
TYPE Original Research

PUBLISHED 12 May 2025

DOI 10.3389/fnrgo.2025.1572851

OPEN ACCESS

EDITED BY

Fabien Lotte,

Institut National de Recherche en

Informatique et en Automatique (INRIA),

France

REVIEWED BY

Giacinto Barresi,

University of the West of England,

United Kingdom

Kyriaki Kostoglou,

Graz University of Technology, Austria

*CORRESPONDENCE

Athanasios Vourvopoulos

athanasios.vourvopoulos@tecnico.ulisboa.pt

RECEIVED 07 February 2025

ACCEPTED 18 April 2025

PUBLISHED 12 May 2025

CITATION

Esteves D, Valente M, Bendor SE, Andrade A

and Vourvopoulos A (2025) Identifying EEG

biomarkers of sense of embodiment in virtual

reality: insights from spatio-spectral features.

Front. Neuroergonomics 6:1572851.

doi: 10.3389/fnrgo.2025.1572851

COPYRIGHT

© 2025 Esteves, Valente, Bendor, Andrade

and Vourvopoulos. This is an open-access

article distributed under the terms of the

Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in

other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication

in this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted

which does not comply with these terms.

Identifying EEG biomarkers of
sense of embodiment in virtual
reality: insights from
spatio-spectral features

Daniela Esteves1,2, Madalena Valente1, Shay Englander Bendor1,

Alexandre Andrade2 and Athanasios Vourvopoulos1*

1Institute for Systems and Robotics (ISR-Lisboa), Bioengineering Department, Instituto Superior

Técnico, Lisbon, Portugal, 2Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências da

Universidade de Lisboa, Lisbon, Portugal

The Sense of Embodiment (SoE) refers to the subjective experience of

perceiving a non-biological body part as one’s own. Virtual Reality (VR)

provides a powerful platform to manipulate SoE, making it a crucial factor

in immersive human-computer interaction. This becomes particularly relevant

in Electroencephalography (EEG)-based Brain-Computer Interfaces (BCIs),

especially motor imagery (MI)-BCIs, which harness brain activity to enable

users to control virtual avatars in a self-paced manner. In such systems, a

strong SoE can significantly enhance user engagement, control accuracy, and

the overall e�ectiveness of the interface. However, SoE assessment remains

largely subjective, relying on questionnaires, as no definitive EEG biomarkers

have been established. Additionally, methodological inconsistencies across

studies introduce biases that hinder biomarker identification. This study aimed

to identify EEG-based SoE biomarkers by analyzing frequency band changes

in a combined dataset of 41 participants under standardized experimental

conditions. Participants underwent virtual SoE induction and disruption using

multisensory triggers, with a validated questionnaire confirming the illusion.

Results revealed a significant increase in Beta and Gamma power over the

occipital lobe, suggesting these as potential EEG biomarkers for SoE. The findings

underscore the occipital lobe’s role inmultisensory integration and sensorimotor

synchronization, supporting the theoretical framework of SoE. However, no

single frequency band or brain region fully explains SoE. Instead, it emerges

as a complex, dynamic process evolving across time, frequency, and spatial

domains, necessitating a comprehensive approach that considers interactions

across multiple neural networks.

KEYWORDS

sense of embodiment, virtual reality, electroencephalography, biomarkers, motor
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1 Introduction

Sense of Embodiment (SoE) refers to the subjective experience of perceiving a
non-biological body part, such as a virtual avatar or prosthetic limb, as part of one’s own
body, created by sensations of being within, owning, and controlling it (Kilteni et al.,
2012). The concept was first explored by Botvinick and Cohen (1998), who introduced
the Rubber Hand Illusion (RHI), an experiment demonstrating that synchronized tactile
and visual feedback could transfer the sensation of touch to a fake limb. This work laid
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the groundwork for embodiment research, which later extended
into Virtual Reality (VR). In VR, individuals could replace their
physical bodies with virtual avatars, facilitating the SoE through
responsive visual feedback (Guy et al., 2023; Choi et al., 2020b;
Škola and Liarokapis, 2023). Several studies have replicated the RHI
in virtual environments (VEs) (Lenggenhager et al., 2007; Slater
et al., 2008; Yuan and Steed, 2010), confirming that immersive VR
can evoke similar ownership illusions, particularly with realistic
visual representations. Over time, the virtual limb illusion has
expanded into full-body ownership illusions, demonstrating that
individuals can embody entire virtual avatars (Slater, 2009; Petkova
and Ehrsson, 2008; Vagaja et al., 2024; Guy et al., 2023). Therefore,
VR is a relevant tool to manipulate and investigate SoE.

The most recent model defines SoE as comprising three
interrelated components: the sense of ownership (SoO), sense
of agency (SoA), and sense of self-location (SoSL). When these
components align, users experience SoE toward the fake body
(Kilteni et al., 2012; Vagaja et al., 2024; Guy et al., 2023). SoO
involves attributing sensations to one’s body parts, integrating
bottom-up sensory inputs (e.g., visual, tactile, proprioceptive)
and top-down cognitive expectations (e.g., internal body maps)
(Kilteni et al., 2012; Segil et al., 2022; Guy et al., 2023). A
stronger SoO arises when external objects resemble the real
body, requiring anatomical plausibility and spatial alignment. For
example, VR enhances this by offering customizable avatars (Guy
et al., 2023; Segil et al., 2022). Regarding SoA, it is the subjective
experience of controlling one’s movements and their effects on
the environment. It involves the feeling of agency (implicit, non-
reflective sense tied to action initiation) and judgment of agency
(higher-level reasoning based on sensory feedback). So, it arises
from sensorimotor integration, requiring temporal and spatial
congruence between motor commands and sensory feedback
(Kilteni et al., 2012; Segil et al., 2022; Guy et al., 2023). VR
enhances SoA with precise tracking and minimal latency, ensuring
seamless avatar control (Guy et al., 2023). Finally, SoSL involves
the perception of being located within one’s body. Unlike the
sense of presence, which relates to immersion in the virtual world
regardless of body perception, SoSL is tied to the perception of one’s
physical boundaries. It depends on visuospatial perspective (first-
vs. third-person views), vestibular signals (balance, orientation),
and tactile inputs across personal, peripersonal, and extrapersonal
spaces (Kilteni et al., 2012; Guy et al., 2023). Notably, studies show
that first-person perspectives in VR enhance SoSL more effectively
than third-person views (Guy et al., 2023). Although these three
components are distinct and can be experienced separately, they
are interconnected and not easily dissociated neurophysiologically.
Still, there is limited understanding of how each subcomponent
contributes to the overall SoE or how they interact with one another
(Kilteni et al., 2012; Guy et al., 2023; Segil et al., 2022).

Thus, SoE in VR relies on three primary sensory triggers:
visuomotor (synchronized visual-motor feedback), visuotactile
(alignment of touch and visual input), and visuoproprioceptive
(perspective-based cues, such as first- or third-person perspective)
(Vagaja et al., 2024; Guy et al., 2023). Beyond sensory factors,
task demands, emotions, personality, and social context shape
SoE (Guy et al., 2023). The Proteus effect shows how users
adapt behavior based on their avatar’s attributes, task goals, and

personal preferences (Yee and Bailenson, 2007). Emotions and
personality traits further modulate the strength of SoE, leading
to diverse experiences across individuals. SoE also influences
social perceptions, with studies showing that embodying avatars of
different races or ages can reduce implicit biases (Peck et al., 2013;
Banakou et al., 2016). In this way, SoE is personal and specific,
with some individuals suffering profound behavioral changes, such
as the Proteus effect (Yee and Bailenson, 2007), while others may
show little to no modification in their behavior or perception,
highlighting the complexity of this sense (Guy et al., 2023).

SoE in VR and Motor Imagery-based Brain-Computer
Interfaces (MI-BCIs) are closely related, as both rely on an
individual’s ability to perceive and interact with a virtual or external
representation of their body. MI-BCIs capitalize on the user’s
mental ability to imagine motor actions, which are then translated
into commands for controlling virtual or robotic representations
(Alimardani et al., 2016). The effectiveness of MI-BCIs can
be enhanced by embodying a virtual avatar which has been
shown to improve motor imagery performance (Vourvopoulos
and i Badia, 2016; Vourvopoulos et al., 2022; Amini Gougeh and
Falk, 2023). Further, Pérez-Marcos et al. (2009) demonstrated that
SoE could be induced using MI- BCIs. This study showed that
neurofeedback, delivered via virtual hands performing imagined
movements in synchrony with the user’s intentions, could enhance
embodiment. BCIs are powerful tools for translating brain activity
into external commands for computer systems like VR or
robotic platforms mainly for restoration or communication for
patients with neurological disorders (Daly and Huggins, 2015;
Wolpaw et al., 2020; Chen et al., 2023). For patients with severe
motor impairments, MI-BCIs provide an essential non-invasive
rehabilitation strategy that targets the brain directly, strengthening
damaged sensorimotor networks, and promoting neural recovery
(Daly and Huggins, 2015; Vagaja et al., 2024; Vourvopoulos et al.,
2019; Choi et al., 2020b).

A crucial factor in this improvement is considered to play
the SoE, which enhances the effectiveness of VR-based MI-BCI
systems. Research demonstrates that virtual hand illusions and
MI tasks share similar electrophysiological patterns, particularly
Event-Related Desynchronization (ERD) in frontoparietal brain
areas (Pfurtscheller and Da Silva, 1999). This suggests that
SoE strengthens ERD patterns during MI training, leading to
better MI-BCI performance (Vourvopoulos et al., 2022). For
instance, studies have found that immersive VR environments
with virtual hand feedback significantly enhance user performance
by increasing immersion, cortical activation, and BCI usability
(Choi et al., 2020a). Although some research highlights the limited
benefits of non-immersive VR (Song and Kim, 2019), the overall
evidence supports the idea that SoE plays a crucial role in
improving MI-BCI efficiency. This is achieved through increased
neuroplasticity, higher classification accuracy, and greater patient
motivation, making VR-based embodiment a valuable tool for
motor rehabilitation (Jeong and Kim, 2021).

Nonetheless, incorporating virtual embodiment into MI-BCI
neurorehabilitation is a complex challenge, particularly due to the
difficulty of assessing SoE during MI-BCI training. Since SoE is
primarily a subjective experience, the most widely accepted method
for its evaluation relies on questionnaires and self-reports, typically
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using Likert scales due to their simplicity (Guy et al., 2023; Segil
et al., 2022). Still, the lack of standardized questionnaires across
studies complicates comparisons. Efforts to create more uniform
assessment questionnaires, such as the 16-item version by Peck
and Gonzalez-Franco (2021), have improved comparability but
new questionnaires continue to emerge, adding to the complexity
(Guy et al., 2023). Furthermore, their reliability is criticized due
to personal subjectivity, participant interpretation, and scale biases.
These factors make questionnaires not the “gold standard” for SoE
assessment and prompt research into more objective methods.

To address this, researchers have explored behavioral measures
such as proprioceptive drift, pain perception, intentional binding,
and sensory attenuation. However, these metrics typically reflect
individual SoE components. For instance, proprioceptive drift
is associated with SoSL, while sensory attenuation of self-
touch and intentional binding are closely linked to SoA.
Additionally, contradictory reports on their reliability further
introduce uncertainties regarding these behavioral changes as
SoE measurement methods (Guy et al., 2023; Segil et al., 2022).
Physiological measures have also been investigated, including skin
temperature and conductance. Lower skin temperature has been
linked to disownership, while higher temperature correlates with
SoE due to autonomic responses. Yet, results are inconsistent
and influenced by uncontrolled factors like room temperature
(Segil et al., 2022). Similarly, skin conductance reflects autonomic
responses like sweating. Increased conductance when an artificial
hand is threatened suggests SoE, but external factors (e.g.,
participant variability, repeated exposure) affect reliability, and
contradictory findings limit its usability as an objective measure
(Segil et al., 2022).

Neurophysiological research using Electroencephalography
(EEG) has explored brain activity associated with SoE, primarily
focusing on spectral analysis (Segil et al., 2022). Most studies
examine changes in frequency bands, such as Theta, Alpha, Beta,
and Gamma, with fewer investigating correlations involving Delta
activity. Increased Theta power has been linked to embodied
situations, such as Theta power in response to observing avatar
errors when embodied (Pavone et al., 2016), or greater Theta
event-related synchronization (ERS) in left frontocentral areas
during high levels of SoA (Pavone et al., 2016). However,
Hansford et al. (2023) observed greater Theta activity in the
parietal area during incongruent visuotactile stimuli (disembodied
situations), suggesting a higher cognitive workload to assimilate
incongruent inputs. In contrast, other studies report no significant
change in Theta power during SoE (Li et al., 2023) highlighting
inconsistencies in the literature. The most consistent EEG finding
in the literature is the correlation between increased Alpha ERD,
particularly over central and parietal lobes, and a strong SoE
(Alchalabi et al., 2019; Raz et al., 2020; Evans and Blanke, 2013;
Shibuya et al., 2021; Kang et al., 2015; Sciortino andKayser, 2022a,b;
Faivre et al., 2017; Rao and Kayser, 2017; Della Longa et al., 2021;
Shibuya and Ohki, 2023; Shibuya et al., 2018). While these changes
are typically observed in somatosensory areas without lateralization
(Sciortino and Kayser, 2022b), only three studies reporting these
changes were implanted in VR settings (Alchalabi et al., 2019; Raz
et al., 2020; Evans and Blanke, 2013). Nonetheless, contradictory
results persist, with some studies reporting no changes in Alpha

power during SoE (Li et al., 2023), or even a decrease in Alpha
during SoO in eyes-closed resting state but no changes during the
eyes-open condition (Hsu et al., 2022). In addition, Lenggenhager
et al. (2011) suggested that increased Alpha suppression correlates
with high levels of SoSL but not necessarily with SoE itself.
Regarding Beta power, studies in non-VR settings often report
a decrease during SoE, particularly in central, left sensorimotor,
bilateral temporal, and occipital regions (Shibuya et al., 2021;
Kang et al., 2015; Sciortino and Kayser, 2022b; Rao and Kayser,
2017). Yet, Faivre et al. (2017) observed a correlation between
SoE and increased Beta power over frontotemporal areas in no-
VR settings. Interestingly, several VR studies have failed to detect
significant changes in Beta power during embodiment illusions
(Alchalabi et al., 2019; Evans and Blanke, 2013; Li et al., 2023;
Hansford et al., 2023), suggesting that the reported Beta changes
associated with SoE are related to the non-immersive settings.
Lastly, changes in Gamma activity have also been reported, with
increasedGamma power in frontal and central regions, especially in
the somatosensory cortex and left parietal region, being related with
strong SoE (Li et al., 2023; Hiramoto et al., 2017; Hansford et al.,
2023). SoE has also been linked to increased Gamma connectivity
(Li et al., 2023; Faivre et al., 2017). However, some studies in VR
settings found no correlation between SoE and Gamma activity
(Alchalabi et al., 2019; Evans and Blanke, 2013). Moreover, lower
Gamma power over frontotemporal and central areas has been
associated with high SoA (Kang et al., 2015), complicating the
understanding of the relationship between SoE, its components,
and Gamma activity.

Other changes, such as alterations in somatosensory evoked
potentials (SEPs) (Aspell et al., 2012; Sakamoto and Ifuku, 2021),
other Event-Related Potentials (ERPs) components (González-
Franco et al., 2014; Galigani et al., 2021; Rao and Kayser, 2017),
overall power spectral density (PSD) (Blefari et al., 2011), fractal
dimension (Veillette et al., 2023), error-related potentials (ErrPs)
(Porssut et al., 2023; Raz et al., 2020; Pavone et al., 2016), and altered
signals between the brain and muscles (Li et al., 2023) during SoE
illusion have been reported. These findings suggest complex brain
activity during embodiment illusions, with potential distinctions
from non-embodiment conditions.

Despite growing interest in EEG-based biomarkers of the
SoE, a significant research gap remains, particularly in VR
settings, where neurophysiological correlates of SoE are still
largely underexplored. While some studies have identified
promising EEG patterns, inconsistencies across findings—driven
by methodological variability in paradigms, data collection, and
EEG setups—have prevented the establishment of a definitive
biomarker. The lack of standardized procedures for inducing
and assessing SoE further hampers progress, underscoring the
need for universally accepted protocols and objective metrics
beyond subjective questionnaires. A reliable EEG biomarker
would bridge the gap between self-reports and neurophysiological
evidence, offering valuable applications in fields like MI-BCIs
for rehabilitation, where virtual embodiment could enhance
patient engagement and optimize neurorehabilitation outcomes.
Additionally, such a biomarker would be highly beneficial in VR
research, enabling more precise assessments of avatar embodiment
and improving the design of immersive virtual experiences.
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Addressing these challenges, this study investigates if there is a
reliable EEG-based biomarker that correlates with the SoE in VR.

2 Methods

This study integrates both the dataset from Vagaja et al.
(2024), extended by newly recorded data with a total of 41 healthy
participants. The overall experimental setup and data acquisition
methods remained largely consistent, acquired at the same location
and equipment.

2.1 Participants

The first dataset includes data from 26 participants (16 female,
61.54%; 10 male, 38.46%) with a mean age of 24.12 ± 5.00 years.
Participants were randomly assigned to either the control group (5
males, 8 females) or the embodied group (6 males, 7 females) in a
between-subject study design. Further details on the experimental
setup can be found at the original paper (Vagaja et al., 2024).

The newly recorded dataset comprised data from 15
participants (8 females, 53.33%; 7 males, 46.67%), with an
average age of 26.00 ± 6.47 years. All participants were right-
handed, as confirmed by the Edinburgh Handedness Inventory
(EHI) (Oldfield, 1971), with an average laterality quotient (LQ)
of 67.11 ± 24.84. Participants were screened to ensure they had
no known neurological conditions and possessed either normal or
corrected vision, as the VR headset can accommodate prescription
glasses. Before participating, all individuals provided written
informed consent following the ethical guidelines of the 1964
Declaration of Helsinki.

2.2 Experimental design

For the newly recorded dataset, a within-subjects design
was employed to control for individual variability and mitigate
potential confounding factors that are inherent in between-
groups design (Vagaja et al., 2024). The protocol involved the
participant preparation, EEG setup, and seven recording phases
(Figure 1), with the order of embodied and control conditions
randomized. The recording phase consisted of resting-state EEG
recording, after which the VR headset was carefully placed over
the electrodes. Participants were then randomly assigned to either
embodied condition or control condition (Figure 1). Following the
embodied/control conditions, participants underwent MI training
using an offline BCI. After MI training in the embodied condition,
they completed the MI training in online BCI. Upon completing
one branch, participants proceeded to the other, ensuring that each
subject underwent all phases. Figure 2 illustrates the VE as seen by
participants during different phases.

To address the goal of this study, specifically, identifying a
general EEG-based biomarker of the SoE, this research focused
exclusively on data from the Embodied and Control conditions
to examine potential differences in EEG activity during the SoE
illusion compared to disembodied states. Consequently, data from
the MI training and online BCI phases were not included in the

FIGURE 1

Schematic representation of the data collection procedure. After

general information, EEG setup, and resting-state recording,

participants were randomly assigned to either embodied condition

(path A) or control condition (path B). After completion, they

switched to the other path, ensuring all phases were completed.

analysis. Although these phases were part of the experimental
protocol, they fall outside the scope of the present study. Moreover,
as previously reported by Vagaja et al. (2024), prior SoE induction
is not expected to significantly impact MI-BCI performance.

• Information and EEG setup: Relevant information was
provided to the participants, who then completed the
demographic questionnaire. Additionally, the Vividness
of Movement Imagery Questionnaire (VMIQ-2) was
administered to assess imagery ability across three
perspectives: Internal Visual, External Visual, and Kinesthetic
(Roberts et al., 2008). Following this, the EEG setup was
performed (Figure 2), using conductive gel to ensure
electrode impedance remained below 10 KOhm.

• Resting-state EEG recording: This phase involved recording
EEG signals for 4 min, divided into 2 min of eyes-open resting
state followed by 2 min of eyes-closed resting state.

• Embodied condition: Participants entered the VE, viewing
a gender-matched avatar from a first-person perspective
(visuoproprioceptive trigger). For 3 min, the participants
explored the environment, namely looking around, seeing
their reflexes in the mirror in front of them, and moving
their virtual hands, head, and torso without moving the
chair, while seeing the movements of the avatar synchronized
with their own (visuomotor trigger). Nonetheless, participants
were previously instructed to move slowly and smoothly to
minimize motion artifacts. After these 3 min of exploration,
the participant was asked to remain still and focus on the
right hand. A virtual brush appeared and began stroking the
virtual hand for 2 min, synchronized and spatially congruent
with the experimenter brushing the participant’s real hand
(visuotactile trigger). The participant focused on the brush
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FIGURE 2

Experimental design with a female virtual avatar. (A) Represents the VE during the exploration section of the embodied condition, while (B) represents

the brushing part (virtual hand illusion) of the same condition. (C) Shows the VE during the exploration part of the control condition. (D) Illustrates a

female participant during the control condition, with the EEG and VR headset set up.

stroking the virtual hand, and minimized movements. After
2 min, the participants exited the VE and answered verbally to
an embodiment questionnaire.

• Control condition: In this condition, participants entered the
VE and viewed a gender-matched avatar from a third-person

perspective, disrupting visuoproprioceptive triggers. Like the
embodied condition, they explored the environment for 3

min, moving their virtual hands, head, and torso with slow,
smooth movements, without dislocating the chair. However,

the avatar’s movements were independent of the participant’s
real movements, creating incongruent visuomotor triggers.

Then, participants were asked to focus on their right hand,
minimizing movements. Unlike the embodied condition, no

virtual brush appeared. Instead, participants only felt their
real hand being brushed, creating incongruent visuotactile

triggers. After 2 min, the brushing stopped, participants exited
the VE, and then responded verbally to the embodiment
questionnaire.

• MI training: Participants entered a VE similar to the one
used in the embodied and control phases but without the

virtual mirror, enabling full focus on the virtual hands. They
had to focus on a cross between two virtual hands, and
when an arrow appeared pointing to one hand, they were to
imagine grasping the indicated hand (MI task) without actual
physical movement. TheMI training consisted of 30 randomly
presented trials, with 15 trials per class (left/right-hand grasp).
Each trial consisted of a 5-second rest period followed
by a 5-second MI task period. When the arrow appeared
(visual cue), participants repeatedly imagined grasping the
indicated hand while observing the corresponding virtual
hand performing the movement.

• Online BCI: Participants re-entered the VE used in the MI
training phase and repeated the MI training. However, during
this phase, feedback was provided in real-time by a machine
learning classifier trained on data collected during the MI
training phase posterior to the embodied condition phase.

Frontiers inNeuroergonomics 05 frontiersin.org

https://doi.org/10.3389/fnrgo.2025.1572851
https://www.frontiersin.org/journals/neuroergonomics
https://www.frontiersin.org


Esteves et al. 10.3389/fnrgo.2025.1572851

2.3 Experimental setup

2.3.1 EEG equipment and acquisition
Participants were prepared with 32 active electrodes arranged

according to the international 10–20 system, with the the reference
electrode placed on the left mastoid. EEG signals were recorded at a
sampling rate of 250 Hz using a wireless EEG amplifier (LiveAmp,
Brain Products GmbH, Gilching, Germany). Signal acquisition
was managed via BrainVision Recorder software (Brain Products
GmbH, Gilching, Germany).

2.3.2 VR scene and equipment
The experiment was conducted in the same VE used in the

first dataset (Vagaja et al., 2024), and it is freely available online.1

Participants performed the tasks while seated at a virtual desk,
facing a mirror during the SoE induction/disruption phases, within
a virtual room designed to replicate their real-world surroundings.
They interacted with the VE through a gender-matched avatar. The
VE was developed using the Unity 3D game engine, with avatars
created via Ready Player Me2. Participants utilized an Oculus Rift
CV1 headset, manufactured by Oculus VR (a subsidiary of Meta,
Inc., United States), equipped with Oculus Touch controllers and
Constellation sensors to interact with the VE. A video from the first
study is available online.2

2.4 Embodiment and presence
questionnaires

Both isolated datasets followed the guidelines of Peck and
Gonzalez-Franco (2021) for a questionnaire to evaluate the SoE
illusion during the Control and Embodied phases, which consists
of 16 questions (E1-E16). Six features were derived by averaging
specific items, capturing the three main components of SoE (SoO,
SoA, and SoSL). Although SoSL is not explicitly calculated as a
separate metric, it is inherently incorporated into these features.
Specifically, SoSL is indirectly assessed through features such as
the virtual body’s resemblance to the real body (Appearance),
its spatial positioning, responsiveness to movements (Response),
and the integration of sensory inputs (Multi-Sensory Integration).
Additionally, five questions (P1–P5) adapted from the Multimodal
Presence Scale (MPS) byMakransky et al. (2017) were used to assess
the sense of presence (Table 1). This allowed the evaluation of both
senses according to recent guidelines, using a 7-point Likert scale.
In total, seven variables were computed from this questionnaire by
averaging specific items.

• Appearance = (E1 + E2 + E3 + E4 + E5 + E6 + E9 + E16)/8
• Response = (E4 + E6 + E7 + E8 + E9 + E15)/6
• Ownership = (E5 + E10 + E11 + E12 + E13 + E14)/6
• Multi-sensory = (E3 + E12 + E13 + E14 + E15 + E16)/6
• Agency = (E3 + E13)/2

1 https://github.com/noisys-project/Virtual-Embodiment-and-Motor-

Imagery-BCIs

2 https://www.youtube.com/watch?v=txPpFjRKIos

• Embodiment = (Appearance + Response + Ownership +
Multi-sensory)/4

• Physical presence = (P1 + P2 + P3 + P4 + P5)/5

2.5 Data analysis

This study analyzed the Embodied (where SoE was induced)
and Control (where SoE was disrupted) conditions. All EEG signals
were processed using the EEGLAB toolbox (v2023.1) in MATLAB
R2022a.

2.5.1 EEG signal pre-processing
The EEG signals were initially downsampled to 125 Hz using

EEGLAB’s popresample.m function, which automatically applies
anti-aliasing. This was followed by bandpass filtering between 1 and
40 Hz. Next, Artifact Subspace Reconstruction (ASR) was applied
to clean the signal (Chang et al., 2018), removing channels with
prolonged flatening (over 5 seconds), artifacts in more than 15%
of data windows, low correlations (<0.5) with other channels, or
excessive line noise. A burst criterion of 10 standard deviations
was used to detect and address artifacts without applying high-
pass filtering or segment removal. Channels removed during the
process were interpolated, and the data were then re-referenced to
the common average. Independent Component Analysis (ICA) was
performed, using ICLabel to identify components with more than
90% probability to be eye or muscle artifacts for rejection (Pion-
Tonachini et al., 2019). Moreover, all components were manually
inspected to ensure the removal of remaining artifact components.
Lastly, the first 110 seconds during the brush stroking (virtual hand
illusion/disruption) were extracted for further analysis.

2.5.2 Frequency analysis
The power spectrum was calculated for each electrode during

the Control and Embodied conditions across all participants and
then divided into Delta (approximately 0.3–4 Hz), Theta (4–8
Hz), Alpha (8–13 Hz), Beta (13–30 Hz), and Gamma (above 30
Hz) bands. The average absolute power within each band was
computed, and normalized as a percentage of the total power within
each electrode. Subsequently, the scalp was divided into anatomical
lobes, including Frontal (Fp1, Fp2, F7, F8, F3, F4, and Fz), Central
(FC5, FC6, FC1, FC2, C3, C4, Cz, CP5, CP6, CP1, and CP2),
Temporal (FT9, FT10, T7, T8, TP9, and TP10), Parietal (P7, P8,
P3, P4, and Pz), and Occipital (O1, O2, and Oz). Next, the median
power of all electrodes within each lobe was calculated for each
frequency band.

2.5.3 Linear modeling
Linear models were developed to analyze the relationship

between embodiment strength (measured by embodiment scores
resulting from the questionnaire) and frequency band power.
Two approaches were applied: Linear Regression (LR) and Linear
Mixed Effects (LME) models (Pinheiro and Bates, 2000). The LR
model served as a simple baseline but does not account for intra-
group variability, being less robust when population subgroups
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TABLE 1 Embodiment questionnaire utilized during data acquisition to

access SoE illusion induction/break and sense of physical presence during

the Control and Embodied phases.

ID Questions

E1 I felt out of my body.

E2 I felt as if my real body were drifting toward the virtual
body or as if the virtual body were drifting toward my
real body.

E3 I felt as if the movements of the virtual body were
influencing my own movements.

E4 It felt as if my real body were turning into the virtual
body.

E5 At some point it felt as if my real body was starting to
take on the posture or shape of the virtual body that I
saw.

E6 I felt like I was wearing different clothes from when I
came to the laboratory.

E7 I felt like the form or appearance of my real body had
changed.

E8 I felt a realistic sensation in my hand when I saw the
brush touching the virtual hand.

E9 I felt that my own body could have been affected by the
virtual world.

E10 I felt as if the virtual body was my body.

E11 At some point it felt that the virtual body resembled my
own (real) body in terms of shape, skin tone or other
visual features.

E12 I felt as if my body was located where I saw the virtual
body.

E13 I felt like I could control the virtual body as if it was my
own body.

E14 It seemed as if I felt the touch of the brush in the
location where I saw the virtual hand touched.

E15 It seemed as if the touch I felt was caused by the brush
touching the virtual hand.

E16 It seemed as if my hands were touching the virtual desk.

P1 The virtual environment seemed real to me.

P2 I had a sense of acting in the virtual environment,
rather than operating something from outside.

P3 My experience in the virtual environment seemed
consistent with my experiences in the real world.

P4 While I was in the virtual environment, I had a sense of
“being there.”

P5 I was completely captivated by the virtual world.

The questionnaire was answered following a 7-point Likert scale. This questionnaire was

adapted from Peck and Gonzalez-Franco (2021) and Makransky et al. (2017).

are a factor. To address this, the LME model included both
fixed and random effects, capturing individual variations within
subgroups. Additionally, while LR used simple linear equations
(Equation 1), LME explored different variable interactions and
random factors to identify the best-fitting equation. Initially, the
linear models did not differentiate between frequency bands;
however, given the distinct ranges of power across bands and
the possible band-specific responses to SoE illusion, separate

models for each band were also considered for a more precise
analysis.

BandPower = EmbodimentScore ∗ β1 + β0 (1)

2.5.4 Statistical analysis
To select the appropriate statistical methods for

comparing conditions (Control vs. Embodied), normality
and homoscedasticity of the bands’ power were evaluated using the
Kolmogorov-Smirnov and Levene tests, respectively. Nonetheless,
while some features satisfied normality and homoscedasticity
criteria, results were inconsistent between features. Thus, non-
parametric tests were used to ensure methodological consistency.
All condition comparisons were conducted in MATLAB using
the Mann-Whitney U test with a significance level of 0.05. For
linear models, the best LME equations were selected based on the
lowest Akaike Information Criterion (AIC) (Akaike, 1974), with
the Bayesian Information Criterion (BIC) (Schwarz, 1978) also
considered for additional validation. Once the final models were
selected, the quality of the model was assessed using adjusted-R2

(Chicco et al., 2021). The fitted models also provided p-values
for each predictor, directly indicating their statistical relevance in
predicting the response variable.

2.5.5 Machine learning models
Binary classification machine learning models were developed

to assess whether it is possible to identify SoE situations based
on specific frequency features. For this purpose, the previous
pre-processed EEG signals were used, and multiple datasets were
prepared to test the models’ performance.

The pre-processed signals were truncated to the 0 to 90-second
range and then segmented into windows of varying lengths: 2, 3, 5,
6, 9, 10, 15, 18, 30, 45, and 90 seconds. This means that the complete
signal for each trial was divided into consecutive, non-overlapping
time windows of a fixed duration. The analysis used the first 90
seconds of each trial to allow for a wider range of window lengths,
all being divisors of the total segment duration, thereby ensuring
consistent use of the entire available data. Within each window, the
power spectrum for each electrode was calculated and divided into
the frequency bands (Delta, Theta, Alpha, Beta, and Gamma). The
power of each band was then normalized as a percentage of the total
power within the respective electrode, following the methodology
used in the earlier frequency analysis. Consequently, 11 datasets
were created (with the different time windows segmentation), each
comprising 32 electrodes × 5 frequency bands × number of signal

segments features. This approach allowed for a detailed exploration
of the time effect on the illusion, as analyzing datasets of different
window lengths could reveal whether time variations hold useful
information about SoE and its dynamics over time. Furthermore,
six machine learning models were employed to identify the best-
performing approach, namely, Decision Tree (DT), Random Forest
(RF), Naive Bayes (NB), k-Nearest Neighbors (kNN), Support
Vector Machine (SVM), and Multi-Layer Perceptron (MLP).

The same fitting process was applied for all datasets and model
types. First, the datasets were analyzed to identify the presence
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TABLE 2 Representation of all parameters and respective ranges tested in

the di�erent machine learning models trained during hyperparameter

optimization.

Model Paramters

DT “MaxNumSplits”: [5, 55]
“MinLeafSize”: [2, 6]
“SplitCriterion”: {“gdi,” “deviance”}

RF “NumTrees”: [50, 200]
“MaxNumSplits”: [5, 55]
“MinLeafSize”: [2, 6]

NB “Distribution”: {“normal,”
“kernel”}
“Kernel”: {“normal,” “box,”
“epanechnikov,” “triangle”}

kNN “NumNeighbors”: [2, 20]
“Distance”: {“euclidean,”
“seuclidean,” “cityblock,”
“chebychev,” “hamming,” “cosine,”
“minkowski,” “correlation”}
“DistanceWeight”: {“equal,”
“inverse,” “squaredinverse”}

SVM “Kernel”: {“linear,” “gaussian,”
“polynomial”},
“BoxConstraint”: [0.01, 50]
“PolynomialOrder”: [2, 6]
“KernelScale”: [0.01, 100]

MLP “NHiddenLayers”: [1, 5]
“NNeuronsSize”: [80, 240]
“TrainFcn”: {“trainrp,” “traincgf,”
“trainscg,” “traincgb”}

of outliers. The samples considered outliers in multiple features
were manually selected for removal. Next, each dataset was divided
into 80% for training and 20% for testing in a stratified division
to ensure both follow the same class distribution (50%/50%).
For kNN, SVM, and MLP models, the following step consisted
of Z-score data normalization, since these models handle data
within similar ranges better. The remaining models used the data
without normalization. Afterward, hyperparameter optimization
was conducted on the training set using Bayesian optimization
combined with 5-fold cross-validation. The parameters tested for
each model are summarized in Table 2. After selecting the optimal
parameters, the final models were trained on the entire training set
and evaluated on the test set. The accuracy metric was used for the
models’ performance evaluation.

Post-classification, the best-performing model and dataset
combination were selected for feature importance analysis. This
analysis aimed to identify the most relevant features for classifying
SoE, potentially uncovering biomarkers. Feature selection methods
specific to the chosenmodel were applied to determine these critical
features.

3 Results

3.1 Vividness, sense of embodiment and
presence

In both studies, the SoE illusion was successfully elicited.
Specifically, in the Vagaja et al. (2024) dataset, participants

reported a significantly stronger embodiment in the Embodied
condition compared to the Control condition (Control: 3.978;
Embodied: 5.139; p-value = 0.008). A similar pattern was observed
when observing only the newly recorded dataset (Control: 3.253;
Embodied: 5.081; p-value = 0.001), confirming the effectiveness
of the embodiment manipulation in both cases. Given this
consistency, combining the datasets into a single, larger dataset
(combined dataset) is feasible to increase statistical power.

The combined dataset demonstrates significant differences in
appearance (Control: 3.674; Embodied: 4.460; p-value = 0.007),
response (Control: 3.557; Embodied: 5.018; p-value = 0.001),
ownership (Control: 3.485; Embodied: 5.357; p-value = 0.000),
multi-sensory integration (Control: 3.643; Embodied: 5.595; p-
value = 0.000), agency (Control: 3.571; Embodied: 5.054; p-value =
0.001), and embodiment scores (Control: 3.590; Embodied: 5.108;
p-value = 0.001), with higher scores in the Embodied condition
(Figure 3). These results indicate that the Embodied condition
induced a stronger SoE, while the Control condition effectively
disrupted this sense. Moreover, both conditions also induced a
sense of presence in the virtual environment though presence
scores were slightly higher in the Embodied condition (Control:
4.636; Embodied: 5.179; p-value = 0.121).

3.2 Changes in EEG band power during
embodiment illusion

Frequency analysis revealed a slight increase in Delta power
during the embodied illusion, except for a non-significant decrease
in the occipital lobe (Figure 4). The Theta band exhibited non-
significant decreases across the frontal, central, temporal, and
occipital lobes during the Embodied condition. Similarly, Alpha
power showed non-significant reductions over the frontal, central,
parietal, and temporal regions (Figure 4; Table 3). Themost notable
results were observed in the Beta and Gamma bands. In the Beta
band, a significant power increase was found in the occipital lobe
during the Embodied condition compared to the Control condition
(Control: 9.378%; Embodied: 11.699%; p = 0.045; Table 3), while
it remained largely unchanged across the rest of the scalp. Lastly,
the Gamma band showed a significant power increase in both the
central (Control: 3.115%; Embodied: 3.916%; p = 0.045; Table 3)
and occipital (Control: 7.061%; Embodied: 10.469%; p = 0.037;
Table 3) lobes during the Embodied condition. An increase in
Gamma power was also observed in the parietal lobe, though this
change did not reach statistical significance (Figure 4). Overall, the
illusion was characterized by increased Delta power (except for a
decrease in the occipital lobe), decreased Theta and Alpha power
across most of the scalp, increased Beta power in the occipital lobe,
and increased Gamma power in the centro-parietal and occipital
regions.

3.3 Relationship between embodiment
scores and power across frequency bands

The fitted LR and LME models aimed to examine the
relationship between embodiment strength and EEG power
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FIGURE 3

Distribution of features extracted from the embodiment questionnaire, specifically appearance, response, ownership, multi-sensory integration,

agency, embodiment, and presence, in a 7-point Likert Scale. Values for the Control condition are represented in blue, while the Embodied condition

is in orange. Features with statistically significant di�erences between conditions, as determined by the Mann-Whitney U test, are marked with an

asterisk (*) (p-value < 0.05). Each box plot shows the median, interquartile range, and outliers (denoted by red boxes).

FIGURE 4

Radar plots of power distribution across EEG frequency bands (Delta, Theta, Alpha, Beta, and Gamma) for each brain lobe, added by the

representation of the scalp’s lobe division (bottom-left corner), showing the electrodes corresponding to each lobe. Power is expressed as the

median percentage relative to the total power within each lobe. The blue line represents the Control condition, while the orange line represents the

Embodied condition. Bands with statistically significant di�erences between groups, as determined by the Mann-Whitney U test (p < 0.05), are

marked with an asterisk (“*”).
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TABLE 3 Power of each EEG band (Delta, Theta, Alpha, Beta, and Gamma)

as a percentage of total power within each brain lobe, along with

Mann-Whitney U-test results (U-statistics and p-values) comparing

Control and Embodied conditions.

Lobe Band Control
(%)

Embodied
(%)

U-stats
(p-value)

Frontal

Delta 55.119 57.008 764 (0.583)

Theta 18.232 16.816 914 (0.058)

Alpha 15.565 14.770 796 (0.980)

Beta 6.689 6.554 765 (0.594)

Gamma 3.849 4.154 715 (0.176)

Central

Delta 50.800 52.689 747 (0.408)

Theta 19.208 17.610 899 (0.100)

Alpha 18.545 16.525 857 (0.338)

Beta 7.006 7.218 746 (0.399)

Gamma 3.115 3.916 675 (0.045*)

Parietal

Delta 50.967 53.563 739 (0.338)

Theta 16.171 16.451 778 (0.749)

Alpha 21.303 18.214 855 (0.355)

Beta 7.153 7.127 780 (0.774)

Gamma 3.017 3.562 694 (0.090)

Temporal

Delta 51.139 53.337 734 (0.298)

Theta 18.228 17.044 871 (0.235)

Alpha 16.345 14.839 848 (0.517)

Beta 7.897 7.705 821 (0.712)

Gamma 4.922 5.231 743 (0.372)

Occipital

Delta 47.548 43.294 864 (0.283)

Theta 16.867 15.869 862 (0.298)

Alpha 18.646 18.509 782 (0.799)

Beta 9.378 11.699 675 (0.045*)

Gamma 7.061 10.469 670 (0.037*)

Significant differences are marked by an asterisk (“*”).

changes across frequency bands. The initial analysis evaluated
correlations using overall frequency power. Among the models
tested, the LME model (Equation 2) yielded the lowest AIC
(8757.109) and BIC (8903.947), outperforming the LR model
(Equation 1), which exhibited higher AIC (12010.492) and
BIC (12020.980) values. The LR model demonstrated poor
fit (adjusted R2 = –0.001), whereas the LME model showed
relatively good fit (adjusted R2 = 0.904). Despite this, neither
model revealed a significant relationship between embodiment
scores and general EEG power (LME: p-value = 0.872;
LR: p-value = 0.961; Table 4).

Power = Embodiment + Band ∗ Lobe+ (1|Subject) (2)

When analyzing the SoE correlation with individual bands,
the LME models consistently outperformed the LR models in

fit (Table 4). Figure 5 compares both models’ fits across different
bands, showing the best LME model found for each band. Delta
power was best described by Equation 3, which modeled it as a
function of the interaction between embodiment score and lobes,
with random intercepts for subjects. Theta, Alpha, and Beta bands
were best captured by Equation 4, which extended the previous
model by adding a random slope for condition at the subject
level. Gamma power was most effectively modeled by Equation 5,
which assumed an additive relationship among Gamma power,
embodiment score, condition, and lobe, while accounting for
random intercepts at the subject level. Regarding the correlations
found, the LR models did not reveal significant interactions
between frequency band power and embodiment scores. Similarly,
the LME models did not identify direct correlations, but they did
highlight significant interactions. Specifically, embodiment scores
interacted significantly with the parietal lobe in predicting Theta
power (p-value = 0.020; Table 4), and with the occipital cortex in
predicting Delta (p-value = 0.012), Beta (p-value = 0.004), and
Gamma (p-value = 0.008) powers (Table 4).

BandPower = EmbodimentScore ∗ Lobe+ (1|Subject) (3)

BandPower = EmbodimentScore∗Lobe+ (Condition|Subject) (4)

BandPower = EmbodimentScore+Condition+ Lobe+ (1|Subject)
(5)

3.4 Machine learning models to predict
embodiment

The performance of the binary classification models (Figure 6)
revealed that the SVM model, using 3-second time windows,
achieved an accuracy of 100%, highlighting the feasibility of
distinguishing between embodiment states using machine learning
algorithms. Interestingly, while the SVM performed best with
smaller time windows, kNN models performed better with
larger windows, though no model exceeded 80% accuracy
with these larger windows. Overall, models using smaller time
windows outperformed those with larger ones. Additionally,
DTs, RFs and MLPs generally showed lower accuracy across
most datasets.

Given the SVM model’s strong performance in distinguishing
between Embodied and Control conditions, particularly with 3-
second time window signal segmentation, this model and dataset
were chosen for feature importance analysis. Since the signal was
segmented into 3-second windows, it resulted in 30 segments
per electrode (90seconds total signal /3seconds). Therefore, the
final SVM model used the 5 frequency bands extracted from all
30 segments across all 32 electrodes, leading to a total of 4,800
features (5 bands ∗ 30 segments ∗ 32 electrodes). The optimal
hyperparameters for the model were identified as a linear kernel
and a box constraint of 20.332. Feature importance was determined
by the feature weights within the linear kernel, normalized to assess
their contribution to classification. Since the input features were
already standardized (using z-score normalization), the resulting
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TABLE 4 Results of LME and LR statistical models evaluating the relationship between embodiment score, and EEG frequency bands’ power.

Outcome
(Model)

Models variables Model evaluation

Variable Estimate t-Statistics p-value AIC BIC Adjusted-R2

Bands (LME) Embodiment –0.018 –0.161 0.872 8,757.109 8,903.947 0.904

Bands (LR) Embodiment –0.018 –0.049 0.961 12,010.492 12,020.980 –0.001

Delta (LME) Embodiment 0.569 0.856 0.393 1,852.969 1,903.856 0.690

Embodiment:Lobe_Central –0.260 –0.339 0.735

Embodiment:Lobe_Parietal –0.212 –0.277 0.782

Embodiment:Lobe_Temporal –0.413 –0.539 0.591

Embodiment:Lobe_Occipital –1.931 –2.518 0.012∗

Delta (LR) Embodiment 0.168 0.390 0.697 2,044.538 2,051.808 –0.003

Theta (LME) Embodiment –0.462 –1.460 0.145 1312.026 1362.913 0.681

Embodiment:Lobe_Central 0.282 0.990 0.323

Embodiment:Lobe_Parietal 0.667 2.341 0.020∗

Embodiment:Lobe_Temporal 0.117 0.411 0.682

Embodiment:Lobe_Occipital –0.210 –0.737 0.462

Theta (LR) Embodiment 0.112 0.713 0.476 1,479.939 1,487.209 –0.002

Alpha (LME) Embodiment 0.256 0.487 0.627 1635.392 1,686.279 0.775

Embodiment:Lobe_Central –0.445 –0.902 0.368

Embodiment:Lobe_Parietal –0.519 –1.053 0.293

Embodiment:Lobe_Temporal –0.166 –0.337 0.736

Embodiment:Lobe_Occipital 0.468 0.948 0.344

Alpha (LR) Embodiment –0.565 –1.786 0.075 1,872.141 1,879.411 0.008

Beta (LME) Embodiment –0.337 –1.186 0.237 1,296.811 1347.698 0.637

Embodiment:Lobe_Central 0.224 0.785 0.433

Embodiment:Lobe_Parietal 0.152 0.535 0.593

Embodiment:Lobe_Temporal 0.222 0.780 0.436

Embodiment:Lobe_Occipital 0.818 2.871 0.004∗

Beta (LR) Embodiment –0.066 –0.443 0.658 1,448.874 1,456.144 –0.003

Gamma (LME) Embodiment –0.130 –0.437 0.663 1375.031 1425.918 0.617

Embodiment:Lobe_Central 0.281 0.828 0.408

Embodiment:Lobe_Parietal 0.191 0.563 0.574

Embodiment:Lobe_Temporal 0.249 0.733 0.464

Embodiment:Lobe_Occipital 0.914 2.693 0.008∗

Gamma (LR) Embodiment 0.261 1.512 0.132 1,532.812 1,540.082 0.005

The table includes the estimated effect of the embodiment score variable and its interaction with other variables in LME models, and the respective t-statistic, and p-value for each model.

Variables that have a statistically significant effect (p-value < 0.05) on the outcome variable in the models are marked by an asterisk (“∗”). Additionally, model performance metrics (AIC, BIC,

and adjusted-R2) are provided to assess model fit.

weights were less biased by differences in scale. Heatmaps for the
five frequency bands, shown in Figure 7, illustrate the spatial and
temporal importance of features, while Table 5 lists the 15 most
important features.

No clear spatial or temporal patterns emerged though some
trends were observed. In the Delta band, features from earlier
time windows showed greater importance in frontal areas (e.g.,

F4 Delta 0–3s), while later windows highlighted central (e.g.,
C4 Delta 30–36s; CP2 Delta 22–54s) and parietal regions (e.g.,
P3 Delta 45–48s). In contrast, Theta band features were more
impactful in later time windows, particularly over temporoparietal
and frontal areas (e.g., TP9 Theta 48–51s, FC6 Theta 66–69s).
For the Alpha band, significant contributions were observed
in fronto-central and parietal regions during the later stages
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FIGURE 5

Relationships between embodiment score and EEG frequency power, divided in power bands. (a) Illustrates the partial dependence of embodiment

score based on the results of the LME models (Equation 3 for the Delta band, Equation 4 for Theta, Alpha and Beta bands, and Equation 5 for Gamma

band). (b) Presents the fitted LR models (each model based on Equation 1). The Delta band is represented in red, Theta in pink, Alpha in green, Beta in

orange, and Gamma in blue.

FIGURE 6

Performance (accuracy) of di�erent classifiers (DT, RF, NB, kNN, SVM, and MLP) evaluated across various time window lengths tested (2, 3, 5, 6, 9, 10,

15, 18, 30, 45, and 90 seconds).

of the illusion (e.g., FC2 Alpha 75–78s, Pz Alpha 45–48s, P7
Alpha 66–69s), and in the temporal lobe during initial stages
(FT10, T8, TP10 electrodes). The Beta band also showed notable
importance in later stages, particularly in temporoparietal and
frontal regions (e.g., TP10 Beta 33–36s, F8 Beta 60–63s, FC1 Beta
78–81s). Finally, the Gamma band presented a more scattered

importance over the scalp and time course. Still, it revealed
early importance in the parietal lobe (e.g., P3 Gamma 3–6s)
that shifted to temporal areas over time (e.g., FT10 Gamma 75–
78s, P9 Gamma 48–51s). Despite these patterns, the features
showed relatively low and similar importance, suggesting that
focusing on a single band or time window is insufficient to
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FIGURE 7

Heatmaps illustrating the importance of all 4,800 features for classifying embodiment using the SVM model trained on the 3-second time windows

dataset. Each feature corresponds to the specific band power (Delta, Theta, Alpha, Beta, and Gamma) extracted from individual electrodes across the

multiple time windows used. Feature importance is expressed as a percentage, with dark blue indicating the most important features and white

representing the least important features.
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TABLE 5 The 15 most important features identified using the SVMmodel with 3-second time windows.

Feature Importance (%) Feature Importance (%) Feature Importance (%)

FC2_Alpha_75-78s 0.093 FT10_Gamma_75-78s 0.083 FC2_Alpha_78-81s 0.077

TP10_Beta_33-36s 0.090 Pz_Alpha_45-48s 0.083 FC1_Beta_78-81s 0.076

F4_Delta_0-3s 0.089 P3_Delta_45-48s 0.080 P7_Alpha_66-69s 0.076

F8_Beta_60-63s 0.088 TP9_Theta_48-51s 0.079 CP2_Theta_48-51s 0.075

P3_Gamma_3-6s 0.084 FC6_Theta_66-69s 0.079 TP9_Gamma_48-51s 0.075

Each feature is labeled by its corresponding Electrode, Band, and Time of the window in which the spectral power contributing to the feature was extracted.

capture the changes in brain activity associated with the SoE
illusion.

4 Discussion

4.1 E�ectiveness of the VR paradigm in
inducing SoE

This study addressed the lack of standardized methodologies in
embodiment research by following recent guidelines for inducing
and disrupting the SoE through visuoproprioceptive, visuomotor,
and visuotactile triggers. Prior research highlights the interplay
of these sensory triggers in embodiment, showing that while
visuoproprioceptive cues alone can induce SoE (Falcone et al.,
2022; Carey et al., 2019), disrupting visuomotor or visuotactile
feedback destabilizes it (Kokkinara and Slater, 2014). Synchronous
feedback in one modality can compensate for asynchronous
feedback in another (Huynh et al., 2019), suggesting that while a
single trigger is sufficient, all contribute meaningfully in a non-
hierarchical manner (Pritchard et al., 2016). The incorporation
of all three triggers in this study ensured robust SoE induction.
Additionally, SoE was assessed using a recent and validated
questionnaire (Peck and Gonzalez-Franco, 2021) adding to its
standardization.

The questionnaire results demonstrated strong SoE in the
Embodied condition and its clear disruption in the Control
condition (Figure 3), confirming the methodology’s efficacy.
Participants also reported a higher sense of presence in the
Embodied condition, reinforcing shared sensory cues between
presence and embodiment (Halbig and Latoschik, 2024; Pritchard
et al., 2016). Furthermore, restricting hand movements for half
the participants during the data acquisition did not significantly
affect the illusion, since the results of the individual dataset
(p-value = 0.001) and the combined one (p-value = 0.000)
demonstrated the strong SoE induction in these participants.
Thus, the results indicate that hand control is not the only
relevant way to provide visuomotor cues, with head and torso
synchronized movements alone providing sufficient visuomotor
feedback. Therefore, this study stands out for its comprehensive
approach, integrating validated questionnaires, all three sensory
triggers, and a standardized 32-electrode EEG system. Many
previous studies lack such methodological rigor, omitting key
triggers or validated tools.

4.2 Changes in power spectrum during the
SoE illusion

The frequency analysis revealed significant spatial and
frequency differences between conditions, suggesting a potential
biomarker for SoE (Table 3). Although the decrease in Delta power
during SoEwas not significant, it presents a novel finding, diverging
from the typical focus on higher-frequency bands. Similarly, the
overall reduction in Theta power suggests a potential link with
virtual embodiment, aligning with prior research (Hansford et al.,
2023; Jeunet et al., 2018). Regarding the Alpha band, its observed
general reduction during the illusion, especially over the central and
parietal cortex, is severely documented in the literature (Alchalabi
et al., 2019; Raz et al., 2020; Evans and Blanke, 2013; Shibuya et al.,
2021; Kang et al., 2015; Faivre et al., 2017; Rao and Kayser, 2017;
Della Longa et al., 2021; Shibuya and Ohki, 2023; Sciortino and
Kayser, 2022b,a; Shibuya et al., 2018). However, this study’s lack of
statistical significance raises doubts about Alpha’s reliability as an
SoE biomarker despite the apparent trend. Noteworthy, significant
increases in the occipital Beta and the central and occipital Gamma
power during the Embodied condition highlight these bands’ role in
SoE illusion.

Findings on Beta power align with Faivre et al. (2017), which
reported its increased activity but in the frontal lobe, whereas this
study identified occipital involvement. Methodological differences,
including shorter SoE induction times (15 seconds vs. 110 seconds),
may explain this discrepancy and suggest temporal dynamics
in SoE as Beta activity may shift posteriorly over time. Some
studies have reported Beta reductions during embodiment (Kang
et al., 2015; Sciortino and Kayser, 2022b; Rao and Kayser,
2017), potentially due to non-VR setups or a focus on isolated
SoE components rather than the full phenomenon. However,
several studies observed Beta changes in overlapping regions,
reinforcing its link to SoE. Regarding Gamma power, Hansford
et al. (2023) found increases in the parietal lobe, while this
study identified central and occipital involvement, likely due to
different scalp division protocols. Similarly, Hiramoto et al. (2017)
reported parietal Gamma increases during RHI with visuotactile
stimulation, indicating that VR is not strictly necessary for such
effects. Still, Li et al. (2023) also observed occipital Gamma
increases in realistic VR scenarios, linking them to enhanced visual
integration. Nonetheless, these findings reinforce the occipital
lobe’s role in SoE illusions and highlight the need for further
spatial analysis. Additionally, the observed changes also align
with theoretical models of SoE, where changes in brain power
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distributions reflect multisensory integration. The occipital lobe is
crucial for integrating visual, proprioceptive, auditory, and tactile
information (Beauchamp, 2005; Bertini et al., 2010), supporting
visual perception, size integration, spatial transformations (Plewan
et al., 2012; Weidner and Fink, 2007), visuo-haptic processing
(Aman et al., 2010), and audiovisual object processing (Beer et al.,
2013). Its significant activity changes suggest key multisensory
contributions to embodiment. Beta activity is similarly linked to
multisensory integration, coordinating vision and touch (Cooke,
2020), audiovisual stimuli (Ard et al., 2015), and sensory-motor
synchronization (Senkowski et al., 2005). The observed occipital
Beta increase likely reflects the brain’s effort to synchronize sensory
inputs for a cohesive virtual body experience. Gamma activity
also plays a key role in multisensory alignment, particularly
audiovisual synchronization (Senkowski et al., 2007). In the SoE
context, Gamma oscillations help integrate visual, proprioceptive,
and tactile cues, reinforcing their correct integration. Prior studies
(Kanayama et al., 2009) have linked parietal Gamma activity to
visuotactile integration during RHI, suggesting that central and
occipital increases here serve a similar role in enhancing virtual
body ownership.

Ultimately, these findings emphasize the role of immersive
VR in engaging posterior brain regions during SoE. However,
inter-subject variability, particularly from the Vagaja et al. (2024)
dataset’s between-subject design, poses challenges in identifying
a definitive SoE biomarker. Such designs introduce significant
variability, especially in frequencies below 40 Hz, due to
anatomical and physiological differences (DelPozo-Banos et al.,
2015; Kwak et al., 2023). Moreover, variability across studies
underscores the impact of experimental design factors, such as
VR immersiveness and scalp division protocols, on EEG correlates
of SoE, reinforcing the need for standardized methodologies in
the field.

4.3 Band power relationship with SoE
strength

Linear models also revealed the importance of the occipital lobe
in the SoE illusion. While total power analysis showed minimal
direct association with embodiment (Table 4), individual bands
revealed significant positive relationships between occipital Delta,
occipital Beta, central Theta, and occipital Gamma, with SoE. This
suggests the existence of critical band-specific relationships with
SoE due to distinct frequency distributions (Figure 5). The lack
of strong correlations with SoE directly highlights the complexity
of SoE’s neural mechanisms and emphasizes the importance of
localized interactions and dynamic frequency changes rather than
global metrics. Moreover, Beta and Gamma findings align with the
frequency analysis, reinforcing their role in SoE. The significant
central Theta correlation, previously undetected in condition
comparisons, reinforces its observed trend of decreasing during
SoE experiences, consistent with Pavone et al. (2016). These Delta
and Theta relationships with SoE suggest subtle shifts in this
band, which may not be strong enough to emerge in condition
comparisons but still contribute to embodiment, underscoring
the relevance of accounting for all bands in the SoE research

rather than focusing only on higher frequency bands. These
findings emphasize that SoE arises from dynamic interactions
across multiple bands and regions rather than a single frequency
predictor.

Nonetheless, models showed limited explanatory power, with
high AIC/BIC values and low adjusted-R2 scores (Table 4), with
LME models consistently outperforming LR models, likely due
to their ability to account for random effects and inter-subject
variability. This shows the importance of considering individual
differences in SoE analyses. Additionally, it is important to note
that each model in this study was treated as an independent
analysis based on a priori hypotheses, and no multiple pairwise
tests were performed. Therefore, no corrections for multiple
comparisons (e.g., Bonferroni or FDR) across models were applied,
although this could potentially increase the risk of Type I
errors. This can represent a limitation in the statistical analysis
and caution is warranted with the conclusions. Furthermore,
it is important to acknowledge the limitation of correlating
a subjective metric (questionnaire feature) with objective ones
(band power). The questionnaire was used as a reference to
assess embodiment; however, as previously discussed, it is not
an ideal metric due to its susceptibility to personal factors,
interpretation, and scale bias. Subjective and objective measures
do not always align due to external influences, differences in
scale types, and the distinct nature of these measurements. This
misalignment could explain the lack of a linear relationship
between SoE strength and frequency power, ultimately affecting
the reliability of results. While no viable alternative for assessing
SoE currently exists, the reliance on subjective measures remains
a limitation, reinforcing the need for a standardized questionnaire
approach to minimize biases and improve consistency in
future studies.

4.4 Time-dependent changes in SoE
illusions

Binary classification models further support the presence
of a distinct brain pattern during SoE, as classifiers successfully
differentiated between embodiment and non-embodiment
conditions based on EEG frequency power (Table 3). While
DT, RF, and MLP models performed poorly, particularly with
smaller time windows, SVMmodels achieved the highest accuracy,
reaching 100% with 3-second windows. The poor performance
of DT, RF, and MLP likely stems from overfitting and difficulties
handling high-dimensional data with limited samples. DT
models also struggle with large feature sets and complex, non-
linear relationships. These challenges highlight the impact of
the feature-to-sample ratio, where a high ratio, as used in this
study, significantly degrades model performance, especially in
smaller datasets (Sammon et al., 1970; Hua et al., 2005). Thus,
feature selection methods and larger sample sizes are relevant for
improving model reliability.

Notably, smaller time windows consistently yielded higher
classification accuracy (Figure 6), reinforcing the notion that
SoE is a dynamic process over time. Aggregating data into
larger windows may obscure temporal resolution, leading to
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performance reductions by averaging out transient neural activity.
This temporal evolution of SoE has received limited exploration
in the literature; still, it aligns with studies affirming that SoE
has a rapid onset, emerges within seconds, and continues to
strengthen over time (Kalckert and Ehrsson, 2017; Finotti
et al., 2023; Perepelkina et al., 2018; Kondo and Sugimoto, 2022;
Keenaghan et al., 2020). Moreover, the illusion’s dependence on
synchronized multisensory cues (Falcone et al., 2022) further
contributes to its temporal variability, as disruptions in cue
synchrony can destabilize perception (Kokkinara and Slater, 2014),
potentially causing fluctuations in perception and corresponding
brain activity.

Despite evidence of temporal evolution, feature importance
analysis (Figure 7) in the best-performing model (SVM with 3-
second windows) revealed no clear temporal or spatial dominance.
Delta power was initially more relevant over frontal regions before
spreading across the scalp, particularly in the centro-parietal cortex
at later stages. Theta and Beta bands influenced later stages
over fronto-central and temporoparietal areas, while Alpha power
appeared in the parietal lobe early on before shifting to central
regions. This further reinforce the association between the Alpha
band over central and parietal areas and SoE, as literature affirms.
Gamma power exhibited the most scattered pattern, with different
features gaining importance at different times and brain regions.
These findings suggest that SoE arises from distributed neural
processes rather than a single dominant frequency or cortical
region. No single lobe consistently dominates, pointing to a
temporal evolution of lobe involvement, where specific lobes may
play crucial roles at different stages of the illusion. The influence
of the central lobe is supported by previous research emphasizing
its involvement, particularly in the sensorimotor cortex (Kilteni
et al., 2012; Frigeri et al., 2015). Several studies have documented
changes in various bands over the central lobe during SoE illusions
(Alchalabi et al., 2019; Raz et al., 2020; Evans and Blanke, 2013;
Shibuya et al., 2021; Kang et al., 2015; Faivre et al., 2017; Rao
and Kayser, 2017; Della Longa et al., 2021; Shibuya and Ohki,
2023; Sciortino and Kayser, 2022b,a; Shibuya et al., 2018; Pavone
et al., 2016; Hansford et al., 2023; Li et al., 2023; Hiramoto et al.,
2017). Furthermore, the frontal cortex’s link to disembodiment and
vestibular processing (Kilteni et al., 2012; Lopez et al., 2010), along
with the temporal lobe’s role in self-processing and multisensory
integration (Arzy et al., 2006; Lenggenhager et al., 2006), reinforce
their relevance to SoE. Structural connectivity studies also suggest
that disruptions in frontal, parietal, and temporal connections
may contribute to pathological embodiment, emphasizing the
importance of these regions (Errante et al., 2022). Interestingly,
while frequency analysis and linear models highlighted the occipital
lobe’s involvement in SoE, classification feature importance did
not specifically emphasize it. This suggests that occipital activity
may be more stable across time rather than restricted to specific
time points, becoming more prominent in later stages of the
illusion. These findings highlight the necessity of temporally
sensitive analyses to fully capture the evolving neural dynamics
of SoE.

Thus, SoE is a complex phenomenon involving widespread
brain activity across frequency, temporal, and spatial domains.
Despite its dynamic nature, its temporal evolution remains
underexplored, underscoring the need for advanced analyses.

5 Conclusion

The findings confirm the effectiveness of the methods used to
induce and assess SoE, establishing a standardized approach for
SoE studies. Results reveal a distinct EEG frequency signature, with
increased Beta and Gamma power in the occipital lobe strongly
correlating with embodiment in later stages of the illusion. These
bands, essential for multisensory integration and sensorimotor
synchronization, emerge as promising SoE biomarkers. Machine
learning models effectively classified SoE states, with SVM
achieving the highest accuracy using 3-second windows, further
validating robust neural markers. The study also highlights the
temporal and spatial dynamics of SoE. Smaller time windows
improved classification accuracy, suggesting SoE evolves over short
timescales. No single frequency band or brain region exclusively
defines SoE; instead, different EEG bands and lobes contribute
at varying time points. Therefore, SoE emerges as a complex,
dynamic process that evolves across temporal, frequency, and
spatial domains. These findings offer valuable insights into its
neural correlates and further reinforce its theoretical framework.

Despite these insights, several limitations should be
acknowledged. The two-h data collection session may have affected
participant focus, while the small sample size and mixed study
design introduced variability. Future research should prioritize
larger within-subject studies with shorter sessions to improve
data quality and VE immersion. Refining machine learning
models, such as incorporating feature selection to balance the
feature-to-sample ratio and using the permutation-based feature
importance method for a more scale-independent assessment of
feature significance, could enhance performance, provide deeper
insights into the contributions of individual features, and offer
further understanding of SoE’s temporal evolution. Then, this
study focused on a lobe-level analysis; however, this approach
may overlook some spatial specificity and potential lateralization
effects. Therefore, future research should also consider electrode-
level analysis to uncover finer-grained patterns. Additionally,
advanced analyses, including time-frequency and connectivity-
based approaches, are needed to identify more reliable EEG
biomarkers. Standardized methodologies, higher electrode density,
and multimodal imaging could further improve SoE biomarker
identification.
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