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Editorial on the Research Topic

Advances in mobile optical brain activity monitoring

Advancements in brain imaging have significantly enhanced our understanding of

brain function, but much of this progress stems from constrained, single-snapshot

experiments conducted in controlled laboratory settings. Understanding brain activity

in dynamic, complex, and multisensory real-world environments remains in its infancy.

Emerging mobile brain imaging technologies beyond electrocencephalography (EEG)

(Nann et al., 2019), such as functional near-infrared spectroscopy (fNIRS) (Boas et al.,

2014) or diffuse optical tomography (DOT) (Chitnis et al., 2016), are beginning to

bridge this gap, enabling continuous measurement of cerebrovascular activity linked to

brain activity induced by, for example, human movement, perception, cognition, social

communication, and interaction in naturalistic settings. For instance, portable fNIRS

devices have proven effective for monitoring mental workload (Herff et al., 2013; Park,

2023) and can provide real-time feedback, e.g., in the context of brain-computer interface

(BCI) applications (Soekadar et al., 2021). In education, fNIRS has been used to study

attention (Harrivel et al., 2013), engagement (Verdiere et al., 2018), and learning outcomes

(Lamb et al., 2022) in natural settings, while its role in infant development research has

expanded understanding of perception and cognition in diverse populations (Gervain

et al., 2023). Moreover, hyperscanning (Hakim et al., 2023; Scholkmann et al., 2013)

enables simultaneous measurement of brain activity in multiple individuals, revealing

mechanisms like inter-brain synchrony during social interactions. Integrating fNIRS with

multimodal tools such as EEG (von Luhmann et al., 2017), eye-tracking (Isbilir et al., 2019),

and systemic physiological monitoring (Scholkmann et al., 2022) enhances these insights,

specifically into learning processes and interpersonal dynamics, paving the way toward new

medical and non-medical applications.

The Research Topic “Advances in Mobile Optical Brain Activity Monitoring”

underlines the transformative potential of portable fNIRS and related optical techniques
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for investigating brain function in real-world and dynamic

settings. Featuring eight contributions from leading laboratories,

this Research Topic highlights cutting-edge advancements in

the field.

In her review, Klein underscores the critical importance of

spatial specificity and signal quality in real-time fNIRS applications,

which are vital for reliable data collection in neurofeedback

and BCI contexts. Challenges such as anatomical variability,

variations in cap placement, and contamination by extracerebral

noise and motion artifacts are addressed, advocating for advanced

preprocessing techniques and adaptive algorithms to improve

reproducibility and reliability.

Biswas et al. present a novel low-cost approach to non-invasive

blood flow monitoring with integrated Diffuse Speckle Contrast

Spectroscopy (iDSCS). By leveraging a low-cost photodiode and a

custom electronic circuit, iDSCS simplifies deep tissue blood flow

measurements, offering a compact, power-efficient alternative to

traditional Diffuse Correlation Spectroscopy (DCS). Their study

demonstrates the feasibility of wearable probe-level hemodynamic

blood flow monitoring.

Bonnaire et al. propose an innovative approach utilizing

hyperscanning with fNIRS to study social bond formation

in children. The study integrates multimodal data, including

conversational behaviors, interpersonal rapport, collaborative

tasks, and inter-brain synchrony. The findings aim to deepen

understanding of social connectivity while informing the design

of empathetic AI systems and personalized educational tools that

adapt to group dynamics.

Moffat et al. advocate for mobile fNIRS in longitudinal and

intergenerational hyperscanning studies to uncover the neural

mechanisms underlying social dynamics across generations. By

addressing ecological validity challenges with portable designs and

real-world protocols, this perspective article specifically highlights

interventions targeting intergenerational relationships, particularly

in psychological and social contexts.

Roumengous et al. introduce the NIRSense Aerie, a wearable

fNIRS system optimized for high-G environments encountered

by military aircrew. The system monitors cerebrovascular

oxygenation and perfusion during high-G-force exposure, offering

real-time feedback to improve anti-G straining maneuver

training and operational safety. Future advancements in

miniaturization and comfort will extend its applications to

other high-stress occupations.

Lingelbach et al. investigate workload-dependent hemispheric

asymmetries in emotion-cognition interactions using an

ecologically valid fNIRS setup. Their findings reveal lateralized

prefrontal cortex activity influenced by emotional distractions

and workload levels, with implications for optimizing focus and

productivity in learning and work environments.

Srinivasan et al. demonstrate the importance of incorporating

subject-specific information to enhance spatial accuracy in high-

density diffuse optical tomography (HD-DOT) using fNIRS. By

employing photogrammetry to identify optode placement, their

study shows the extend of optode localization errors, particularly

in motor cortex recordings that ranged at 27.4mm in average.

Their work underlines the importance of collecting subject-specific

optode locations for all wearable NIRS experiments to achieve

accurate results.

Finally, von Au et al. examine the neural activation patterns

associated with different self-touch behaviors, identifying distinct

hemodynamic responses in the prefrontal cortex during phasic

and repetitive self-touch. This study shows that repetitive self-

touch activates the orbitofrontal cortex and dorsolateral prefrontal

cortex brain regions associated with self-regulation, more strongly

than phasic self-touch, highlighting the stronger self-regulatory

function of repetitive self-touch, the importance of using objective

behavioral controls, and the need for future research on irregular

self-touch in real-world environments.

Besides underlining the critical challenges that must be

addressed to drive the field forward, this Research Topic illustrates

the transformative potential of mobile optical brain imaging

technologies. While it is essential to advance innovation in

instrumentation, data analysis, and experimental design, future

efforts must also prioritize interdisciplinary collaborations to

fully realize the promise of this exciting new research domain.

Importantly, online monitoring of functional brain activity

enables dynamic, brain-state-dependent interaction using sensory

or brain stimulation (Nasr et al., 2022) or human-computer

interaction (neuroadaptive technology, passive BCI) (Zander

and Kothe, 2011), offering opportunities to enhance learning,

cognition, wellbeing or ergonomics. Establishing neurotech hubs

and innovation ecosystems centered around robust academic-

industry-clinical collaborations will be crucial for facilitating the

rapid prototyping and exploration of such innovative solutions.

In this context, it is imperative to ensure that neurotechnology

serves as an enabler of human potential and development,

rather than a tool for surveillance, coercion, or any application

that undermines human freedom or rights (UNESCO, 2024).

Embedding these advancements within a robust neuroethical

framework is essential to safeguard their responsible use (Garden

et al., 2019). With these efforts, mobile optical brain imaging offers

a bright future, redefining how we work, learn, and interact with

digital technologies.
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