demand level classifier CSS classifier

1 2 3 1+2+3 1 2 3 1+2+3

Macroaverage Recall 0.535 0.461 0.5065 0.4458 0.6128 0.5658 0.604 0.4681

Macroaverage Precision 0.5945 0.5349 0.5391 0.5052 0.6636 0.6678 0.6062 0.5507

Macroaverage AUC-ROC 0.89 0.86 0.88 0.79 0.86 0.84 0.85 0.75

Microaverage AUC-ROC 0.89 0.88 0.89 0.79 0.87 0.86 0.86 0.77

AUC-ROC 1 0.8 0.79 0.86 0.71 N/A N/A N/A N/A

AUC-ROC 2 0.92 0.84 0.88 0.81 0.86 0.88 0.85 0.71

AUC-ROC 3 0.87 0.82 0.91 0.77 0.79 0.78 0.85 0.72

AUC-ROC 4 0.83 0.82 0.9 0.72 0.81 0.81 0.78 0.69

AUC-ROC 5 0.93 0.93 0.94 0.86 0.87 0.88 0.88 0.81

AUC-ROC 6 0.93 0.84 0.87 0.81 0.96 N/A 0.91 0.82

AUC-ROC 7 0.83 0.88 0.87 0.79 N/A N/A N/A N/A

AUC-ROC 8 0.93 0.93 0.85 0.77

AUC-ROC 9 0.88 0.9 0.86 0.78

AUC-ROC 10 0.94 0.89 0.91 0.88

Precision 1 0.4622 0.5376 0.5018 0.3591 N/A N/A N/A N/A

Precision 2 0.694 0.5250 0.4713 0.4943 0.6006 0.7692 0.5341 0.6173

Precision 3 0.5427 0.3000 0.5165 0.4418 0.6316 0.5886 0.6252 0.5020

Precision 4 0.5068 0.5375 0.5763 0.4913 0.6496 0.6504 0.6161 0.4240

Precision 5 0.6370 0.3333 0.7054 0.5663 0.6629 0.6667 0.6304 0.6064

Precision 6 0.5785 0.3469 0.5549 0.5016 0.7733 N/A 0.625 0.6039

Precision 7 0.6045 0.5745 0.5488 0.5324 N/A N/A N/A N/A

Precision 8 0.7171 0.7143 0.5269 0.5606

Precision 9 0.6266 0.73 0.5510 0.5381

Precision 10 0.5755 0.75 0.6478 0.5663

Recall 1 0.7032 0.7042 0.5417 0.6078 N/A N/A N/A N/A

Recall 2 0.5812 0.4615 0.4302 0.4513 0.5395 0.3448 0.5555 0.2170

Recall 3 0.5057 0.1200 0.4352 0.3245 0.4635 0.5110 0.6843 0.4276

Recall 4 0.4458 0.5000 0.6214 0.4072 0.5640 0.8261 0.5826 0.6766

Recall 5 0.5284 0.1818 0.6741 0.4393 0.8629 0.5812 0.5932 0.5846

Recall 6 0.4762 0.3269 0.5050 0.3703 0.6339 N/A 0.6044 0.4346

Recall 7 0.3553 0.5870 0.4592 0.4266 N/A N/A N/A N/A

Recall 8 0.6631 0.5645 0.6481 0.4892

Recall 9 0.5351 0.6636 0.5070 0.4388

Recall 10 0.5556 0.5000 0.5691 0.5029 All

Values are relatively (i.e., within the same metric) color coded as a heat map (blue= high, red= low) for easier viewing.

individual, influenced by factors such as baseline cognitive capacity,

stress tolerance, and task familiarity (Cain, 2007; Fairclough, 2009).

By tailoring models to individual subjects, it is possible to

capture these unique patterns, resulting in improved predictive

performance. For example, Subject 3’s individualized multiclass

demand level classifier achieved an AUC-ROC of 0.95 and anMCC

of 0.6674 using the Top 10 Features, far surpassing the performance

of the combined model. Similarly, the individualized CSS classifier

achieved an AUC-ROC of 0.93 and an MCC of 0.6712, reflecting

its exceptional ability to predict nuanced CWL ratings.

Feature selection also emerged as a key consideration in

the development of individualized models. The Top 10 Features

consistently outperformed both the All Features and Classic CWL

Metrics models, emphasizing the importance of identifying the
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most informative physiological indicators. Metrics such as mean

heart rate and pupil diameter ranked highly across subjects,

while heart rate variability unexpectedly showed less consistent

contributions. These findings align with prior research suggesting

that streamlined feature sets can enhance both interpretability and

performance by reducing noise and redundancy in the data (Guyon

et al., 2002; Fawcett, 2006).

4.1 Limitations

It is important to note that the low sample size utilized in

the current study may affect the generalizability of the combined

subject model presented in this work. While individualized CWL

predictive models demonstrated increased accuracy, a larger

number of subjects would allow for amore robust combined subject

model and solidify the necessity of individualized models if they all

demonstrate significantly increased predictive accuracy relative to

the combined subject model. Additional benefits include improving

the robustness of the dataset in terms of class distributions to avoid

any imbalanced class issues.

Data collected in this study was collected in a laboratory

environment, eliminating operational factors, such as

environmental factors and confounding autonomic states

(such as emotional responses to high-risk scenarios or high

levels of fatigue). Replicating the study in a high-fidelity aviation

simulator would serve to determine if the same predictive accuracy

can be achieved under more realistic operational conditions.

The USAARL MATB may be aviation-like, but further work is

needed to identify if higher-fidelity operationally relevant tasks

would yield similar results across a larger sample. Additionally,

military aviators are likely to be more homogenous in physiological

responses than the general populace, especially when performing

cognitively demanding aviation-like tasks. This homogeneity may

lend itself to improved combined subject model performance.

4.2 Study implications and future work

This demonstration, which is reproducible through the

approach outlined in this document, has two near-term

applications which may radically accelerate future aviation

development. First, accurately estimating cognitive workload from

physiologically derived features provides the basis for OSM and

true adaptive automation to expand the operational capabilities of

current and future pilots while decreasing risk of the hazards and

stresses associated with cognitive underload and overload. Using

a sliding window as short as 12 s allows for continuous prediction

of CWL throughout the performance of a task. It is theoretically

possible to create an adaptive automation system that leverages this

continuous predictive stream to initiate remedial actions (such as

turning on assistive automation systems) when CWL predictions

pass a specific threshold. The resulting model and methodology

produced in this work supports these future projects.

Second, rapid, accurate, non-intrusive estimation of CWL can

substantially reduce the time needed between iterative tests in

rapid prototyping of cognitively demanding systems. By employing

a physiologically driven CWL assessment model, an objective

assessment of CWL can be derived to aid in the comparisons

between the configurations of tested protypes under evaluation.

Systems with lower CWL predictions would be indicative of

increased usability and acceptance of the system. As additional

features and functionality are added to a system, objective changes

in CWL can be monitored through physiological means, which are

less likely to be affected by top-down factors such as cognitive bias

or emotion.

In future iterations of this modeling process, additional

physiological features and/or contextual factors should be used to

bolster the predictive accuracy of the model. Other physiological

measures have demonstrated the ability to serve as proxy

measures for CWL assessment, such as electroencephalogram

(EEG; Zhou et al., 2021), functional near infrared spectroscopy

(fNIRS; Aghajani et al., 2017), and electrodermal activity (EDA;

Braithwaite et al., 2013), to name a few examples. The CWL

metrics derived from these sensors should be incorporated into

this SVM as additional features used to make its prediction.

From this, continued feature selection methodologies including

dimensionality reduction methods such as principal component

analysis (PCA), can be incorporated into future model refinement.

Additionally, contextual factors can provide valuable weighting to

situations known to be more cognitively complex compared to

other scenarios that are less demanding.

5 Conclusions

In conclusion, this study highlights the potential of SVM

classifiers for CWL prediction, emphasizing the trade-offs between

binary and multiclass classification, combined and individualized

models, and comprehensive versus streamlined feature sets.

While binary classifiers exceled in their simplicity and reliability,

multiclass models provided valuable granularity that can enhance

the interpretability and applicability of CWL predictions when

using physiological measures that are sensitive to CWL changes in

Regions A1 and A3. The superior performance of individualized

models emphasizes the importance of tailoring classifiers to

specific physiological patterns, particularly in applications where

accuracy and reliability are paramount. These findings provide a

foundation for future research aimed at developing adaptive and

scalable CWL prediction systems, with implications for improving

safety, efficiency, and performance in high-stakes environments.

In summary:

1. We present models that accurately predict the USAARL MATB

task demand and CSS subjective scores based on objective

measures of ECG and eye tracking. Binary classifiers for

both demand level and CSS achieved high discriminatory

power, with accuracy values of 70 and 81%, respectively, when

using optimized feature sets. Multiclass model performance

for USAARL MATB demand level exceeded 70% accuracy for

demand level and CSS predictions exceeded 74% accuracy in the

most optimized models.

2. The expected results of the SVM generalized models were

random chance performance: 10% for predicting 10 levels of

the USAARL MATB and 20% for the 5 ratings of the CSS used
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here. The resulting multiclass models presented here exceeded

a priori expectations in results by a large margin and held its

performance against traditional binary classifiers.

3. The accuracy of thesemulticlass models suggests that physiology

alone can be used to identify level of CWL required across

a finer resolution of task demands resulting in differing

subjective ratings.

4. Subjective workload classifiers outperformed demand level

classifiers across most metrics, suggesting subjective workload

ratings may correlate more directly with physiological data than

objective task demands.

5. We demonstrate increased predicative accuracy (an average

of +13.9% for task demand and +13.0% for CSS rating

predictions) for individualized multiclass models compared to

generalized models (when comparing the highest accuracy

feature sets). Personalization captured subject-specific

physiological responses, highlighting its critical role in

applications where high accuracy is essential, such as aviation

and healthcare.

6. The Top 10 feature set consistently outperformed the

Classic CWL metrics and provided competitive results

compared to the All Features set. Streamlined feature sets

enhanced computational efficiency while retaining strong

predictive performance, emphasizing the importance of feature

engineering in workload models.

7. Binary classifiers are well-suited for tasks requiring simplicity

and efficiency, while multiclass models excel in dynamic

environments where granular workload assessments provide

added value. Tailoringmodel selection to the specific operational

context, such as adaptive automation or clinician support, can

enhance safety, performance, and decision-making.
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