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From beeps to streets: unveiling
sensory input and relevance
across auditory contexts

Silvia Korte 1*, Manuela Jaeger 1, Marc Rosenkranz 1 and

Martin G. Bleichner 1,2

1Neurophysiology of Everyday Life Group, Department of Psychology, University of Oldenburg,

Oldenburg, Germany, 2Research Center for Neurosensory Science, University of Oldenburg,

Oldenburg, Germany

Introduction: This study investigates the neural basis of sound perception in

everyday life using EEG data recorded in an o�ce-like environment over 3.5 h.

We aimed to understand how contextual factors such as personal relevance, task

complexity, and stimulus properties influence auditory processing in ecologically

valid settings.

Methods: By systematically increasing the complexity of acoustic scenes and

tasks, we analyzed changes in neural responses, focusing on the N100 and P300

components.

Results: Our results show that while the P300 is a stable marker of attention in

both isolated sounds and complex soundscapes, the N100 is more sensitive to

task complexity and environmental factors.

Discussion: These findings highlight the importance of context in shaping

auditory perception and suggest that laboratory-based findings can be partially

generalized to real-world settings. At the same time, task demands significantly

influence neural markers. This opens new opportunities to study sound

perception in naturalistic environments without sacrificing the control typically

a�orded by laboratory studies.
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1 Introduction

Complaints about noise pollution have been around for as long as people have lived

together in cities. Its impact on human health and well-being is an increasingly recognized

and discussed social problem that has been investigated and proven in a variety of studies

(World Health Organization, 2011). It has been shown that habituation to noise varies

greatly between individuals and is rarely complete (Basner et al., 2011). Heinonen-Guzejev

(2008) estimates that about 20 to 43% of the general population suffers from heightened

sensitivity to noise, placing them at a higher risk for negative health outcomes from noise

exposure. Studies investigating the adverse effects of noise (defined as unwanted sound)

on human health generally refer to the physical properties of noise, which are measurable

as loudness, frequency, or sound pressure level (Basner et al., 2014). While much of the

research has focused on loud noise and its direct effects, such as hearing loss, non-auditory

health impacts can also result from “quiet noise”—sounds that, while not physically loud,

are perceived as annoying and stressful over time (Peris et al., 2020; Mehrotra et al.,

2024). This form of noise stress has been linked to cognitive deficits, sleep disturbances,

depression, and increased suicide rates (Basner et al., 2011; Hygge et al., 2002; Yoon et al.,

2014).
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While the physical impacts of noise on health are well-

documented, the question of what constitutes noise is not

only highly individual, but also highly complex. While certain

physical characteristics of sound, such as high volume or specific

frequencies, are generally perceived as disturbing (Rimskaya-

Korsakova et al., 2022), these factors alone cannot fully explain

why a sound is considered noise by an individual. In everyday

life, we are surrounded by a constantly changing soundscape, and

the significance we attribute to these sounds varies depending on

the context. Sounds that are relevant to us in one situation may

be meaningless or even distracting in another. While the negative

health effects of loud noise are well documented, understanding the

subjective perception of noise is a significant challenge, that cannot

be sufficiently explained by description of the physical properties of

sound (Rimskaya-Korsakova et al., 2022).

The complexity of sound perception highlights the need to

look beyond physical properties and consider contextual and

intrapersonal factors (Hong and Jeon, 2015; Yong Jeon et al., 2011).

Emotional state, personal relevance, current task, activity level

and intentions all influence how sound is perceived and evaluated

(Shinn-Cunningham and Best, 2008; Asutay and Västfjäll, 2012;

Debnath and Wetzel, 2022; Rosenkranz et al., 2023; Siegel and

Stefanucci, 2011; Schlossmacher et al., 2021). Sounds deemed

personally relevant, such as one’s own ringtone or name, command

more attention than irrelevant sounds, independent of their

physical characteristics (Polich, 2007; Roye et al., 2013; Holtze et al.,

2021).Moreover, the context in which sound is perceived influences

how it is processed (Debnath and Wetzel, 2022). In our study,

we therefore pose the question of how personal relevance of a

soundscape influences individual sound perception.

One commonly used approach in studying the perception

of noise is based on surveys. Although qualitative surveys

provide valuable insights into sound perception by accounting

for contextual factors, they are prone to cognitive biases, such as

priming, false memory, or the peak-end effect (Hjortskov, 2017;

O’Connell and Greene, 2017; Fredrickson and Kahneman, 1993).

While various studies have attempted to quantify noise perception

over time and across environments (see Kjellberg et al., 1996;

Paunović et al., 2009; Yoon et al., 2014), no single model has

successfully captured the full complexity of what determines sound

to be perceived as noise (Pierrette et al., 2012) with the subsequent

potential of negative health outcomes. Multiple factors explain

variance in noise ratings, including demographic factors such as

gender, age and education level, as well as contextual characteristics

like perceived acceptability of the noise source, noise expectation

and visibility of the noise source (for a detailed review, see Pierrette

et al., 2012).

However, surveys offer limited insight into how individuals

perceive their current soundscape, as they have to be administered

retrospectively. Even with ambulatory assessment methods, where

surveys can be done in real time (i.e., as close as possible to a sound

event), the challenge remains, that the process of asking a person to

reflect on a sound event, may already alter their perception of it and

is related to several further challenges (see Schinkel-Bielefeld et al.,

2024 for a recent review).

Given the limitations of subjective survey methods,

Electroencephalography (EEG) offers an objective alternative

for studying how individuals process and perceive sound in real

time. EEG can provide insights into the perception of various

sound properties such as sound intensity as well as related cognitive

processes like attentional arousal, and the detection of auditory

expectation violations (e.g., Polich, 2007; Näätänen et al., 2011).

Hence, EEG is a valuable tool for capturing sound perception,

particularly in situations where immediate, unbiased responses are

critical. Its usability in workplace settings is significant, especially

in roles requiring sustained attention to a primary task, such as in

aviation (Dehais et al., 2019), public transportation (Sonnleitner

et al., 2014), or healthcare (Rosenkranz et al., 2023), where

self-reporting is either impractical or may compromise safety.

EEG studies of sound perception have typically focused on the

brain’s response to isolated auditory stimuli over short periods,

conducted in controlled laboratory settings that allow for only

limited behavioral variation (Maselli et al., 2023; Nastase et al., 2020;

Lorenzi et al., 2023). While these experiments provide valuable

insights into basic auditory processing, such as differences in

P200 amplitude between noise-sensitive and non-noise-sensitive

individuals when exposed to noise (Shepherd et al., 2019) or how

salient events suppress neural responses to ambient sound (Huang

and Elhilali, 2020), they may not fully capture the complexity

of sound perception in real-world situations. Although there is

increasing interest in studying more complex auditory stimuli

(e.g., Rosenkranz et al., 2023; Holtze et al., 2021; Jaeger et al.,

2020; Schlossmacher et al., 2021; Ding and Simon, 2012; Horton

et al., 2014; Mirkovic et al., 2015; O’Sullivan et al., 2015; Fuglsang

et al., 2017), these controlled experiments still differ significantly

from real-world experiences, where individuals encounter a rich

variety of sounds, constant environmental changes, and prolonged

exposure to auditory stimuli throughout the day (cf. Hasson and

Honey, 2012). This raises the question of whether neural processing

changes in response to naturally occurring stimuli, which might be

perceived as disturbing regardless of their physical properties. The

current study, therefore, aims to explore a further question: how

does the neural response to auditory stimuli differ between isolated

sounds and sounds embedded within a complex soundscape?

EEG studies beyond the lab are becoming increasingly popular

and open up a novel approach to study the human brain

and behavior (e.g., Ladouce et al., 2019; Jacobsen et al., 2021;

Gramann et al., 2014; Reiser et al., 2021; Scanlon et al., 2022;

Zink et al., 2016). However, only few studies have ventured

beyond the lab to investigate sound processing in naturalistic

environments with even fewer studies focusing on naturally

occurring sounds. Straetmans et al. (2021) and Rosenkranz et al.

(2023) demonstrated that responses to continuous stimuli can be

recorded while participants were engaging in a bodily active task

and Hölle and Bleichner (2023) and Hölle et al. (2021) showed

that smartphone-based ear EEG can measure sound processing

over longer periods of more than 4 h. However, beyond-the-

lab studies face several challenges and the complexity of the

ever-changing real world cannot be captured by EEG recordings

alone but require environmental context information to account

for sources of variance that are not neurally driven (Krugliak

and Clarke, 2022). Also, the neural data itself leads to further

challenges, such as movement artifacts (Jacobsen et al., 2021;

Gramann et al., 2014) and difficulties in interpreting EEG data
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due to the presence of unknown artifacts (Mathias and Bensalem-

Owen, 2019). Additionally, these studies must contend with lower

signal-to-noise ratios, and greater environmental variability, which

complicates experimental design (Ladouce et al., 2019).

While both traditional lab-based studies and beyond-the-lab

studies provide critical insights, each comes with its limitations.

Laboratory studies offer the advantage of precise control and

measurement but lack ecological validity. In contrast, beyond-the-

lab studies capture the complexity of real-world environments,

but they face challenges such as movement artifacts and reduced

experimental control, complicating the interpretation of EEG data.

Our study seeks to bridge these two approaches by adopting a

middle stance. While remaining in a lab-based setting, we simulate

a more naturalistic environment, allowing participants greater

freedom in a realistic office-work-like scenario. By interacting with

complex soundscapes and performing tasks with fewer constraints,

participants experience a more flexible and dynamic environment,

while we retain enough control to maintain experimental rigor.

Positioned between these two extremes, our study explores

whether neural patterns observed in controlled lab conditions

can be generalized to more naturalistic yet semi-structured

environments. This balanced approach allows us to contribute

to a more comprehensive understanding of auditory processing,

integrating the strengths of both controlled and real-world

research.

In our study, we aim to address the various questions we have

raised, which are:

• How does the manipulation of personal relevance change the

perception of a soundscape (in the long term)?

• How does the neural response to auditory stimuli differ

between isolated sounds and sounds embedded in a complex

soundscape?

• Can we monitor changes in sound perception in a realistic

(office) working condition?

Specifically, we seek to deepen our understanding of how

complex acoustic scenes are perceived and interpreted over

extended periods. We use EEG to record participants over several

hours while they are exposed to soundscapes and tasks of varying

complexity. Additionally, we manipulate the behavioral relevance

of the soundscape. Our goal is to enhance the interpretation of

sound processing in real-world environments, contributing to a

more comprehensive understanding of how sound perception is

influenced by context, personal relevance, and stimulus complexity.

We focus on two well-established event-related potential (ERP)

components as markers of early and late stages of auditory

processing: the N100 and the P300. The N100 component, typically

emerging around 100 ms post-stimulus, reflects the detection of

auditory events and is known to be sensitive to both the physical

properties of sounds and the allocation of attention (Näätänen

and Picton, 1987; Näätänen et al., 2011). In contrast, the P300

component is considered a robust indicator of cognitive processes

related to stimulus evaluation and attentional relevance (Polich,

2007). Both components have been widely used in EEG studies

investigating auditory attention in controlled lab settings, and

more recently, in naturalistic contexts as well (Rosenkranz et al.,

2023; Straetmans et al., 2021). Our selection of these components

is motivated by their reliability, interpretability, and suitability

for tracking both bottom-up and top-down influences on sound

perception across varying degrees of ecological complexity.

2 Methods

2.1 Participants

The sample consisted of 23 participants (13 female, 10

male) aged between 21 and 37 years (mean: 25.57, standard

deviation [SD]: 3.48). All participants were right-handed, had

normal (or corrected-to-normal) vision and had no history of

neurological, psychiatric or psychological disorders. To ensure that

we only include participants with normal hearing, all participants

underwent a hearing screening on a day prior to, but close to,

the experiment. Audiometric threshold of at least 20 dB HL were

confirmed by pure-tone audiometry at octave frequencies from 250

Hz to 8 kHz Using a SIEMENS Unity 2 Audiometer in a sound-

proof cabin and with overear headphones. We screened a total of

30 participants of which 23 were eligible.

Prior to EEG recording, participants filled out the Weinstein

noise sensitivity scale. The average score was at 3.366 (SD =

0.517), whereas the norm score for this inventory is 3.037 (SD

= 0.572). The inventory revealed that six individuals exhibited

values of at least one standard deviation above the norm

score, indicating heightened sensitivity to noise. Conversely, one

individual demonstrated a value below one standard deviation

of the norm score, suggesting a diminished propensity for noise

sensitivity relative to the average.

Participants gave written informed consent prior to the study

and received monetary compensation. The study was approved by

the Ethics Committee of the University of Oldenburg.

2.2 Procedure

The study examined the neural response to sounds, asmeasured

by EEG. The entire study lasted approximately 6 hours (including

breaks, preparation, briefing, and debriefing) to provide insight

into changes in sound processing over a longer period of time. On

the day of the EEG recording, participants were asked to come

in with washed hair, to improve data quality. Upon arrival, the

participant was taken to the laboratory and any questions about

the experimental procedure were answered by the experimenter.

We then asked the participant to complete two questionnaires

regarding noise sensitivity and general state (described below).

After that, we placed the EEG cap. After a short calibration block,

we started the experiment, which consisted of six consecutive

blocks of 15 to 45 min, resulting in a total recording time of 3.5 h.

After each block, the participant could take a break of a self-chosen

duration and received instructions for the subsequent block.

2.2.1 Questionnaires: WNSS and general state
Prior to EEG data acquisition participants completed the

Weinstein Noise Sensitivity Scale (Weinstein, 1978), a 21-item
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inventory that asks participants to indicate, on a 6-point Likert scale

ranging from “strongly disagree” to “strongly agree” how much

they agree with statements related to noise (such as “I wouldn’t

mind living on a noisy street if the apartment I had was nice.”).

In addition, they completed a questionnaire about their general

current state (e.g., hours of sleep, last meal, medications etc.) to

ensure eligibility for the study.

2.3 Paradigm

All parts of the paradigm (except for the transcription

task) were presented using the Psychophysics Toolbox extension

(Brainard 1997; Pelli 1997; Kleiner et al. 2007, version: 3) on

MATLAB 2021b.

2.3.1 General structure of block sequence
There were six consecutive blocks, in which the sounds and

an additional task became progressively more naturalistic and

complex. The design of the blocks was chosen so that results could

be compared between them, since only one aspect changed between

two consecutive blocks: auditory stimuli, non-auditory task, or

listening mode.

2.3.2 Experimental phases
The overall idea was to obtain measures of neural sound

processing in three phases and under conditions of varying

naturalness. The first phase involved passive listening, the second

phase focused on active listening, and the final phase returned to

passive listening.

First, we were interested in how task irrelevant background

sounds are processed. For this we measured brain activity free of

any auditory task to artificial and natural sounds and under varying

naturalness of the additional task. In this phase, participants were

instructed that the soundscape was not particularly relevant and

that they could ignore it. This allowed us to compare neural

processing under different levels of stimulus naturalness and the

influence of task context.

Second, we manipulated participants’ focus on the sounds by

up-modulating the relevance of specific sounds, i.e., a change in

pitch in blocks with isolated stimuli and the occurrence of a church

bell in blocks with ambient sound. In this phase, participants were

asked to respond to these sounds by pressing a key on the keyboard,

which required active listening. This allowed us to compare the

neural response (quantified as the amplitude of the N100 and

P300 component of the ERP) of passive vs. active listening for the

different auditory materials and the non-auditory tasks.

Third, we asked participants to ignore the previously relevant

auditory features again to obtain a measure of what we call

“attentional wash-out.” Our prediction was that participants’ P300

response would take some time to return to their baseline level.

Thus, we predicted that attention would be washed out over time.

For a visual representation of the study design, see Figure 1.

2.3.3 Auditory stimuli
All sound files had a sampling rate of 44.1 kHz. Two auditory

scenarios were presented. The first scenario was a roving oddball

paradigm (Garrido et al. 2008), based on code publicly available on

github.com (Sumner, 2022). In this paradigm 7 stereo pure tone

beeps that differed in frequency (500 Hz, 300 Hz, 250 Hz, 200 Hz,

150 Hz, 100 Hz, 50 Hz) were used, with a length of 70 ms and a rise

and fall time of 10 ms. For the roving oddball, sequences (trains) of

these tones were generated. For each train, a tone at a random pitch

was chosen and repeated 5 times, followed by a random addition

of 1 to 5 more of the same tone. This resulted in trains ranging

from 6 to 10 tones in length. The inter-stimulus interval between

tones was 1,000 ms. No subsequent train contained the same tones

as the preceding train. The roving oddball had a total duration of

15 mins, resulting in an average of 121 trains. The average volume

of the tones was at 55 dB(A).

The second scenario was a pre-recorded soundscape of

a busy city street, available on Youtube.1 It consisted of a

variety of ambient sounds, such as streetcars, motorcycles or

incomprehensible speech. The street scenario had a total length

of 2 h and 21 min, from which we took four segments of 45 min

each. These segments had a short overlap, since the original sound

file was not long enough to cover three non-overlapping hours.

The order in which the segments were presented was randomized

across participants. Inspired by Brink et al. (2011), we added a

single chime of a church bell (also taken from Youtube2) to create

an auditory recognition task. Although the church bell sound was

played at its total duration of 2,890ms its perceptual onset and peak

energy were located at the beginning of the sound. The total length

was determined by its natural decay. Thus, EEG responses were

effectively time-locked to the onset, comparable to shorter stimuli

like the 70 ms roving oddball tones. The church bells were added at

50 random times, with an average distance of 53 seconds between

bells. The bells were varied in their spatial position (i.e., they were

played from the left, right, or both sides).

Accordingly, we added bird calls of three different bird species

(blackbird, great tit, and sparrow) at 50 random time points and

with different positions. All bird call files were modified to the

same length of 790 ms to facilitate data processing later on. While

the sharpness of the onset varies slightly between species, all calls

exhibit prominent onsets suitable for ERP alignment. All bird calls

show a typical, repetitive sound pattern composed of short, distinct

vocal phrases. Each call has clear harmonic or tonal structures,

with sound energy concentrated in the mid-frequency range,

roughly between 2–8 kHz. While their style and complexity differ

(e.g., the blackbird being more melodic), the building blocks—

repetition,mid-frequency emphasis, shortmotifs, and tonality—are

consistent. Based on these similarities, we grouped all bird calls into

one sound category (Zuk et al., 2020). As the onset of a bird call

represents a salient acoustic event expected to elicit a clear ERP

response (Straetmans et al., 2021), we carefully time-aligned the

onset of all bird calls to derive the averaged ERP response.

1 https://www.youtube.com/watch?v=Le_g4s6KloU, (accessed July 1,

2022).

2 https://www.youtube.com/watch?v=uya2CXwCY5w, (accessed July 1,

2022).

Frontiers inNeuroergonomics 04 frontiersin.org

https://doi.org/10.3389/fnrgo.2025.1571356
https://www.github.com
https://www.youtube.com/watch?v=Le_g4s6KloU
https://www.youtube.com/watch?v=uya2CXwCY5w
https://www.frontiersin.org/journals/neuroergonomics
https://www.frontiersin.org


Korte et al. 10.3389/fnrgo.2025.1571356

FIGURE 1

Overview of experimental blocks. Order of the blocks is chosen to ensure naivety concerning target sounds in the naive passive conditions.

We embedded the church bell and bird calls at a low volume,

making them less noticeable compared to the background noise.

The sounds were chosen to be natural in the overall soundscape

of the busy city. This approach was inspired by the study by

Schlossmacher et al. (2021), where words were embedded in noise

and were only recognized by the participants when they were

made aware of the words. The resulting overall soundscape had an

average volume of 51 dB(A).

2.3.4 Non-auditory task
Participants engaged in one of two non-auditory tasks

throughout the experiments depending on the block. The first task

was a hidden object picture task involving visual search. A hidden

object picture is a static picture with a high level of detail. There

are a variety of visual objects and activities and participants had

to search for a specific aspect of the picture (e.g., “Find the black

cat”). The task is similar to “Where is Waldo?/Where is Wally?,”

the famous children’s game.

The hidden object pictures were comic-style and showed

different scenes, such as a library, a playground or a hair salon.

In each picture, 40 different objects were marked as targets.

Participants were tasked with searching for individual objects, and

the target object was written at the top of the screen throughout.

Using the mouse, they could click on any object. If they clicked on

the target, a message on the screen informed them of the successful

identification. If they clicked any other object, they received a

message instructing them to continue searching. Participants had

unlimited time and unlimited attempts to find the target object.

If they could not find a target or were uncertain about a word,

they could skip to the next target by pressing the right arrow key

on the keyboard. Participants had to search for an object for at

least 30 seconds before they could choose to skip an object. If

participants identified all 40 objects in a picture before the end

of an experimental block, they were presented with a new hidden

object picture. Participants were presented with a maximum of 5

hidden object pictures (depending on their individual task speed).

The number of targets was deliberately set so high that participants

would not be able to find all the targets in the allotted time, to

ensure that all blocks were of equal length for all participants. The

order of the pictures was randomized across participants.

The second task was a transcription task that resembled

simple office work. The task was taken from the citizen

science project “world architecture unlocked” on “Zooniverse”

and consisted of transcribing handwritten information about

architectural photography3. The handwritten information had to

be matched to given categories, such as city, name of architect,

or name of building. The task required no prior knowledge about

architecture, yet was challenging enough that participants had to

stay focused to complete the task. Participants were encouraged

to use online search engines and online maps to correctly match

the handwritten information under the photos to the required

categories. The combination of deciphering, typing, and searching

the internet met the requirement of resembling office work and

provided higher task complexity than the hidden-object picture

task.

2.3.5 Experimental blocks
The experimental phases described above were divided into 6

consecutive blocks, as can be seen in Figure 1. The naive passive

phase had 3 blocks, the up-modulation phase had 2 blocks and the

wash-out phase had one block.

Both auditory scenarios were presented in either passive or

active listening mode. In the passive listening mode, participants

were informed that there would be background noise but that it

was irrelevant, and could be ignored. In the active listening mode,

participants were asked to respond to specific acoustic events for

each of the auditory scenarios. For the roving oddball, they were

asked to indicate a change in pitch from one tone to the next by

pressing the F4 key on the keyboard. For the street scenario, they

were asked to indicate the occurrence of the church bell by pressing

the F4 key. The response key was chosen to avoid a potential

conflict in the non-auditory task, where participants also had to

use the keyboard. All other sounds, including the bird calls, were

not behaviorally relevant and never required a response. They were

used to facilitate the ERP analysis, so that the relevant events (i.e.,

church bells) could be compared with non-relevant events (i.e., bird

calls).

In detail, the experimental blocks were as follows:

• Block 1 (Naive passive listening): Participants listened to a 15-

minute sequence of the roving oddball while completing the

3 for further information see: https://www.zooniverse.org/projects/

courtaulddigital/world-architecture-unlocked/about/research.
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hidden object picture task. They were not required to respond

to the sounds.

• Block 2 (Naive passive listening): Participants listened to a

45-minute sequence of the street soundscape while working

on the hidden object picture task. They were not required to

respond to the sounds.

• Block 3 (Naive passive, passive listening): Participants listened

to a 45-minute sequence of the street soundscape while

performing the transcription task. They were not required to

respond to the sounds.

• Block 4 (Active listening, up-modulation): Identical to Block

1, but now participants were instructed to respond to the first

tone of each train.

• Block 5 (Active listening, up-modulation): Identical to Block 3,

but now participants were instructed to respond to the church

bell sounds.

• Block 6 (Passive Listening, wash-out): Identical to Block 3.

Mind that participants were now required to ignore the

previously relevant church bell sound again. They were not

required to respond to the sounds.

The order of blocks was identical for all participants. This was

necessary to assure that participants were naive to the target sounds

in the passive listening blocks.

2.4 Hypotheses

We analyzed the EEG data for early and late components of

the ERP which are the N100 component, known to reflect early

auditory processing and stimulus intensity (Näätänen and Picton,

1987) and the P300 component, known to reflect higher cognitive

processing, such as attention (Polich, 2007). We postulated the

following hypotheses.

2.4.1 Attention modulation of target processing
Hypothesis 1: The amplitude of the P300 component to target

stimuli will be greater for a target sound in the active listening

condition compared to the passive listening condition. This effect

has been consistently found in laboratory experiments (e.g., Polich,

2007). To test this hypothesis, we compared the ERPs from block

1 (passive listening to the roving oddball + hidden object picture

task) to block 4 (active listening to the roving oddball + hidden

object picture task) and from block 3 (passive listening to the street

soundscape + transcription task) to block 5 (active listening to the

street soundscape + transcription task).

2.4.2 Attention modulation of non-target
processing

Hypothesis 2: Processing of behaviorally irrelevant sounds, as

represented by the N100 of the ERP to non-relevant beeps in the

roving oddball and non-relevant added bird sounds in the street

soundscape, will generally be larger in the active listening condition

than in the passive listening condition because participants have to

scan the entire soundscape for the target. To test this, we compared

the same blocks as in hypothesis 1.

2.4.3 Contextual influence on the P300
component

Hypothesis 3: We hypothesized a difference in P300 amplitude

for relevant features of the auditory scene in active vs. passive

listening between the blocks with more controlled experimental

features (i.e., roving oddball + hidden object picture task) and

blocks with less controlled experimental features (i.e., street

soundscape + transcription task). We predicted that the P300

amplitude would show a higher amplitude in active vs. passive

listening in blocks with more experimental control than in the

blocks with less experimental control. To test this, we compared

the grand average between the effects of block 1 (hidden object

picture task + passive roving oddball) and block 4 (hidden object

picture task + active roving oddball) vs. block 3 (transcription task

+ passive naive street soundscape) and block 5 (transcription task

+ active street soundscape).

2.4.4 Task complexity e�ects on early auditory
processing (N100)

Hypothesis 4: The amplitude of the N100 component of the

ERPwill be greater during passive listening to the street soundscape

when working on the hidden-object picture task compared to

the transcription task. We hypothesized that the transcription

task, resembling simple office work, would elicit a smaller N100

component for relevant (bell) as well as irrelevant (bird) sounds

in the street soundscape compared to the street soundscape while

working on the hidden object picture task. To test this hypothesis,

we compared block 2 (passive listening to the street soundscape +

hidden object picture task) to block 3 (passive listening to the street

soundscape + transcription task).

2.4.5 Learning and unlearning of auditory
relevance

Hypothesis 5: We hypothesize a gradual down-modulation of

the personal relevance in the street soundscape in the last block

(transcription task + wash-out street soundscape), as indicated

by a reduction in P300 amplitude over time. We compared the

P300 amplitudes of the data in increments of thirds between the

passive naive listening condition and the wash-out condition. Our

expectation was that there would be a significant difference between

each first third but not between each final third.

2.5 Data acquisition

2.5.1 Description of lab setup
Participants were seated in a soundproof recording booth at

a desk with a screen (Samsung, SyncMaster P2470) in front of

them. The auditory material was presented free-field through two

loudspeakers (Sirocco S30, Cambridge Audio, London, United

Kingdom) positioned at a 45-degree angle to the left and right

and at a distance of approximately 0.5 m at ear level. A mouse

and a keyboard were placed on the desk in front of the participant

which were used to indicate target sounds and for working on the

non-auditory tasks. For relevant events in the auditory scenes and

additional tasks, a marker was generated using the Lab Streaming
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Layer (LSL) library.4 Keyboard input was recorded using key

capture software from the LSL library.5 The Lab Recorder software6

was used to ensure the temporal synchronicity of the EEG data,

the event markers and the keyboard capture. Files were saved as

.xdf and organized using the Brain Imaging Data Structure (BIDS)

format (Gorgolewski et al., 2016) with the EEG data extension

(Pernet et al., 2019).

2.5.2 EEG system
We used a 24-channel EEG cap (EasyCap GmbH, Hersching

Germany) with passive Ag/AgCl electrodes (channel positions: Fp1,

Fp2, F7, Fz, F8, FC1, FC2, C3, Cz, C4, T7, T8, CP5, CP5, CP1,

CPz, CP2, CP6, TP9, TP10, P3, Pz, P4, O1, and O2). The mobile

amplifier (SMARTING MOBI, mBrainTrain, Belgrade, Serbia) was

attached to the back of the participants’ head in a small pocket of the

EEG cap, so that they could move their head freely throughout the

experiment (and it was also easy to leave the lab, e.g., for a bathroom

or lunch break). In addition, we collected gyroscope data from the

amplifier to track the participants’ head movements. The data were

transmitted via Bluetooth using a Bluetooth dongle (BlueSoleil)

connected to a desktop computer that was also used for stimulus

presentation. EEG and gyroscope data were transmitted to LSL via

the SMARTING Streamer software (v3.4.3; mBrainTrain, Belgrade,

Serbia) and recorded with the lab recorder at a sampling rate

of 250 Hz.

2.5.3 Measurement procedure
After applying the cap, the skin beneath each electrode

was cleaned with 70% alcohol and abrasive gel (Abralyt HiCl,

Easycap GmbH, Germany). The electrodes were then filled with

abrasive gel to improve the conductance between the skin and the

electrodes. Impedances were kept below 10 k� at the beginning

of data collection and were checked and improved as necessary

between the blocks. In total, re-gelling was required for 9 out

of 24 participants. For 7 of these participants, a single re-

gelling step was sufficient during the experiment. One participant

required two re-gelling steps, and another required three. In

most cases, re-gelling concerned only one electrode. In two cases,

2 and 3 electrodes respectively had to be re-gelled. Given a

total of 24 electrodes per participant, the need for re-gelling

was minimal, and no full cap removal or major intervention

was necessary.

Given the length of the experiment, all participants were asked

to bring food to allow for an extended lunch break between blocks.

The time of the lunch break was flexible, with the only restriction

that the break could not be between the last two blocks (active

listening and wash-out) so as not to compromise the experimental

manipulation.

4 https://github.com/labstreaminglayer/liblsl-Matlab, v1.14.0.

5 https://github.com/labstreaminglayer/App-Input, v1.15.0.

6 https://github.com/labstreaminglayer/App-LabRecorder, v1.14.0.

2.6 Data analysis

All data analysis was carried out usingMATLAB 2021b with the

EEGLAB toolbox (Delorme and Makeig, 2004; version: 2021.1).

2.6.1 EEG pre-processing
To clean the EEG data, we applied a pre-processing to

it. First, we filtered the data between 1 and 40 Hz (default

settings of the pop_eegfiltnew function). Then we detected bad

channels, using the clean_artifacts function of EEGLAB with

“channel_crit_maxbad_time” at default setting and stored them

for later interpolation. We then cut the data into segments of 1

second length. For these segments, we applied an artifact rejection

with a probability criterion of +/– 3 SD from the mean. This

was done to improve the independent component analysis (ICA)

training. Second, we combined all the data obtained from the first

cleaning step to compute the weights for an ICA. We used the

runica function from EEGLAB and chose the extended training

method. These ICA weights were then applied to the raw data

of all blocks. For component rejection, we applied the ICLabel

algorithm (Pion-Tonachini et al., 2019) and rejected components

with a probability ≥ 80% of being an artifact of any class (i.e.,: eye,

muscle, heart, other). Additionally, we rejected components based

on visual inspection where necessary, as the ICLabel algorithm is

only optimally trained on stationary data where participants were

constrained in their movements, which does not fully match the

characteristics of our setup, where participants were free to move

within the scope of the task. On average, we had to remove 8 out

of 24 components per participant (min = 4, max = 11) After ICA

cleaning, we filtered the data (low pass: 0.5 Hz, high pass: 20 Hz),

interpolated any bad channels (1.4 on average, min = 0, max = 5)

and re-referenced the data to the mean of electrodes Tp9 and Tp10

(these never had to be interpolated).

2.6.2 ERP analysis
Prior to epoching, we corrected audio events for a constant

delay of 35 ms. EEG data were then epoched around the audio

events of interest. For the roving oddball (blocks 1 and 4), we

epoched between –200 and 1,000 ms relative to the onset of the first

tone and last tone of each train. For the street soundscape (blocks

2,3,5, and 6), we created epochs of 2.2 seconds length (–200 to 2,000

ms) around each event of a church bell and each event of a bird

call. The longer epoch duration in the street soundscape condition

accounted for the longer response window, as explained above. We

found a time-locked artifact in the active street condition (block 5)

in the time range of reaction times that can be explained by the

fact that some participants were moving their head down to face

the keyboard and find the response key when a target appeared.

This artifact is especially pronounced in the frontal electrodes but

does not contaminate the time windows of interest for the N100

and P300 analysis.

Epochs for both conditions were baseline corrected (–200 to 0

ms) and epochs that deviated at least 3 SD from the mean were

rejected. For the first tones of the roving oddball we rejected on

average 9.48 trials (min = 2, max = 20), For the last tones of the

roving oddball we rejected on average 10.14 trials (min = 4, max

Frontiers inNeuroergonomics 07 frontiersin.org

https://doi.org/10.3389/fnrgo.2025.1571356
https://github.com/labstreaminglayer/liblsl-Matlab
https://github.com/labstreaminglayer/App-Input
https://github.com/labstreaminglayer/App-LabRecorder
https://www.frontiersin.org/journals/neuroergonomics
https://www.frontiersin.org


Korte et al. 10.3389/fnrgo.2025.1571356

= 21). For the bell epochs in the street soundscape we rejected on

average 4.78 trials (min = 1, max = 9) and for the bird epochs we

rejected on average 4.93 trials (min = 1, max = 11). The remaining

epochs were used for the ERP analysis. For analyzing the P300

component, we did a channel selection of channels P3, Pz, and P4,

since the parietal channels usually show the highest contribution

to the P300 peak of the ERP (Polich, 2007). For analyzing the

N100 component we selected frontal channels FC1, Fz, and FC2

(Näätänen and Picton, 1987).

Supplementary Table 1 holds the overview of sample sizes per

block after correcting for corrupted or missing data.

2.6.3 Behavioral data
For the auditory task, we calculated hits and false alarms for

the target sounds. Additionally, we calculated the response times

for the hits to the auditory task in the active listening blocks. For

the roving oddball, a hit was defined as a response key press after

each first tone of a train within a time range of 200–1,000 ms

after tone onset. A false alarm was defined as a response key press

after any tone other than the first tone of a train. Similarly, for the

street soundscape, a hit was defined as a response key press after

the church bell (time range: 200–2,000 ms), while a false alarm

was defined as a response key press at any other time or event.

The longer response window for the street soundscape was chosen

because participants could not rest their hand on the response

key while working on the transcription task, as was possible (and

encouraged) for the hidden object picture task. Moreover, the

longer response window accounted for the increased task difficulty,

introduced by the background noise, resulting in an auditory

discrimination task instead of an auditory detection task as in

the roving oddball condition (Deshpande et al., 2022). To assess

the consistency of performance, we computed hit rates and false

alarm rates and used the interquartile range (IQR)method to detect

outliers. Specifically, we defined false alarm outliers as values above

Q3+1.5×IQR, and hit rate outliers as values belowQ1−1.5×IQR.

For the hidden object picture task, we looked at the average

number of objects correctly identified in 15 min and examined

whether task performance changed over time (i.e.: participants

identified more/less objects per block). Because the transcription

task was implemented using a public citizen science platform, no

information was available on the correctness or total number of

completed assignments. To get an estimate of the overall task

engagement of the participant in this task, we calculated the

number of keystrokes per minute.

2.6.4 Statistical testing
To determine whether the data met the assumptions of

parametric statistical tests, we conducted a Shapiro-Wilk

normality test on the ERP data for each condition. The results

indicated significant deviations from normality (p < 0.05) in

several comparisons. Consequently, we used the non-parametric

Wilcoxon signed-rank test for testing the hypotheses and the task

performances in the additional tasks to account for these violations.

We assumed evidence for an effect at α = 0.05. To control for

Type I errors (false positives) arising from multiple comparisons,

we applied a Bonferroni correction for multiple testing in our

analysis. Given that certain data blocks (especially bell-epochs

from block 3) were used across multiple hypotheses, we employed

an overarching correction approach. This method ensures that

all comparisons involving the same dataset are accounted for

across different hypotheses, rather than treating each hypothesis

in isolation. For each hypothesis, a unified correction was applied

based on the maximum number of comparisons in which the

same data block was used across all hypotheses. This led to a

correction for 6 comparisons in hypotheses 1, 3, 4, and 5, resulting

in an adjusted alpha level of 0.0085 (0.05/6) and 2 comparisons in

hypothesis 2, resulting in an adjusted alpha level of 0.025 (0.05/2;

detailed explanation in supplement). A result was only considered

statistically significant if the p-value was below the respective

adjusted alpha level. For comparisons of the N100 amplitude, we

used the average over channels FC1, Fz, and FC2. For comparisons

of the the P300 amplitude, we used the average over channels P3,

Pz, and P4.

The time windows for the ERP components were determined

based on visual inspection of the grand-average waveforms.

We observed that the components stemming from the street

soundscape conditions were delayed compared to those from

the oddball paradigm. We assume that this delay is introduced

by the softer volume of the added sounds, which makes their

perceptual onset less distinct. Additionally, masking effects from

the continuous background noise of the street soundscape

may contribute to a further perceptual delay. Based on these

observations, we adjusted the time windows accordingly. In blocks,

where the roving oddball was applied, the time window for the

N100 was set to 50–160 ms and the time window for the P300 was

set to 350–800 ms. In case of the street soundscape we used a time

window of 90–200 ms for the N100 analysis and a time window of

450–900 ms for the P300 analysis. Time windows were averaged

across their whole length. Although the timing was adjusted to

better capture the components in each condition, the duration

of the time windows remained identical across conditions (550

ms). Longer overall epochs were used in the street soundscape

condition for visualization purposes, in order to show broader ERP

components and response-related artifacts.

3 Results

3.1 Auditory task performance

The average hit rate in the active roving oddball was at 81.56%

(SD = 20.79), and the average false alarm rate was 13.25% (SD =

16.85%), based on 120 tone changes. We identified 3 outliers based

on false alarm rate and 4 outliers based on hit rate. Excluding these

participants, the false alarm rate dropped to 7.32% (SD = 4.64%),

and the hit rate increased to 90.38 % (SD = 7.36%), indicating more

homogeneous performance in the remaining sample.

The average hit rate for the active street soundscape was

comparable at 86.52% (SD = 19.50) and the false alarm rate was

1.83% (SD = 2.08%), based on 50 occurrences of the church

bell. No false alarm outliers were identified, while 4 participants

were classified as outliers based on hit rate. After excluding

these, the hit rate increased to 92.21% (SD = 3.19%), suggesting

robust and consistent performance across participants in this
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FIGURE 2

Behavioral task performances in the auditory and non-auditory tasks. The central line in each box represents the median. The lower and upper edges

of the box indicate the 25th and the 75th percentiles, respectively. The whiskers extend to the most extreme data points within 1.5 × the interquartile

range, while data points beyond this range are considered outliers and are displayed as individual markers. (a) Comparison of the hit rate in the

auditory tasks in active listening. (b) Comparison of reaction times in the auditory tasks in active listening. (c) Comparison of the hit rates for the 3

blocks in which the hidden-object picture task was performed. Data is displayed as a 15-min-average to ensure comparability between blocks. (d)

Comparison of the average absolute number of key strokes per minute in the transcription task.

more ecologically complex condition. Although the numbers are

comparable, it can be seen in Figure 2a, that there was a higher

variance in the performance in the roving oddball.

The average reaction time in the roving oddball was at 525.79

ms (SD = 82.01) and 1,258.10 ms (SD = 235.50) in the street

soundscape, as can be seen in Figure 2b. The large difference

can partly be explained by the fact that for the roving oddball

participants could rest their left hand on the target key, such that

they could immediately press it when they heard a target. In the

street soundscape condition, participants were asked to press the

same key but they were not able to rest their hand on it, since they

needed both hands for typing during the transcription task. The

roving oddball yielded a smaller variance in reaction times, while

there was a larger variance in the street soundscape condition.

3.2 Additional task performance

Figures 2c, d show the performance in the additional tasks (i.e.,

hidden object picture and transcription). For the hidden object

picture task (Figure 2c), we display the average number of correctly

identified targets in 15minutes to ensure comparability between the

blocks, since they differed in total length (15min vs. 45min). Under

passive naive listening of the roving oddball (block 2), participants

on average correctly identified 16.35 targets (SD = 8.29). Under

passive naive listening of the street soundscape they had an average

performance of 15.80 targets (SD = 5.69) and in the active listening

block they identified on average 14.14 targets (SD = 4.99).

To obtain a behavioral measure for the transcription task,

we counted the average number of keyboard strokes per minute

and participant for each block (Figure 2d). Under passive naive

listening of the street soundscape (block 3), participants had on

average 34.23 key strokes per minute (SD = 14.78). In the active

listening condition (block 5) they had an average of 37.85 (SD =

13.09) and in the wash-out out condition (block 6) they had an

average of 40.40 (SD = 15.37), It can be seen that in both tasks

there is no clear pattern of performance gain or loss over time

as could have been expected especially for the transcription task,

where participants had to learn the task initially. We tested this

using Wilcoxon signed-rank test and corrected for 3 comparisons

to investigate the group differences for each block of the hidden

object picture task and the transcription task separately. There were

no significant differences between the blocks for the performance in

the hidden object picture task (HOP + passive roving odd vs. HOP

+ passive street: adj. p = 0.945, Z = 0.069; HOP + passive roving odd

vs. HOP + active roving odd: p = 0.088, Z = 1.707; HOP + passive

street vs. HOP + active roving odd: p = 0.158, Z = 1.213). Also,

there were no significant differences between the blocks for the

transcription task (trans + passive street vs. trans + active street: p =
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FIGURE 3

Comparison of the P300 amplitude for target sounds in passive vs. active listening. Graphs show the average over the marked channels (black circles)

in the topographies. Shaded regions mark the standard error of the mean. Asterisks indicate the level of significance (∗p ≤ 0.05; ∗∗p ≤ 0.01; ∗∗∗p

≤ 0.001). (a) Roving oddball (roving odd) conditions. First tones in passive vs. active listening while performing the hidden object picture task (HOP).

(b) Street conditions. Bell sounds in passive vs. active listening while performing the transcription task (trans).

0.128, Z = –1.521; trans + passive street vs. trans + wash-out street: p

= 0.039, Z = –2.100; trans + active street vs. trans + wash-out street:

p = 0.189, Z = –1.315).

3.3 Hypotheses testing

3.3.1 Attention modulation of target
processing—hypothesis 1

We expected a larger P300 amplitude to target stimuli (i.e., first

tones in roving oddball and bell sounds in street soundscape) in

the active listening condition as compared to the passive listening

condition. We compared the respective blocks for the roving

oddball (i.e., block 1 and 4) and the street soundscape (i.e., block

3 and 5) separately and performed a Wilcoxon signed-rank test

for each comparison. We found significant differences between

the active listening and the passive listening condition for the first

tones in the roving oddball (adj. p ≤ 0.001, Z = –10.192, adjusted

for 6 comparisons, Figure 3a) as well as for the bell sounds in

the street soundscape (adj. p ≤ 0.001, Z = –10.192, adjusted for

6 comparisons, Figure 3b), as displayed in Figure 3. The mean

amplitudes in the time window of interest for the roving oddball

were M = –0.402 µV (SD = 0.415 µV) in the passive listening

condition andM= 2.631µV (SD = 0.542µV) in the active listening

condition. For the street soundscape, we found amean amplitude of

M = –0.035 µV (SD = 0.222 µV) in the passive listening condition

andM= 3.294µV (SD= 1.252µV) in the active listening condition.

We found evidence for the first hypothesis being in line with

existing literature (e.g., Polich, 2007).

3.3.2 Attention modulation of non-target
processing—hypothesis 2

We expected that irrelevant sounds in the same blocks as

for hypothesis 1 (i.e., block 1 and 4: last tones and block 3

and 5: bird sounds) would elicit a larger N100 amplitude in the

active listening than in the passive listening condition. Results

are displayed in Figure 4. Wilcoxon signed-rank test revealed a

significant difference for the roving oddball, where the amplitude

of last tones was significantly larger in the active listening than

in the passive listening condition (p ≤ 0.01, Z = 4.623, adjusted

for 2 comparisons, Figure 4a). The mean amplitude in the time

window of interest was M = –0.212 µV (SD = 1.100 µV) in

the passive listening condition and M = –0.830 µV (SD = 1.269

µV) in the active listening condition. This was not found for the

street soundscape, where bird sounds did not show a statistically

significant difference between the two conditions (adj. p = 0.539,

Z = 0.615, adjusted for 2 comparisons, Figure 4b). Here the

amplitude in the time window of interest was M = 0.769 µV

(SD = 0.920 µV) in the passive listening condition and M =

0.647 µV (SD = 0.298 µV) in the active listening condition.

We found evidence in favor of hypothesis 2 concerning the

effect in the roving oddball but not concerning the effect in the

street soundscape.

3.3.3 Contextual influence of the P300
component—hypothesis 3

We were interested in the magnitude of the difference between

P300 amplitudes in active and passive listening and expected a

larger amplitude for the difference wave of the roving oddball

conditions than for the street soundscape conditions. Therefore,

we computed the difference waves for first tones in active listening

(block 4) minus first tones in passive listening (block 1) and for bell

sounds in active listening (block 5) minus bell sounds in passive

listening (block 3). Wilcoxon signed-rank test revealed that the

two waves were significantly different (adj. p ≤ 0.001, Z = –

3.629, adjusted for 6 comparisons), but in the opposite direction

than expected (see Figure 5). The difference wave for the street

soundscape showed a larger amplitude (M = 3.329 µV, SD = 1.341

µV) than the difference wave for the roving oddball (M = 3.033

µV, SD = 0.741 µV). We therefore could not find evidence for

hypothesis 3.
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FIGURE 4

Comparison of the N100 amplitude for non-target sounds in passive vs. active listening. Graphs show the average over the marked channels (black

circles) in the topographies. Shaded regions mark the standard error of the mean. Asterisks indicate the level of significance (∗p ≤ 0.05; ∗∗p ≤ 0.01;
∗∗∗p ≤ 0.001). (a) Roving oddball (roving odd) conditions. Last tones in passive vs. active listening while performing the hidden object picture task

(HOP). (b) Street conditions. Bird sounds in passive vs. active listening while performing the transcription task (trans).

FIGURE 5

Di�erence waves for the P300 amplitude to target sounds in active minus passive listening. For the roving oddball: First tones in active listening minus

first tones in passive listening (time window: 350–800 ms); for the street soundscape: Bell sounds in active listening minus bell sounds in passive

listening (time window: 450–900 ms). Graphs show the average over the marked channels (black circles) in the topographies. Shaded regions mark

the standard error of the mean. Asterisks indicate the level of significance (∗p ≤ 0.05; ∗∗p ≤ 0.01; ∗∗∗p ≤ 0.001).

3.3.4 Task complexity e�ects on early auditory
processing (N100)—hypothesis 4

We investigated the effect of the additional task under

passive listening, where we hypothesized to find smaller N100

amplitudes in the street soundscape condition while working on

the transcription task (block 3), which is closer to everyday life,

than while working on the more experimental hidden object

picture task (block 2). We tested this for bell and bird sounds

respectively (Figure 6). Wilcoxon signed-rank test revealed a

statistically significant difference between the bird sounds while

working on the hidden-object picture task and the transcription

task (adj. p ≤ 0.001, Z = –4.031, adjusted for 6 comparisons,

Figure 6a), where the amplitude on the N100 was significantly

larger while working on the hidden-object picture task (M = 0.1852

µV, SD = 0.760 µV) than while working on the transcription

task (M = 0.769 µV, SD = 0.920 µV). We found no statistically

significant difference for the bell sounds (adj. p = 0.050, Z =

–1.958, adjusted for 6 comparisons, Figure 6b) in the expected

direction, where the bell sound while working on the hidden-

object picture task had a larger N100 amplitude (M = –0.371 µV,

SD = 0.874 µV) than while working on the transcription task

(M = 0.029 µV, SD = 0.410 µV). We therefore found evidence

in favor of Hypothesis 4 concerning the bird sounds but not the

bell sounds.
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FIGURE 6

Comparison of the N100 amplitude in passive listening while either performing the hidden-object picture task or the transcription task. Graphs show

the average over the marked channels (black circles) in the topographies. Shaded regions mark the standard error of the mean. Asterisks indicate the

level of significance (∗p ≤ 0.05; ∗∗p ≤ 0.01; ∗∗∗p ≤ 0.001). (a) Street conditions. Target sounds under the hidden-object picture task (HOP) and the

transcription task. (b) Street conditions. Non-target sounds under the hidden-object picture task (HOP) and the transcription task.

3.3.5 Learning and unlearning of auditory
relevance—hypothesis 5

We tested whether we could effectively down-modulate the

relevance of the bell in the wash-out block (block 6). We split the

data into thirds and compared the P300 amplitude of the respective

thirds of passive naive listening (block 3) and the wash-out block

(block 6), as can be seen in Figure 7. We found that in the first third

of the data the P300 amplitude of the wash-out block (M = 0.145

µV, SD = 1.094 µV) was significantly larger than in the passive

naive listening block (M = –0.450 µV, SD = 0.317 µV; adj. p≤ 0.01

Z = –4.851, adjusted for 6 comparisons, Figure 7a). In the second

third the P300 amplitude of the wash-out block (M = 0.057 µV, SD

= 0.616 µV) was not significantly different from the passive naive

listening block (M = –0.108 µV, SD = 0.310 µV; adj. p = 0.022, Z =

–2.288, adjusted for 6 comparisons, Figure 7b). For the final third,

we found that, contrary to our expectation, the P300 amplitude in

the passive naive listening condition was larger (M = 0.456 µV, SD

= 0.243 µV) than in the wash-out condition (M = –0.631 µV, SD

= 0.284 µV; adj. p ≤ 0.01, Z = 10.192, adjusted for 6 comparisons,

Figure 7c).

To further investigate the wash-out effect, we also compared in

the wash-out block the first third of trials to the last third of trials

(Figure 7d) and found that the P300 amplitude was significantly

larger in the first third of trials (M = 0.145 µV, SD = 1.094 µV)

than in the final third of trials (M = –0.631 µV, SD = 0.284 µV; adj.

p ≤ 0.01, Z = 6.672, adjusted for 4 comparisons).

4 Discussion

This study is part of a larger research project aimed at

understanding the neural basis of sound perception in everyday

life. Through a structured experimental design, we examined

how to analyze EEG data in response to complex soundscapes

within an office-like environment. By systematically increasing the

complexity of the acoustic scene and the non-auditory task, our

approach allows us to gain insights into how EEG data can be

used to study (changes in) auditory processing in more ecologically

valid conditions and over the course of more than 3 hours. This

stepwise approach is essential for bridging the gap between the

extensive body of lab-based research and the growing interest in

understanding brain function in real-world scenarios.

4.1 Same sound, di�erent response—how
context forms our perception

Our study investigated the influence of contextual factors,

particularly personal relevance, task complexity and stimuli

properties, on sound perception. The results highlight how the

properties of the non-auditory task significantly impact neural

activity, specifically the N100 and P300 components. These findings

emphasize that sound perception is shaped not only by the

physical characteristics of stimuli but also by the context in which

they are encountered, including the cognitive demands placed

on the listener (Rimskaya-Korsakova et al., 2022; Debnath and

Wetzel, 2022; Asutay and Västfjäll, 2012; Siegel and Stefanucci,

2011; Rosenkranz et al., 2023; Schlossmacher et al., 2021; Shinn-

Cunningham and Best, 2008). This reinforces the idea that personal

relevance and task complexity are critical factors in shaping sound

perception, as introduced in our initial research questions.

These findings are consistent with previous work conducted in

mobile and semi-naturalistic EEG settings. For instance, Ladouce

et al. (2019) and Hölle and Bleichner (2023) demonstrated that it

is feasible to track attention-related neural markers over extended

periods and in ecologically valid conditions. Our study builds upon

this by examining ERP components in response to experimentally

manipulated auditory relevance and task complexity over 3.5

h, providing a novel perspective on how these markers behave

in semi-structured yet dynamic environments. Furthermore,

the context-dependent modulation of early auditory responses

observed in our study aligns with the findings of Straetmans et al.

(2021) and Gramann et al. (2014), who reported variability in
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FIGURE 7

Comparison of the P300 amplitude in the passive naive listening condition vs. wash-out condition. Graphs show the average over the marked

channels (black circles) in the topographies. Shaded regions mark the standard error of the mean. Asterisks indicate the level of significance (∗p

≤ 0.05; ∗∗p ≤ 0.01; ∗∗∗p ≤ 0.001). (a) Street conditions. First third of all bell sounds while working on the transcription task in naive passive listening

vs. wash-out. (b) Street conditions. Second third of all bell sounds while working on the transcription task in naive passive listening vs. wash-out. (c)

Street conditions. Third third of all bell sounds while working on the transcription task in naive passive listening vs. wash-out. (d) Street conditions.

First third of all bell sounds while working on the transcription task in wash-out vs. third third of all bell sounds while working on the transcription

task in wash-out.

neural responses linked to task and environmental constraints. We

add to this work by showing that even within a stationary indoor

setting, subtle differences in task complexity (e.g., transcription vs.

visual search) can significantly shape ERP amplitudes.

4.1.1 Stability of the P300 component
4.1.1.1 Attention modulation of target

processing—hypothesis 1

Our results demonstrate that the P300 component is relatively

stable across different auditory scenes (Figure 3). The P300

exhibited a similar morphology in both the roving oddball and

street soundscape conditions, suggesting that it is a robust measure

of attention that is less influenced by the properties of the stimuli

or the nature of the non-auditory task, which is in line with

other research on the stability of the P300 component (Fallgatter

et al., 2000). This finding reinforces the idea that the P300 can

reliably indicate attentional processes in various contexts, making

it a valuable tool in both laboratory and real-world settings (Polich,

2007). This stability across both isolated sounds and complex

soundscapes suggests that the P300 as a marker of attention is

a reliable measure across different auditory contexts, addressing

our second research question. This result aligns with previous

real-world EEG findings showing robust attentional markers in

complex environments (Straetmans et al., 2021). However, unlike

studies such as Ladouce et al. (2019), where attention shifts

were tracked in freely moving participants, we maintained higher

experimental control and focused on longer continuous EEG data

with intermittent auditory relevance.

4.1.1.2 Contextual influence on the P300

component—hypothesis 3

Contrary to our expectations, we observed a larger amplitude

difference in the P300 window between passive and active

listening for the street soundscape compared to the roving oddball

(Figure 5). Although we hypothesized that the roving oddball

would show a larger amplitude difference, the opposite was true.

This unexpected finding could be attributed to the fact that the

bell did not elicit a response within the designated time frame in

the passive listening condition but a larger response in the active

listening condition (cf. Figure 3b), leading to a larger difference in

the P300 amplitude. With regard to the roving oddball, a slight

potential was observed at the outset of the window of interest

for the target sounds in the passive listening condition and a

larger response in the active listening condition (cf. Figure 3a). This

resulted in a smaller difference between passive and active listening,
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leading to the difference wave for the roving oddball being smaller

than the difference wave for the street soundscape condition. As a

limitation, the difference curve in the P300 window might not have

aligned with our expectations due to the significant disparity in the

number of trials analyzed. There were a maximum of 50 bell sounds

in the street soundscape and up to 120 first tones in the roving

oddball. The smaller number of trials in the street soundscape

condition may have resulted in a larger neural response since the

bell sound occurred only sporadically, as compared to the first tones

in the roving oddball (Fitzgerald and Picton, 1984). Lastly, the low

amount of trials in the street soundscape condition might have led

to less reliable data, contributing to the unexpected outcomes in the

difference wave analysis.

4.1.2 Influence of task complexity on the N100
component
4.1.2.1 Attention modulation of non-target

processing—hypothesis 2

In contrast to the P300, the N100 component appears to be

more sensitive to the properties of the stimuli and the non-auditory

task. While the N100 response was stable for the non-relevant last

beep tones in the roving oddball condition, we did not observe a

comparable N100 response to the non-relevant bird calls in the

street soundscape (Figure 4). While we refer to bird calls and final

tones as “irrelevant,” we acknowledge that in the active listening

condition, participants needed to monitor the full auditory scene

in order to detect target sounds. Therefore, the observed N100

modulation may reflect general auditory attention demands rather

than a strict distinction between attended and ignored stimuli.

Interestingly, there was an N100-like component in the passive

listening condition, but this component was absent in the active

listening condition. This discrepancy might indicate cognitive

resource allocation, as proposed in the attentional resources

hypothesis (Huang and Elhilali, 2020), where resources in the active

condition were potentially used up by the transcription task and the

detection of the behaviorally relevant bells.

4.1.2.2 Task complexity e�ects on early auditory

processing (N100)–hypothesis 4

We found that the non-auditory task had a strong effect on the

N100 response to bell sounds (Figure 6), which further supports

the considerations on cognitive resource allocation. The N100 was

present only during the simpler hidden-object picture task and

was completely absent during the more complex transcription task.

This suggests that the more demanding task may have consumed

the cognitive resources necessary for processing of the irrelevant

bell sounds. The observed variability in the N100 response further

indicates that complex soundscapes, especially when combined

with more demanding tasks, lead to more context-dependent

neural responses compared to isolated sounds.

The N100 was present only during the simpler hidden-object

picture task and was completely absent during the more complex

transcription task. This suggests that the more demanding task may

have consumed the cognitive resources necessary for processing of

the irrelevant bell sounds. The observed variability in the N100

response further indicates that complex soundscapes, especially

when combined with more demanding tasks, lead to more context-

dependent neural responses compared to isolated sounds.

This supports previous findings that early auditory processing

can be modulated by cognitive load and task requirements

(Debnath andWetzel, 2022; Schlossmacher et al., 2021). In contrast

to Rosenkranz et al. (2023), who investigated attention in active

multisensory tasks, our results provide evidence for attentional

modulation of auditory ERP components even in the absence of

overt attention tasks. This strengthens the argument that neural

processing of sound is continuously influenced by task complexity,

adding nuance to theories of auditory filtering in naturalistic

environments (Shinn-Cunningham and Best, 2008).

We can rule out the possibility that the bell was simply not

perceivable, as the same soundscape was played under both non-

auditory tasks. Interestingly, the N100 response to the bird calls

was observed under both tasks, although the amplitude was greater

during the simpler task. This difference between the responses to

the bell and bird calls might be due to the higher salience of the bird

calls, which may have captured bottom-up attentional resources

even when resources were otherwise allocated to the more complex

task. An alternative explanation is that the hidden-object picture

task always preceded the transcription task, which might have

affected participants’ neural responsiveness, leading to a reduced

N100 in the transcription task due to prior exposure or task-

related fatigue. However, this explanation is not supported by the

behavioral data of the non-auditory task, as there are no significant

differences in performance that would indicate exhaustion of the

participants. It is unlikely that the absence of an N100 component

for the bell sounds while working on the transcription task is a mere

order effect, since it is not seen for the bird sounds. As a limitation

to our study design, we did not include a questionnaire on the

awareness of the additional sounds in the street soundscape which

in hindsight would have provided further validation of our findings

through the use of an additional behavioral measure.

Overall, our findings demonstrate the complex interaction of

task complexity and sound characteristics. A defining characteristic

of natural sound is that it does not inherently possess a sharp

sound onset. This is particularly crucial when examining stimuli

that are not inherently salient and are embedded within the

context of ambient sound. Ambient sound can result in the

energetic masking of target stimuli, which in turn affects their

perceptual onset (Weise et al., 2012; Oganian and Chang, 2019).

This may result in temporal smearing of the ERP, given that

the perceptual onset is highly individual. Thus, when using more

natural stimuli, researchers should be aware of the individual

perceptual differences which may influence the effect. While more

individualized analyses pipelines could be employed, e.g., by using

individual time-windows to compute amplitude averages, our data

showed a homogeneous perceptual onset. The high degree of

coherence between participants is visible in the morphology of the

ERP, where peaks are narrow.

4.1.3 Learning and unlearning personal relevance
4.1.3.1 Learning and unlearning of auditory

relevance—hypothesis 5

Our study underlines, that relevance of sound can be

learned and subsequently unlearned, independently of its physical

properties. This is apparent from the gradual decrease in the P300

amplitude during the wash-out block (Figure 7). Our findings with

complex stimulus material in a simulated office environment are in

Frontiers inNeuroergonomics 14 frontiersin.org

https://doi.org/10.3389/fnrgo.2025.1571356
https://www.frontiersin.org/journals/neuroergonomics
https://www.frontiersin.org


Korte et al. 10.3389/fnrgo.2025.1571356

line with previous studies (Polich, 2007) and add on the opposite

effect, where relevant stimuli can be unlearned again. This suggests

that relevance of sound can effectively be unlearned. Nevertheless,

it remains unclear whether this is a consequence of the passage

of time or an effect of the number of repetitions of the former

target sounds. In order to investigate this point further, these two

alternative explanations should be tested independently of each

other in a future study.

Moreover, it would be intriguing to ascertain whether

noise-sensitive individuals demonstrate a comparable pattern

of unlearning relevance to non-noise-sensitive individuals in a

comparative study. If noise-sensitive individuals exhibit greater

difficulty in unlearning the relevance of a specific sound, this could

serve as a potential avenue for developing interventions to address

noise sensitivity and would extend the findings on a potentially

impaired gating mechanism in noise-sensitive individuals

(Shepherd et al., 2016, 2019).

However, contrary to our expectations, the P300 amplitude

in the final third of trials during the wash-out block was

significantly lower than in the passive listening condition. While

this could indicate an effect of intentional forgetting (Ten Oever

et al., 2021), it is more likely due to random data drift, given

the small number of trials analyzed in the street soundscape

condition after splitting into thirds. We had to balance two

competing factors: maintaining a naturalistic soundscape and

ensuring enough trials for analysis. The choice to include 50

target sounds over 45 min helped preserve the natural feel of

working next to an open window in the city, but it may have

compromised data quality, particularly for the split-into-thirds

analysis.

4.2 Bridging laboratory and real-world
studies

Our study bridges the gap between controlled laboratory

experiments and the unpredictable nature of real-world

environments. By examining neural processing in a setting that

mimics real-world conditions, we sought to understand how sound

processing changes under different levels of experimental control.

The results show that sound processing is influenced by multiple

factors, including the complexity of the task, personal relevance,

the properties of the sounds, and the broader environmental

context. These findings suggest that certain neural markers, like the

P300, generalize well from controlled lab environments to more

complex, real-world-like scenarios. However, other components,

such as the N100, exhibit greater sensitivity to task demands and

may be less easily generalizable, thereby addressing our third

research question.

One limitation of our study is that the order of the passive

naive listening blocks was fixed rather than randomized. While we

do not expect that this has influenced our results, randomizing

these blocks could have reduced potential effects of participant

fatigue across the experiment. Furthermore, the order of the

active listening blocks was deliberately fixed to maintain the

integrity of the wash-out phase. If these blocks had been

randomized, some participants would have had a longer break

from the street soundscape before starting the wash-out condition,

which could have impacted the effect of relevance fading. By

ensuring a consistent transition between these blocks, we aimed to

preserve the mental representation of the bell sound. However, we

acknowledge that maintaining a fixed order may have contributed

to participant fatigue, particularly in the later blocks, which could

have influenced neural responses. Future studies may consider

alternative designs, such as counterbalancing passive blocks or

implementing structured breaks to mitigate potential fatigue

effects.

We found that even small changes in the task setup, such as

whether participants’ hands rested on the response key or had to

move to it, led to significant differences in the recorded signal. We

observed fewer artifacts in the hidden-object picture task, where

there was a higher degree of experimental control, introduced by

the fact that participants could keep their hand on the response

key. In contrast, during the transcription task, which requiredmore

free movement of the hands and head (as participants looked down

to locate keys), a substantial time-locked artifact emerged in the

EEG data. These findings underscore how minor variations in task

setup, particularly related to motor activity, can greatly impact

data quality and should be carefully considered when interpreting

results in less controlled environments (Gramann et al., 2014;

Gramann, 2024; Jacobsen et al., 2021).

This highlights a general challenge when working with data in

more naturalistic settings.While there are valid reasons tomaintain

consistent pre-processing across conditions, as we did following the

protocol by Klug and Gramann (2021), this approach may not be

ideal when artifact structures differ significantly between tasks. A

limitation that arises from our setup is the relatively low number

of EEG channels (24), which may reduce the spatial resolution

of ICA-based artifact removal. While higher-density EEG systems

can offer improved source separation, our use of a low-density

setup reflects a deliberate trade-off: our goal was to design a

system suitable for more naturalistic, real-life environments. On

average, we removed 8 out of 24 components per participant

(min = 4, max = 11), and interpolated 1.4 channels (min = 0,

max = 5). Although this may impact the precision of artifact

correction, we found that data quality remained sufficient for

ERP analysis, supporting the feasibility of ecologically valid EEG

research. In our study, appending the data from all conditions

before applying ICA ensured uniform pre-processing and enabled

cross-block comparisons. However, this approachmay have limited

the removal of task-specific artifacts, which might have been better

addressed with condition-specific pre-processing pipelines.

A final point of consideration is the relatively high standard

deviation in hit and false alarm rates in the roving oddball task.

As highlighted in our behavioral analysis, this variability was

largely driven by a small subset of participants whose performance

deviated substantially from the group. When these outliers were

excluded using a conservative IQR-based criterion, both the

false alarm rate and hit rate stabilized considerably, reflecting

more consistent performance across the remaining sample. This

suggests that, while the task was generally well-performed, it

may have posed challenges for a few individuals, possibly due

to differences in attentional strategies or fatigue. These insights

emphasize the importance of complementary behavioral analyses
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when interpreting neural data, especially in longer or cognitively

demanding experiments.

4.3 Implications for future research

Our study builds on and extends earlier work in naturalistic

EEG research. In doing so, it demonstrates the feasibility of

obtaining valuable insights from EEG data in realistic conditions,

aligning with previous work in this area (Ladouce et al., 2019;

Jacobsen et al., 2021; Gramann et al., 2014; Reiser et al., 2021;

Scanlon et al., 2022; Zink et al., 2016; Straetmans et al., 2021;

Rosenkranz et al., 2024). Importantly, we showed that meaningful

brain signals can be recorded over extended periods, even in the

absence of specific instructions related to the sound stimuli. In

support of this, we observed that signal quality could be maintained

over the course of the full 3.5-h session. Impedance checks between

blocks revealed only minimal need for intervention: re-gelling was

required for fewer than half of the participants, mostly involving a

single electrode, and no full cap reapplication was necessary.

This builds on the work of Hölle and Bleichner (2023),

who demonstrated long-term EEG recording feasibility using ear-

EEG. Our setup maintained higher signal quality and temporal

resolution with a full-cap configuration, enabling ERP analyses that

complement the envelope-based tracking methods commonly used

in mobile EEG studies (Jaeger et al., 2020; Fuglsang et al., 2017).

In doing so, we demonstrate that temporally precise event-related

analyses are possible in long-duration, ecologically valid settings.

The ability to capture sound processing without active

participant engagement is particularly promising for fields such

as psychiatry, where it may help in studying impaired sensory

gating in conditions like borderline personality disorder and

schizophrenia, or in patients whomay not comply with momentary

assessment. The capacity to record EEG over extended periods in

naturalistic settings, as demonstrated in our study, is pivotal for

elucidating the neural mechanisms underlying the processing of

complex auditory environments in everyday life. Importantly, our

findings also underscore the necessity of preserving data integrity,

as minor behavioral and environmental alterations can introduce

unanticipated variability.

In light of these insights, future research should further

explore sound perception in ecologically valid settings, while

meticulously controlling for variables such as task complexity,

environmental context, and personal relevance. Rather than a

comprehensive transition to real-world experimentation, which

introduces numerous uncontrolled variables, we propose a stepwise

approach. This method permits researchers to incrementally

introduce greater complexity while conducting validation checks

between experimental blocks, thereby ensuring that observed

neural changes are attributable to experimental manipulations

rather than uncontrolled factors.

Specifically, future studies should examine how elements

such as the acoustic properties of stimuli, task demands, and

personal relevance shape neural processing. A more profound

comprehension of these elements will empower researchers to

devise experiments that capture real-world auditory complexity

while maintaining scientific rigor.

The broader implications of our findings extend to other

fields of beyond-the-lab research. As the number of studies

investigating cognitive and neural processes in naturalistic

environments increases, it is becoming increasingly evident that

minor variations in task or environmental conditions can have

a considerable impact on neural responses. This highlights

the importance of meticulous experimental design and careful

consideration of the context in which data is collected. By adopting

a controlled, stepwise approach, researchers can systematically

address the challenges of studying auditory perception in

naturalistic environments, such as the variability introduced by

task demands and environmental factors, which we highlighted in

the introduction.

4.4 Conclusion: insights on sound
perception

In our study, we explored three key questions related

to sound perception in naturalistic environments: (1) how

personal relevance affects the perception of soundscapes

over time, (2) how neural responses differ between

isolated sounds and complex soundscapes, and (3)

whether lab-based findings generalize to more naturalistic

settings.

Our results suggest that sound perception is highly context-

dependent, with task complexity and personal relevance playing

significant roles in shaping neural responses, as mirrored by

the N100 and P300 component. We demonstrated that the

P300 is relatively stable across different auditory conditions,

making it a reliable marker of attention even in dynamic

environments. However, the N100 showed greater variability,

suggesting that it is more sensitive to the complexity of the task

and properties of the stimuli. Our findings further emphasize

that personal relevance plays a critical role in determining how

individuals process auditory stimuli in complex environments,

further supporting the idea that sound perception is not only a

function of the physical properties of sound but also its relevance to

the listener.

We also found that results from controlled lab environments

may not fully generalize to real-world settings, as task demands

and environmental factors can significantly alter neural responses.

However, by adopting a middle-ground approach, our study

provides insights into how EEG can be used to study sound

perception in more ecologically valid environments without

sacrificing the precision of lab-based studies. Future research

should continue to explore these questions, refining experimental

designs to better capture the complexities of real-world auditory

processing.
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