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Speech imagery brain-computer interfaces (SI-BCIs) aim to decode imagined

speech from brain activity and have been successfully established using non-

invasive brain measures such as electroencephalography (EEG). However,

current EEG-based SI-BCIs predominantly rely on high-resolution systems with

64 or more electrodes, making them cumbersome to set up and impractical

for real-world use. In this study, we evaluated several electrode reduction

algorithms in combination with various feature extraction and classification

methods across three distinct EEG-based speech imagery datasets to identify the

optimal number and position of electrodes for SI-BCIs. Our results showed that,

across all datasets, the original 64 channels could be reduced by 50% without a

significant performance loss in classification accuracy. Furthermore, the relevant

areas were not limited to the left hemisphere, widely known to be responsible

for speech production and comprehension, but were distributed across the

cortex. However, we could not identify a consistent set of optimal electrode

positions across datasets, indicating that electrode configurations are highly

subject-specific and should be individually tailored. Nonetheless, our findings

support the move away from extensive and costly high-resolution systems

toward more compact, user-specific setups, facilitating the transition of SI-BCIs

from laboratory settings to real-world applications.
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1 Introduction

Speech Imagery Brain-Computer Interfaces (SI-BCIs) aim to decode imagined speech

from brain activity and offer a variety of useful applications whenever spoken speech is

not an option (Rekrut et al., 2022b). Although the feasibility of such BCIs has been proven

in several studies, even for non-invasive brain measures such as electroencephalography

(EEG) (Sereshkeh et al., 2017b; Nguyen et al., 2018), current EEG-based setups are complex

and rely on high-resolution devices with 64 or more channels (Sereshkeh et al., 2017a;

Lee et al., 2020). However, such high-resolution devices are expensive, cumbersome to

wear, and inconvenient in everyday life. Existing approaches working with reduced sensor

setups and a more compact and convenient design have so far failed to meet expectations

regarding classification performance.

Kaongoen et al. tried to classify imagined speech with Ear-EEG, an acquisition

technique that monitors EEG from around or inside the user’s ears (Kaongoen et al.,

2021, 2022). Their proposed system with four electrodes arranged behind each ear

showed promising results in offline analysis with an average classification accuracy of 10
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subjects of 38.2% when performing imagined speech of 4 words

(Kaongoen et al., 2021). Although these results exceed the chance

level, they are far from being applicable in real-world scenarios, and

only a few participants were able to utilize the proposed system in

online control (Kaongoen et al., 2022). As there is a significant gap

between these extremely compact and extremely extensive setups

in terms of classification performance, the question arises of how

to strike a balance between a comfortable setup and adequate

system performance to make SI-BCIs applicable for real-world

applications. However, only a few studies have attempted to answer

this question by systematically reducing the number of electrodes

to identify the optimal subset. The majority of existing studies in

the field focus on reducing the number of electrodes to a predefined

subset based on assumptions about functional brain areas related to

speech processing (Qureshi et al., 2017; Abdallah et al., 2018). Those

studies compare the complete set of electrodes against 3 to 4 subsets

of electrodes, primarily involving the Broca and Wernicke areas.

Systematic approaches for electrode reduction in SI-BCIs, based on

algorithms that explore the potential of different electrode subsets

and their combinations, are rare.

In Torres-García et al. (2016), a systematic approach was

presented that aimed to find the minimal subset of channels

required for reliable imagined speech detection. The task involved

imagining the five Spanish words: “up,” “down,” “left,” “right,” and

“select.” EEG data were recorded with an Emotiv EPOC headset

with 14 electrodes for 27 participants. The approach was based on

a wrapper function with objectives of minimizing the error rate

and the number of channels, where the error rate was confirmed

using the results of a random forest classifier. The system selected

6 to 8 channels and achieved a maximum classification accuracy of

90% on the dataset of five classes. However, the use of the Emotiv

EPOC for this purpose appears questionable due to several reasons.

First, this device is a consumer-grade headset with limited signal

quality and only 14 electrodes. Furthermore, the 14 electrodes are

mainly placed in frontal areas and at the outer borders of the

parietal, temporal, and occipital regions of the brain, excluding the

central region. Although partially including speech-relevant areas,

this setup appears too limited to get a clear picture of the relevant

brain regions and electrode positions, especially considering that

the vast majority of research on SI-BCIs uses 32 channels and

more to record brain signals homogeneously spread over the scalp

(Rekrut et al., 2020; Jahangiri et al., 2018; Jahangiri and Sepulveda,

2019; Lee et al., 2020; Sereshkeh et al., 2017a; Zhao and Rudzicz,

2015; Kim et al., 2014). Thus, besides the worse signal quality of

a consumer-grade EEG headset compared to a clinical one, the

low number of electrodes overall could be a limiting factor when

conducting a systematic evaluation.

Although the current literature acknowledges the awareness

of overly complex setups and the resulting lack of SI-BCIs

in real-world applications, no study has yet systematically

evaluated electrode reduction methods on a broad set of

data. Existing studies in the field rely on the comparison of

predefined subsets of electrodes (Qureshi et al., 2017; Abdallah

et al., 2018), smaller or inadequate sensor positions (Kaongoen

et al., 2021, 2022), and focus solely on one specific dataset

for evaluation, neglecting the variability between different data

recording setups.

Addressing these shortcomings, this study evaluates different

electrode reduction algorithms on EEG data recorded during

imagined speech from three datasets, acquired in three

different study setups by three different research groups.

Thus, we aim to provide a broader perspective and basis for

evaluating the success of electrode reduction algorithms and

their generalizability across different datasets to determine the

most suitable subset of electrodes for EEG-based imagined

speech detection.

Thereby, this study aims to provide three main contributions to

the field of Speech Imagery BCIs:

• Evaluation of electrode reduction methods in speech

imagery BCIs—investigate different methods for electrode

reduction in combination with different feature extraction and

classification methods to provide recommendations on the

best performing approach.

• Determining the optimal number of electrodes for

imagined speech classification—identify the ideal number of

electrodes, analyze subject-specific variability and assess the

trade-off between accuracy and electrode reduction.

• Identifying key electrode positions for speech imagery

BCIs—examine the spatial distribution of the most relevant

electrodes between subjects and discuss the implications for

standard EEG configurations.

With these contributions, we aim to lay the foundation to

improve practicality, reduce setup time, and lower costs for

the currently cumbersome speech imagery BCI setups, thereby

facilitating their application in real-world scenarios in the future.

2 Material and methods

Our evaluation included several electrode reduction methods

from the literature, combined with various feature extraction

and classification algorithms, which are presented in detail

in this section. Due to the complexity of this setup, we

decided to conduct a holistic evaluation on only one of the

three datasets to determine the best configuration for imagined

speech data. This method was then applied to the systematic

evaluation of all three imagined speech datasets, to identify a

specific subset of electrodes and electrode positions that are best

suited for SI-BCIs, thereby demonstrating the generalizability of

the method.

This section is structured according to the different steps

of the processing pipeline, including preprocessing, feature

extraction, classification, and finally, the electrode reduction

procedure, as well as our evaluation criteria. We start by

explaining the general concept and the datasets used for

evaluation. Due to the similarity of methods between our

exploratory approach to finding the best-suited algorithms

and the subsequent systematic evaluation on three different

datasets, we describe the different steps only once and

highlight the differences between the two setups in the

respective subsections.
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2.1 Concept

Our literature research as described in the introduction

led us to the conclusion to use wrapper methods due to

their better performance as compared to filter and embedded

methods (Maldonado and Weber, 2009; Kumari and Swarnkar,

2011), the ease of implementation, and the numerous existing

implementations in previous research (Al Moubayed et al., 2010,

2012; Yang et al., 2012; Torres-García et al., 2016). These methods

aim to assess specific channel subsets based on the accuracy

achieved by the algorithm during learning. In our implementation,

we systematically reduced the number of electrodes from the

maximum to the minimum, as presented in Marx et al. (2019),

based on the classification accuracy achieved with each subset.

Hence, the data need to be processed with a standard pipeline for

EEG-based imagined speech BCIs as illustrated in Figure 1. Our

pipeline starts with preprocessing the data to remove artifacts and

limit the time signal to a certain frequency spectrum relevant for

analysis. In the next step, the features are extracted and forwarded

to a classifier, which is trained to predict those features and is

tested on a separate test set of data. After this classification,

the electrode reduction algorithm selects an electrode to be

excluded from the classification process. The data, reduced by

the channel selected by the algorithm, is then forwarded again

to the feature extraction, and this cycle continues until only one

channel remains.

This procedure was implemented for all combinations of the

different feature extraction, classification, and electrode reduction

methods, and the intermediate results of the classification processes

were stored for comparison.

2.2 Data

All three datasets consisted of EEG data recorded from at least

15 participants while performing imagined speech. In all studies,

the EEG was recorded with 64 electrodes placed according to the

10-20 system and with the same hardware, the Brain Products

Live-Amp.1 Although the datasets were recorded by different

research groups, they differed only slightly in the recording

procedure and the number of words used, as detailed in the

following section.

2.2.1 Dataset 1
Dataset 1 was taken from publicly available data of the 2020

international BCI competition.2 Participants repeated the 5 Korean

words “Hello,” “Help me,” “Stop,” “Thank you” and “Yes,” overall,

70 times per word, while seated in a comfortable chair in front

of a screen. Participants were advised not to engage in any other

brain activity except for the given task, to remain still, and to

avoid eye blinks during the imagined speech period. The stimulus

presentation began with a 3-s initial rest period, followed by an

1 https://brainvision.com/products/liveamp-64/ Last accessed:

31.01.2025.

2 https://osf.io/pq7vb/ Last accessed: 31.01.2025.

audio cue of the target word. The cue presentation was followed

by a randomly selected resting time of 0.8 to 1.2 s, during which

a fixation cross was displayed. The subjects were then instructed

to perform imagined speech of the given word four times before

moving on to the next one. Stimulus presentation was randomized,

and 70 repetitions per word were recorded, resulting in a dataset

size of 350 trials overall per participant. The data was split into 300

trials for training and 50 trials for the test set. The trails for the test

and train sets were predefined for the BCI competition and used

accordingly for our evaluation. Information about the handedness

of the participants was not provided in the dataset description.

2.2.2 Dataset 2
Dataset 2 was acquired in the scope of the study presented

in Rekrut et al. (2022a). It consists of the EEG data of 17

participants while they produced imagined speech of the 9 German

words: “screw,” “case,” “circuit-board,” “floor,” “conveyor belt,”

“workbench,” “push,” “hold,” and “lift.” Overall, 40 repetitions per

word were recorded using a study setup similar to Dataset 1, with

the only difference being that participants repeated each word only

once. This procedure resulted in a dataset size of 360 trails per

participant. For better comparability with the other two datasets,

we randomly excluded two participants, resulting in a final analysis

of 15 participants. All participants were right-handed.We applied a

random train-test split with sklearn of 80/20 and used this initially

created split throughout the overall procedure of the electrode

reduction process. This approach was chosen to better compare

with dataset 1 and the predefined test and train set.

2.2.3 Dataset 3
Dataset 3 was taken from the study presented in Rekrut et al.

(2022b). It consists of data from 15 right-handed participants

silently repeating the five English words “up,” “left,” “right,” “push,”

and “pick” to navigate a robot through a maze-like game on

a computer screen. Using this setup, we collected 80 imagined

repetitions per word, resulting in a dataset size of 400 trails per

participant. More details on the data acquisition and the study itself

can be found in Rekrut et al. (2022b), and the data is available on

the Zenodo platform.3 We randomly split the data with sklearn

into 80% train and 20% test set and used this initially created split

throughout the overall procedure of the electrode reduction process

for better comparability with dataset 1.

Although partially recorded under different circumstances,

such as varying numbers of repetitions per word, the language

and the words themselves, the overall important characteristics

of the datasets are the same, namely, the number and position

of electrodes used, the number of participants, the paradigm of

imagined speech and even the recording hardware. Furthermore,

the data were recorded from different participants for each study.

This makes it the perfect setup for systematic evaluation of

electrode reduction and important electrode positions in SI-BCIs.

3 https://zenodo.org/records/14645653 Last accessed: 31.01.2025.
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FIGURE 1

Conceptual illustration of the processing pipeline. The data is pre-processed in a first step, and afterwards, features are extracted and forwarded to a

classifier. Finally, the electrode reduction method selects one electrode to be excluded, and the remaining data is forwarded again to the feature

extraction.

2.3 Preprocessing

The data was bandpass-filtered between 0.5 and 60 Hz and

notch-filtered again at 50 Hz to remove any overlying powerline

noise. The parameters for the filtering methods were chosen

according to our previous studies (Rekrut et al., 2021). After

filtering, the data were divided into epochs of 2 s, starting from the

onset of the fixation cross prior to silent repetition, to reduce the

signal to the relevant sections containing the imagined speech.

2.4 Feature extraction

Feature extraction plays a crucial role in BCIs, and the best-

performing methods vary significantly depending on the individual

(Rekrut et al., 2021). Thus, we included a variety of feature

extraction and classification methods and evaluated them in

combination with electrode reduction algorithms to find a suitable

setup for systematic electrode reduction in SI-BCI. We decided to

include some of the most common feature extraction methods in

BCI research in the comparison. We implemented common spatial

patterns (CSP), discrete wavelet transform (DWT), and a feature

vector used in one of our previous studies (Rekrut et al., 2021).

DWTwas implemented using the PyWavelets library (Lee et al.,

2019) for wavelet decomposition. As mother wavelet, we applied

biorthogonal 2.2 (bior2.2) as suggested in Feng et al. (2019). The

data were decomposed to the fourth level. Afterwards, a wavelet

feature vector was created out of the data as presented in Torres-

García et al. (2016). This method utilizes the maximum and

minimum values of a given time series T, as well as its average and

standard deviation, in conjunction with the relative wavelet energy

of the signal.

The feature vector was implemented based on Rekrut et al.

(2020) and Rekrut et al. (2021). The 13 features were chosen in

the time and frequency domains, which included power spectral

intensity and relative intensity ratio (alpha, beta, gamma, delta,

and theta), Petrosian and Higuchi fractal dimensions, Hjorth

parameters, spectral entropy, and skewness, fisher information,

approximate entropy, detrended fluctuation analysis and hurst

exponent. The features were extracted with the open-source Python

module PyEEG (Bao et al., 2011).

The Common Spatial Pattern algorithm is frequently used

in BCI applications (Khan et al., 2019; Nguyen et al., 2018)

and applies a linear transformation to project the multi-channel

EEG signal data to a lower-dimensional spatial subspace. In our

implementation, we used the multiclass CSP algorithm as provided

by the MNE Python library (Gramfort et al., 2013). As this

algorithm provides a spatial filtering of the signal, we decided

to use it, in addition to its base implementation, filtered by our

feature vector and the wavelet decomposition, as described in

the two other feature extraction methods above. Both methods

were applied after performing the CSP on the signal and are

referred to in the following as CSPfv for the feature vector and

CSPwav for the wavelet decomposition combination. The standard

implementation is referred to as CSP.

2.5 Classification

Similar to the feature extraction step, we used several

classification methods in combination with the aforementioned

feature extraction methods, which are commonly used in imagined

speech research. We implemented a Random Forest (RF) and a

Support Vector Machine (SVM) algorithm as presented in our

previous studies (Rekrut et al., 2020, 2021). Furthermore, we

integrated an Extreme Gradient Boosting (XGB) based on Chen

and Guestrin (2016). It used the mean error as an evaluation

metric and was instructed to stop if the mean error did not

decrease for 10 rounds. The objective function was chosen to

be SoftMax for multiple classes. We furthermore implemented a

neural network (NN) as described in the study by Panachakel

et al. (2020). This neural network features five hidden layers

using ReLU and hyperbolic tangent activation functions, except

for the final layer, which uses the sigmoid function. Dropout and

batch normalization were applied between each hidden layer. The

network was instructed to stop training once validation loss no

longer decreased for five epochs. Categorical cross-entropy was

used as a loss function and Adam as an optimizer.

2.6 Electrode reduction

Electrode reduction is a relevant topic not only in SI-BCIs but

BCIs in general. It can be applied in different ways and is usually

classified as a filter, wrapper or embedded method (Torres-García

et al., 2016). The latter ones assess channel selection during the

process of training and are specific to a given learning function

(Guyon and Elisseeff, 2006). Filter methods do not use learning
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functions but rather measure the inherent features from the data

and select the relevant channels based on those features (Lan et al.,

2006). Wrapper methods aim to assess certain channel subsets

based on the accuracy obtained by the algorithm during learning.

Those wrapper methods will be the focus of our work, as they have

been used successfully in the past in various studies (Al Moubayed

et al., 2010, 2012; Yang et al., 2012; Torres-García et al., 2016) due to

their better performance and ease of implementation (Maldonado

and Weber, 2009; Kumari and Swarnkar, 2011).

For our comparison of electrode reduction methods in

Speech Imagery BCIs, we identified three promising methods in

related studies: Gray Wolf Optimization (GWO), Common Spatial

Pattern-Rank (CSP-Rank), and Independent component analysis

(ICA). These methods have already been used in a BCI context and

have proven to work reasonably well with EEG data (Ghosh et al.,

2019; Feng et al., 2019; Chaumon et al., 2015); however, they have

not been applied to electrode reduction in imagined speech BCIs. In

the following section, we will give a detailed overview of the three

electrode reduction methods.

2.6.1 Gray Wolf Optimization (GWO)
The Gray Wolf Optimization Algorithm is part of the family

of evolutionary algorithms, which are based on the idea of the

“survival of the fittest” (Ghosh et al., 2019). This principle was

implemented in the algorithm by evaluating a fitness function,

specifically the classification accuracy, using a dataset where

a randomly selected electrode was excluded. This process was

repeated for all electrodes consecutively, and the electrode, without

which the classification achieved the highest accuracy, was finally

rejected. This implementation is inspired by the hunting behavior

of the Gray wolf, where the alpha animal guides the hunt to the

prey, encircling it to reach the closest point to capture it (Emary

et al., 2016). Although promising, this algorithm has only been

utilized to date for feature selection in imagined speech (Ghosh

et al., 2019) and not for electrode reduction.

2.6.2 Common Spatial Pattern-Rank (CSP-rank)
The CSP-Rank electrode reduction is based on the Common

Spatial Pattern algorithm. This method is usually applied for spatial

filtering of EEG data in BCI applications but can also be modified

to reduce the number of electrodes. CSP creates spatial filters for

each class. CSP-Rank utilizes the filter matrix typically used for

transformation to identify influential electrodes. For this purpose,

the vector with the smallest and largest L1-norm in the matrix

is extracted. These vectors consist of filter coefficients that assign

weights to each electrode based on its respective influence on

the class, implying that a feature with a larger absolute value is

more important. Thus, electrodes corresponding to the largest

remaining coefficient are added to the set of electrodes to be used in

classification until a stopping condition is reached. A more detailed

description of how CSP-Rank is computed can also be found in

Feng et al.’s (2019) work.

We included the CSP-Rank algorithm in two different

implementations: the multiclass CSP, as mentioned in the feature

extraction section, and the One-Vs-All implementation. The

multiclass variant was implemented using the MNE Python library

(Gramfort et al., 2013). CSP was applied to the data from all classes

after filtering and epoching. This resulted in the mixing matrix W,

from which the two vectors with the most common information

are selected, as it corresponds to EEG signals (Grosse-Wentrup and

Buss, 2008). For all vectors v in W, each of which corresponds to

one channel of the signal, the smallest absolute values are selected

because they contain the least information related to classification.

Thus, this electrode is rejected.

Another way of transforming the originally binary algorithm

of CSP into a multiclass approach is the One-Vs-All method. In

this implementation, the data is split up into pairs corresponding

to their label. The dual-class CSP algorithm is then computed,

resulting in sets of eigenvectors. As presented by Feng et al. (2019),

from each set of eigenvectors, the largest and smallest are extracted,

as they contain the most information on which electrodes are

most relevant for their respective classes. Each vector in this set

represents a spatial filter for EEG data, with values corresponding

to a specific electrode. Thus, among all the vectors chosen, the one

with the largest absolute value, vmax, is selected, as it indicates that

the corresponding electrode was most significant in distinguishing

between the classes. The electrode corresponding to the position of

vmax in the eigenvector is then added to the set of chosen electrodes.

This process is repeated until a stopping condition is reached.

The unselected electrodes are discarded. In this case, the stopping

condition was reached when a certain threshold of electrodes was

met. Because of the nature of the processing pipeline, as explained

in the concept at the beginning of this section, the electrodes are

always reduced by one. This caused the threshold to be always one

less than the current number of electrodes.

The standard multiclass CSP for electrode reduction is referred

to as CSP, and the One-Vs-All approach is referred to as oCSP.

2.6.3 Independent component analysis (ICA)
The third electrode reduction method we included in our

evaluation is typically applied to EEG data to remove artifacts:

Independent Component Analysis (ICA). The ICA algorithm

transforms a set of time-series data vectors X into their separate

independent components S using a weight matrix W. Thus, the

ICA problem can be formalized as S = W · X. This algorithm

assumes that each vector x in X can be created by a linear mixture

of n independent components. The weight matrixW can be derived

from these vectors by searching the matrix that minimizes the

mutual information of all vectors and thus allows for finding the

linear mixture S (Hyvärinen and Oja, 2000). ICA is commonly used

to remove artifacts, such as eyeblinks or heartbeats, from EEG data

(Torres-García et al., 2016; Rekrut et al., 2020). This is done by

identifying components belonging to artifacts in S. Afterwards, the

respective vector in the weight matrix is set to be the 0-vector, thus

removing the artifact when doing the inverse transform. However,

these components can also be used to find information on the

neural components of the signal as proposed by Chaumon et al.

(2015). Chaumon et al. suggested that neural components are more

likely to be found in the 13% largest components of the signal. Thus,

similar to the CSP-Rank algorithm, one can try to rank the vectors

within the ICA’s mixing matrix W and reduce electrodes based on

this ranking. This is done by identifying electrodes contributing
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strongly to components, preferring those that contribute strongly

to the top 13%. We computed a score for each electrode based on

its contribution to the overall signal, as follows.

For all component vectors cn ∈ C, with n ∈ N and N being

the total number of components, denote the ith position in the

vector as cin, then the score for each electrode is the result of the

following equation:

ScoreElei =

N
∑

n=0

ismax(cin), ∀i ∈ [1, .., |cN |] (1)

with the ismax-operation being defined as follows:

ismax(cin) =















2, if cin = max(cn) ∧ cn ∈ L

1, if cin = max(cn) ∧ cn /∈ L

0, otherwise

with L being the set of the 13% largest components for a set of

components C. Note that it does not matter which vector length

is taken as reference in Equation 1, as all component vectors are

equally long. We selected the electrodes with the largest score until

a threshold was reached.

2.7 Evaluation criteria

Given that our implementation involved various combinations

of feature extraction, classification, and electrode reduction

methods for comparison, we needed to establish criteria for

assessing the performance of these different methods. Our primary

evaluation criterion was classification accuracy, calculated as the

sum of correct classifications divided by the total number of

classifications. Higher classification accuracy is then linked to

better performance of the combined method. By comparing the

classification accuracies of the different methods, we selected

the top sets, which performed best on the data, consisting of

the methods used for electrode reduction, feature extraction and

classification, as well as the number of electrodes used in this set.

This was supposed to give us insights into the best-suited number of

electrodes for imagined speech classification, but also on the feature

extraction and classification methods in those best-performing

subsets. We further compared the achieved accuracies to the

theoretical chance level calculated by dividing 100% by the number

of classes in each dataset. As this method assumes an infinite

number of predictions, we adjusted this threshold according to

the size of the respective dataset as described in Combrisson and

Jerbi (2015). We calculated the significance threshold based on this

procedure and a p-value of 5% to be 24.29%, 14.44% and 24.00% for

datasets 1, 2 and 3, respectively.

For our systematic evaluation of three datasets in the second

part of the study, we further implemented a Fuzzy Inference

System, as described in Torres et al. (2016). The purpose of

this system was to prevent excluding sets with only slightly

lower classification accuracy but a significantly lower number of

electrodes. This system makes a decision based on a set of rules

to provide a good balance between classification accuracy and the

number of electrodes. The decision is based on the FIS membership

function, which is computed from accuracy and the number of

FIGURE 2

Membership functions used for the fuzzy inference system with the

maximum classification accuracy as upper bound.

channels used and illustrated in Figure 2. In our implementation,

we used the subject’s maximum classification accuracy as an upper

bound instead of the error rate used by Torres et al., since visual

inspection of both methods yielded better results for the maximum

accuracy, which led the FIS to not favor lower channel amounts for

higher drops in accuracy.

Based on the top sets defined by our fuzzy inference system,

we identified a possible optimal minimal number and subset of

electrodes for SI-BCIs. Furthermore, we attempted to determine

the most valuable electrode positions in the classification process

by examining the frequency of occurrence of each electrode in the

top sets per participant. We also applied k-means clustering to the

top sets for all the data, and the data were split into different feature

extraction methods to investigate valuable electrode positions in

relation to a specific cluster of a lower or higher number of

electrodes. Finally, we compared our results to subsets of electrodes

chosen based on the functional areas of the cortex related to speech

production, specifically all electrodes of the left hemisphere, the

right hemisphere, and electrodes targeting Broca’s and Wernicke’s

areas. The electrodes for Broca and Wernicke were selected

according to Tsukahara et al. (2019) as “F7” and “P3.” Additionally,

we included electrodes directly adjoining those two positions to

cover a wider range of spatial information, resulting in F7, AF7,

AF3, F5, F9, F3, FT9, FT7, FC5, CP5, CP3, CPz, P5, P1, P3, PO3,

PO8, and POz.

3 Results

In the following section, we present the results of our evaluation

of the performance of the different methods applied for feature

extraction, classification, and electrode reduction, as well as the

best-performing subsets of electrodes and their corresponding

positions. Whenever we refer to the number of electrodes in this

section in text and figure captions, it represents the number of

electrodes removed from the set, not the remaining ones. We
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FIGURE 3

Mean classification accuracy on the test set across all subjects for all

possible combinations of feature extraction and classification

methods at each step of the di�erent electrode reduction methods,

presented as classification accuracy relative to the number of

electrodes removed.

will repeat this fact several times throughout the text to avoid

misunderstandings or misinterpretations.

3.1 Evaluation of electrode reduction
methods

As mentioned in the previous section, our implementation

involved combining various electrode reduction, feature extraction,

and classification methods. The algorithms were trained on the

data of each individual participant using a within-subject approach.

We saved classification accuracies for all possible combinations

of feature extraction and classification methods at each step of

electrode reduction for evaluation. Our algorithm reduced the

number of electrodes by one per iteration, employing four different

electrode reduction algorithms. This resulted in a substantial

collection of classification accuracies for all subjects, covering each

subset of electrodes and each combination of feature extraction

and classification methods. Given the vast number of different

parameters, combinations of methods, and calculations, we decided

to perform this evaluation only on dataset 1 and conclude on

the best-performing setup for further assessment regarding a

minimal subset of electrodes and their respective positions across

all three datasets.

We initially calculated the mean classification accuracy on the

test set for all participants in dataset 1, considering all possible

combinations of feature extraction and classification methods at

each stage of the various electrode reduction methods. The results

of this calculation are shown in Figure 3 as the accuracy on the

testset over the number of electrodes removed for the four different

electrode reduction methods: ICA, CSP, oCSP, and GWO, as well

as the chance level given at 20%. Notably, all methods scored

consistently above chance level on average. Furthermore, the graph

indicates that GrayWolf Optimization massively outperformed the

other methods by a large margin.

This impression was further strengthened by the analysis of

individual data, which revealed that all best-performing setups,

referred to as top sets, were generated by the GWO algorithm. An

example of the results from the top sets is shown in Table 1 for

all combinations of different feature extraction and classification

methods for the best-performing subject 11. The left number in

the brackets represents the classification accuracy achieved with the

given configuration, and the number on the right represents the

corresponding number of electrodes that achieved this accuracy.

From the average classification accuracy concerning the given

classifier on the right side of the table, it can be seen that XGB

delivered the best classification accuracy.

Examining the results of all subjects, we found that the XGB

clearly outperformed the other classification methods, with a 100%

best performance on the GWOelectrode reductionmethod and still

above 50% at least for the remaining methods. A detailed view of

the results showed that the XGB was chosen 45 times out of the 60

configurations resulting from the electrode reduction methods for

15 participants. This equals 75 % of all possible configurations. The

NN classifier was chosen nine times, the RF classifier five times, and

the SVM classifier only once.

The feature extraction methods did not show such a clear

picture. In the GWO condition, DWT was considered the best-

performing method, with 7 out of 15 occurrences in the top

sets, followed by standard CSP with 4 occurrences and 3 for

CSPwav. The feature vector was chosen only once, and the CSPfv

method was not used at all. For the other electrode reduction

algorithms, we found a relatively balanced distribution of methods,

including CSPfv.

Due to the GWO massively outperforming the other electrode

reduction methods and the outstanding performance of XGB with

GWO, we decided to use this combination for further systematic

analysis of all three datasets. The feature extraction did not

provide a clear picture, and the best-performing methods varied

individually between conditions and participants. To preserve

these individual preferences, we selected the three best-performing

feature extraction methods from the GWO configuration: CSP,

DWT (wav), and the combination of the two, CSPwav. Since the

feature vector was only responsible for a single top set in the GWO

condition, and the combination of feature vector and CSP (CSPfv)

did not correspond to any single one, we decided to exclude them

from further investigation.

3.2 Optimal electrode count and subset
selection

In the following section, we present the results of our systematic

reduction of electrodes by applying GWO in combination with

XGB and three different feature extraction methods, based on the

results presented in Section 3.1 on three different imagined speech

datasets described in Section 2.

Figure 4 presents the average results for all participants,

the three different datasets, and the three feature extraction

methods, as well as classification accuracy over the number

Frontiers inNeuroergonomics 07 frontiersin.org

https://doi.org/10.3389/fnrgo.2025.1578586
https://www.frontiersin.org/journals/neuroergonomics
https://www.frontiersin.org


Rekrut et al. 10.3389/fnrgo.2025.1578586

TABLE 1 Example of individual top sets for all combinations of feature extraction and classification methods for GWO on the data of subject 11.

Classifier CSP CSPfv CSPwav wav featvec Acc avg Elec avg

XGB (0.45, 20) (0.46, 24) (0.56, 25) (0.50, 53) (0.34, 59) 0.464 36

NN (0.38, 48) (0.34, 43) (0.36, 59) (0.36, 49) (0.36, 24) 0.36 45

RF (0.44, 39) (0.34, 58) (0.56, 14) (0.48, 36) (0.28, 35) 0.42 36

SVM (0.38, 15) (0.40, 39) (0.36, 62) (0.42, 48) (0.32, 63) 0.376 45

Acc avg 0.415 0.385 0.46 0.44 0.325 0.405 -

Elec avg 31 41 40 47 45 - 41

The left number in brackets represents the classification accuracy, and the right number corresponds to the number of electrodes for which this accuracy was achieved.

FIGURE 4

Mean classification accuracy of all participants over the number of electrodes removed. In the first row is dataset one, the second row is dataset two,

and the third row is dataset three. The first column displays the results for CSPwav, the second column shows CSP, and the third column presents the

DWT feature extraction method. The solid blue line represents the mean value, the yellow line represents the chance level, and the red line

represents the significance threshold.

of electrodes removed. All diagrams clearly show the expected

shape of an early increase in classification accuracy after

reducing the first electrodes, followed by a decrease if too

many electrodes are removed toward the end. This shape was

most distinct for the discrete wavelet transform (wav) feature

extraction method represented in the right column. It confirmed

our results from the previous section and the success of

GWO for electrode reduction on the two additional imagined

speech datasets.

The detailed results for the individual top sets of each

participant, determined by our fuzzy inference system for the three

datasets and the three feature extraction methods, can be found

in Tables 2–4. For dataset one, on average, 38 electrodes were

removed, resulting in a classification accuracy of 51%, which is
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significantly above the chance level and the significance threshold

of 24.29%. The average classification accuracies did not differ

much between the three feature extraction methods; however, the

boxplots, shown in Figure 5A, confirm the superior performance

of the wavelet transform (wav) method, as indicated by the 54%

average classification accuracy and the fact that in 12 out of 15

times, the highest classification accuracy was achieved with wav.

The three remaining top sets resulted from the CSPwav feature

extraction method. Examining the number of electrodes removed

in the top sets, we observe that the average numbers do not

differ significantly, but the values exhibit a rather high standard

deviation, indicating that the numbers vary substantially between

participants. Figure 5B illustrates this fact in the boxplots, showing

a wide range of removed electrodes from 30 to 56 in the case of the

CSPwav feature extraction method. Given this strong distribution

and wide range of different numbers of electrodes removed, it is not

possible to conclude on a single best subset or number of electrodes

that would be suitable for all participants. However, the medians

center∼36 electrodes removed.

Dataset two shows a similar behavior to dataset one. Again,

we see an average of 38 electrodes removed from the initial set

of 64, but with a higher standard deviation compared to dataset

one. Classification accuracies are stable and do not differ too

much, with an average classification accuracy of 36%. Looking at

the boxplots in Figure 5A, we can see that although the average

values let us conclude on a rather dense distribution, the wavelet

feature extraction (wav) outperformed the other two methods.

However, given the significance threshold of 14.44% those results

are all significantly above the chance level for the nine words to

be distinguished. The highest classification accuracies in this case

were produced 10 times by the WAV feature extraction method

and in the remaining five times by the CSP method. The boxplots

for the number of removed electrodes in Figure 5B show an even

clearer picture of the broad distribution of different numbers than

in dataset one. There is no clear evidence on a certain number to

remove to receive the best classification results. In this case, even

the median value differs significantly between the different feature

extraction methods, and we cannot determine a single best subset

or optimal number of electrodes. Distinguishing between feature

extraction methods, we can see a preference for the Wav method

to remove more electrodes, while the CSP-based setups appear to

remove less.

In dataset three, we can again observe similar figures for

the average values in Table 4. Average classification accuracies

cluster closely at ∼39% and exhibit a low standard deviation. In

the boxplot in Figure 5A, we can this time confirm the average

results from the table, as the classification accuracies do not differ

significantly, and apart from a few outliers for the wavelet feature

extraction method (wav), the accuracies appear to concentrate

around the average value of 39%. The highest classification

accuracies were achieved six times by the CSPmethod, five times by

the CSPwav, and four times by the wav feature extraction method.

Examining the number of electrodes removed, we once again

observe an average of 38. However, the boxplot also reveals a wide

distribution of the numbers among the various subjects, with no

clear evidence of a specific number that might be suitable for all

participants. Similar to Dataset 2, we can ascertain a preference

for wave feature extraction using fewer electrodes compared to

CSP-based methods.

This impression is confirmed by the black boxplots on the right

in Figure 5B, which provide an overview of the distribution of the

number of reduced electrodes per feature extraction method for

the data from all three datasets. We can observe a tendency for the

wavelet transform (wav) to reduce the number of electrodes more

than the other two feature extraction methods. Although there

appears to be a wide range, with some outliers, the interquartile

range of the different methods indicates that the CSP and CSPwav

feature extraction methods tend to use more electrodes than

the wavelet transforms. Furthermore, we can observe that the

top sets of the wavelet transform for all the participants in all

datasets lie above 30 removed electrodes, which means that for

this feature extraction method, we could have achieved the top

set configurations with only 34 of the initial 64 electrodes. This

represents a significant saving of electrodes and therefore effort in

terms of setup times for imagined speech experiments. Although

the CSP-based feature extraction methods appear to prefer more

electrodes to achieve their top sets, the first quartile for both

implementations ends up at 30 electrodes removed. This means

that for 75% of the participants, we would have achieved the

top results by reducing 30 electrodes, even for CSP-based feature

extraction methods. Taking the numbers for all three methods

together, we can include 83% of the top sets overall and therefore

conclude that in our study, with three different datasets, we could

have achieved the same results with roughly half the number

of electrodes.

3.3 Identifying key electrode positions

To determine the relevant electrode positions in the defined

top sets, we counted the occurrences of each individual electrode

within those sets. The resulting values were calculated based

on the number of times the algorithm selected the specific

electrode in the classification process within the top set for all

participants. We decided not only to examine all the top sets

combined but also to cluster the sets according to electrode

occurrence and gain an impression of possible hotspots in

sets with a higher or lower overall number of electrodes. We

therefore applied k-means clustering on the top sets of all

participants and within the top sets of the three different feature

extraction methods. The number of clusters for each set was

determined by plotting the sum of squared errors (SSE) over

the first 10 clusters and identifying the elbow point, which was

found to be at three, resulting in three clusters for each set

of electrodes.

The results of the clustering are shown in Figures 6A–D. For

each of the plots, we can clearly see clusters for low, medium,

and high numbers of electrodes removed. Methods, including the

wavelet transform (wav andCSPwav), appear to create clusters∼30,

40, and 50 electrodes, while the pure CSP appears to be separable

into clusters at 25, 35, and 45, once more indicating the need

for more electrodes in the classification process with those feature

extraction methods.
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TABLE 2 Top sets as determined by our fuzzy inference system for each participant and each feature extraction method in dataset one.

Subject CSP CSPwav wav Acc avg Elec avg

1 (0.44, 47) (0.54, 37) (0.60, 37) 0.53± 0.08 40± 6

2 (0.42, 35) (0.48, 48) (0.50, 53) 0.47± 0.04 45± 9

3 (0.46, 32) (0.48, 49) (0.60, 33) 0.51± 0.08 38± 10

4 (0.56, 41) (0.52, 33) (0.58, 40) 0.55± 0.03 38± 4

5 (0.52, 40) (0.52, 34) (0.62, 36) 0.55± 0.05 37± 3

6 (0.48, 29) (0.48, 33) (0.54, 34) 0.50± 0.03 32± 3

7 (0.50, 31) (0.52, 36) (0.60, 34) 0.54± 0.05 34± 3

8 (0.42, 37) (0.48, 30) (0.44, 37) 0.45± 0.03 35± 4

9 (0.56, 38) (0.62, 32) (0.50, 61) 0.56± 0.06 47± 15

10 (0.44, 34) (0.48, 38) (0.58, 35) 0.50± 0.07 36± 2

11 (0.50, 35) (0.52, 56) (0.58, 44) 0.53± 0.04 45± 11

12 (0.48, 32) (0.52, 46) (0.44, 42) 0.48± 0.04 40± 7

13 (0.42, 35) (0.48, 48) (0.50, 53) 0.47± 0.04 45± 9

14 (0.50, 30) (0.54, 30) (0.54, 35) 0.53± 0.02 3± 3

15 (0.48, 38) (0.50, 30) (0.54, 32) 0.51± 0.03 33± 4

Acc avg 0.48 ± 0.05 0.51 ± 0.04 0.54 ± 0.06 0.51 ± 0.05 -

Elec avg 36 ± 5 39 ± 8 40 ± 9 - 38 ± 7

The number in brackets on the left represents the classification accuracy, and the number on the right represents the number of electrodes removed from the original set of 64, which led to this

accuracy. Bold values highlight the average accuracy and average number of electrodes removed for each method.

TABLE 3 Top sets as determined by our fuzzy inference system for each participant and each feature extraction method in dataset two.

Subject CSP CSPwav wav Acc avg Elec avg

1 (0.37, 32) (0.30, 43) (0.40, 55) 0.36± 0.05 43± 12

2 (0.38, 21) (0.27, 47) (0.36, 50) 0.34± 0.06 39± 16

3 (0.36, 32) (0.36, 29) (0.41, 30) 0.38± 0.03 30± 2

4 (0.43, 25) (0.33, 33) (0.33, 33) 0.37± 0.06 30± 5

5 (0.33, 23) (0.29, 35) (0.37, 32) 0.33± 0.04 30± 6

6 (0.38, 26) (0.36, 62) (0.45, 55) 0.40± 0.05 48± 19

7 (0.36, 25) (0.31, 29) (0.38, 58) 0.36± 0.03 37± 18

8 (0.33, 31) (0.30, 27) (0.40, 34) 0.35± 0.05 31± 4

9 (0.31, 45) (0.29, 42) (0.47, 56) 0.36± 0.10 48± 7

10 (0.36, 29) (0.31, 28) (0.34, 55) 0.34± 0.02 38± 15

11 (0.37, 23) (0.31, 59) (0.40, 41) 0.37± 0.04 41± 18

12 (0.34, 32) (0.29, 36) (0.33, 58) 0.32± 0.03 42± 14

13 (0.37, 28) (0.29, 32) (0.45, 44) 0.38± 0.08 35± 8

14 (0.33, 28) (0.30, 26) (0.40, 43) 0.35± 0.05 32± 9

15 (0.37, 32) (0.27, 27) (0.34, 57) 0.33± 0.05 39± 16

Acc avg 0.36 ± 0.04 0.31 ± 0.03 0.39 ± 0.04 0.36 ± 0.04 -

Elec avg 29 ± 6 37 ± 11 47 ± 11 - 38 ± 12

The number in brackets on the left represents the classification accuracy, and the number on the right represents the number of electrodes removed from the original set of 64, which led to this

accuracy. Bold values highlight the average accuracy and average number of electrodes removed for each method.
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TABLE 4 Top sets identified by our fuzzy inference system for each participant and each feature extraction method in dataset three.

Subject CSP CSPwav wav Acc avg Elec avg

1 (0.41, 34) (0.42, 41) (0.38, 33) 0.41± 0.02 36± 4

2 (0.36, 33) (0.40, 31) (0.38, 35) 0.38± 0.02 33± 2

3 (0.40, 57) (0.42, 31) (0.38, 48) 0.40± 0.02 45± 13

4 (0.37, 32) (0.36, 35) (0.36, 41) 0.37± 0.01 36± 5

5 (0.41, 31) (0.37, 28) (0.40, 33) 0.40± 0.02 31± 3

6 (0.38, 33) (0.38, 42) (0.40, 43) 0.39± 0.01 39± 6

7 (0.36, 34) (0.40, 42) (0.38, 41) 0.38± 0.02 39± 4

8 (0.38, 34) (0.37, 29) (0.33, 30) 0.37± 0.03 31± 3

9 (0.37, 43) (0.37, 53) (0.40, 30) 0.38± 0.01 42± 12

10 (0.40, 31) (0.36, 35) (0.40, 44) 0.39± 0.02 37± 7

11 (0.40, 44) (0.38, 48) (0.37, 53) 0.39± 0.01 48± 5

12 (0.43, 34) (0.40, 42) (0.41, 52) 0.42± 0.02 43± 9

13 (0.41, 46) (0.36, 30) (0.42, 36) 0.40± 0.03 37± 8

14 (0.40, 30) (0.41, 33) (0.40, 52) 0.40± 0.01 38± 12

15 (0.37, 30) (0.37, 33) (0.40, 35) 0.38± 0.01 33± 3

Acc avg 0.39 ± 0.02 0.38 ± 0.02 0.39 ± 0.02 0.39 ± 0.02 -

Elec avg 36 ± 8 37 ± 7 40 ± 8 - 38 ± 8

The number in brackets on the left represents the classification accuracy. In contrast, the number on the right represents the number of electrodes removed from the original set of 64, leading

to this accuracy. Bold values highlight the average accuracy and average number of electrodes removed for each method.

A clear conclusion on the relevant positions of electrodes could

not, however, be drawn. For example, we have included the results

for the electrode positions in the top sets of all datasets, separated by

the feature extraction methods, in Figure 7. Each electrode position

is visualized at its position on the head, colored according to the

percentage of occurrence in the top sets as given in the legend on

the right. We can observe a rather homogeneous distribution for

all three feature extraction methods, which does not allow a clear

conclusion on a certain brain region being dominantly involved in

the classification process.

One could conclude that the occipital region plays a more

dominant role in the case of the discrete wavelet transform;

however, none of them passed the 80% threshold, and the

remaining electrodes are spread rather homogeneously. This

homogeneous distribution is further represented in the results

for the different datasets shown in Figure 8, although one could

conclude on a more dominant role of the right hemisphere

of the brain for dataset 1, with increased activity around the

parietal region.

Furthermore, these findings align with our classification

results based on specific subsets representing functional areas

of the cortex related to speech production. Table 5 shows the

average results for these subsets, namely, all electrodes of the left

hemisphere (Left) and electrodes targeting Broca and Wernicke

areas (B & W), in comparison to the average results of our

Gray Wolf Optimization algorithm. For the sake of completeness,

we furthermore included all electrodes of the right hemisphere

as a subset for comparison. The numbers for the specific

subsets represent the overall best value from the three different

feature extraction methods used. The results for the GWO on

the left are presented in detail for all three feature extraction

methods, facilitating a comparison of the values with the highest

and lowest performance of the implementation. Within this

table, the results clearly show that the GWO implementation

outperformed the predefined subsets of electrodes from the

left and right hemispheres as well as the Broca-Wernicke area

with a difference in average classification accuracies of 20% for

dataset one, 18% for dataset two, and 11% for dataset three.

This was not only the case for the average values but also for

all participants and individual accuracies, as shown in Table 6,

which clearly supports the results that these electrode positions

in the subsets are widely distributed across the cortex. This

hypothesis is further supported by the fact that classification on

the electrodes of the left and right hemispheres alone yielded equal

average classification results for all datasets, indicating that both

hemispheres contributed equally to the classification process on

average. Thus, we conclude once more that the position of the

electrodes is highly subject-specific and cannot be generalized to

apply in a cross-subject condition.

4 Discussion

4.1 Evaluation of electrode reduction
methods

In our attempt to find the best-performing method for

electrode reduction in Speech Imagery BCIs, we can clearly state
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FIGURE 5

Boxplots of (A) classification accuracies and (B) the number of electrodes removed for each of the three datasets (D1, D2, and D3) and feature

extraction methods. The black boxes on the right show the results for all datasets combined (All).

FIGURE 6

Histogram of the removed electrodes and the resulting 3 clusters for all datasets and the (A) CSP, (B), CSPwav, (C) wav and (D) all feature extraction

methods.

that the GWO algorithm outperformed the other implemented

methods. A certain dominance of this algorithm was expected,

as it evaluates the contribution of each electrode to the overall

classification by calculating the accuracy for every subset after

removing one electrode. Thus, the method is based on brute

force and examines the data set down to the smallest detail,

which makes it computationally intensive, but on the other hand,

very precise. Furthermore, it showed the expected shape of the

curve in Figure 3 for classification accuracy as a function of

the number of electrodes removed. One would expect an initial

rise in accuracy, as not all electrodes contribute equally well

to the classification process, and some may be corrupted by

noise or contain information irrelevant to the imagined speech

production. After a certain number of electrodes were removed,
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FIGURE 7

Electrode positions for the top sets of all three datasets and the three di�erent feature extraction methods in percent. Left: CSP, Middle: CSPwav and

Right: wav.

FIGURE 8

Electrode positions for the top sets separated by the three datasets in percent. Left: Dataset 1, Middle: Dataset 2 and Right: Dataset 3.

TABLE 5 Average classification accuracies and remaining electrodes for

the top sets of the GWO, categorized by feature extraction method (CSP,

CSPwav, wav), electrodes of Broca and Wernicke (B & W) and the left and

right hemisphere.

D1 CSP CSPwav wav B & W Left Right

Acc avg 0.48 0.51 0.54 0.31 0.34 0.34

Elec avg 28 25 24 18 35 35

D2 CSP CSPwav wav B & W Left Right

Acc avg 0.36 0.31 0.39 0.19 0.21 0.21

Elec avg 35 27 17 18 35 35

D3 CSP CSPwav wav B & W Left Right

Acc avg 0.39 0.38 0.39 0.27 0.28 0.28

Elec avg 28 27 24 18 35 35

the data no longer contained sufficient information, and the

classification accuracy dropped again, as observed in Figure 3

at ∼45 electrodes removed. This effect is surely influenced by

various factors, such as artifact cleaning and filtering methods.

Given a more sophisticated cleaning of the data, including ICA

for artifact removal and more complex spatial filtering, this

effect might vanish. In the case of our analysis, no ICA was

applied because it was already used for electrode reduction in

the later step of the analysis, which might have contributed to

this characteristic shape, especially for the averaged results of all

feature extraction methods and classifiers in Figure 3. However,

compared to GWO, no other algorithms showed this behavior

and remained in the lower classification accuracy range, oscillating

around a value of ∼25% classification accuracy without a clear

indication of the peak or best setup. One could conclude on

a peak for CSP and ICA at ∼27% and 45 electrodes removed.

In comparison to the clear difference from the GWO, this can,

however, be neglected. Since this expected behavior was not

present in the ICA, CSP and oCSP electrode reduction methods,

and the significantly worse classification accuracy compared to

the GWO algorithm, our clear recommendation for electrode

reduction in imagined speech BCIs and the given setup is

the GWOmethod.

Regarding the classifier, XGB clearly outperformed the other

methods, especially when combined with the GWO electrode

reduction method. In this case, all of the best-performing

configurations used this classifier. As mentioned previously, this

method calculates the accuracy for each subset and therefore

provides a perfect basis for evaluating the classifier. But also

for the other electrode reduction method, we can see a clear

preference toward the XGB with its overall 75% appearance

in the top sets without any real competitor among the

other three classifiers. In this circumstance and the fact that

XGB scored all the top sets in the GWO condition, our

recommendation is with XGB for electrode reduction in speech

imagery BCIs.
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TABLE 6 Best top sets for each individual compared to the Broca and Wernicke as well as left and right hemisphere configuration of electrodes.

Dataset 1 Dataset 2 Dataset 3

Nr Param GWO B & W Left Right GWO B & W Left Right GWO B & W Right Left

1 Acc 0.60 0.36 0.44 0.38 0.40 0.24 0.22 0.17 0.42 0.26 0.28 0.25

Elec 37 18 35 35 55 18 35 35 41 18 35 35

Feat wav CSPw wav wav wav CSPw wav CSP CSPw wav wav CSPw

2 Acc 0.50 0.26 0.32 0.28 0.38 0.22 0.18 0.22 0.40 0.29 0.23 0.36

Elec 53 18 35 35 21 18 35 35 31 18 35 35

Feat wav wav wav wav CSP wav CSP wav CSPw CSP wav wav

3 Acc 0.60 0.3 0.32 0.40 0.41 0.18 0.21 0.19 0.42 0.24 0.29 0.30

Elec 33 18 35 35 30 18 35 35 31 18 35 35

Feat wav wav wav wav wav CSPw wav CSP CSPw wav CSP CSPw

4 Acc 0.58 0.32 0.38 0.42 0.43 0.24 0.22 0.17 0.37 0.31 0.25 0.30

Elec 40 18 35 35 25 18 35 35 32 18 35 35

Feat wav CSP wav wav CSP CSP wav CSP CSP CSP CSP CSPw

5 Acc 0.62 0.38 0.28 0.30 0.37 0.15 0.22 0.19 0.41 0.25 0.29 0.26

Elec 36 18 35 35 32 18 35 35 31 18 35 35

Feat wav CSPw wav CSPw wav CSPw CSPw CSP CSP CSPw CSPw CSPw

6 Acc 0.54 0.3 0.32 0.34 0.45 0.18 0.24 0.24 0.40 0.2 0.29 0.24

Elec 34 18 35 35 55 18 35 35 43 18 35 35

Feat wav wav wav wav wav CSP CSP wav wav CSP CSP wav

7 Acc 0.60 0.34 0.34 0.40 0.38 0.18 0.17 0.29 0.40 0.31 0.28 0.26

Elec 34 18 35 35 58 18 35 35 42 18 35 35

Feat wav CSPw CSPw wav wav wav wav wav CSPw CSPw CSP wav

8 Acc 0.48 0.36 0.34 0.24 0.40 0.19 0.24 0.21 0.38 0.31 0.24 0.29

Elec 30 18 35 35 34 18 35 35 34 18 35 35

Feat CSPw CSPw wav CSP wav wav wav CSP CSP CSP CSPw CSP

9 Acc 0.62 0.36 0.4 0.34 0.47 0.21 0.17 0.18 0.40 0.24 0.28 0.25

Elec 32 18 35 35 56 18 35 35 30 18 35 35

Feat CSPw wav CSPw CSPw wav CSP wav wav wav CSP wav CSP

10 Acc 0.58 0.28 0.42 0.42 0.36 0.18 0.19 0.25 0.40 0.25 0.25 0.26

Elec 35 18 35 35 29 18 35 35 31 18 35 35

Feat wav CSP wav wav CSP CSP wav wav CSP wav wav CSPw

11 Acc 0.58 0.28 0.3 0.38 0.40 0.19 0.19 0.17 0.40 0.28 0.29 0.23

Elec 44 18 35 35 41 18 35 35 44 18 35 35

Feat wav CSPw wav wav wav CSP CSP CSP CSP CSP CSP CSPw

12 Acc 0.52 0.24 0.36 0.30 0.34 0.21 0.22 0.21 0.43 0.32 0.29 0.26

Elec 46 18 35 35 32 18 35 35 34 18 35 35

Feat CSPw wav CSP CSPw CSP CSP wav wav CSP CSPw CSPw CSPw

13 Acc 0.50 0.26 0.32 0.28 0.45 0.18 0.19 0.26 0.42 0.31 0.29 0.31

Elec 53 18 35 35 44 18 35 35 36 18 35 35

Feat wav wav wav wav wav wav wav wav wav wav wav CSP

14 Acc 0.54 0.3 0.34 0.36 0.40 0.17 0.21 0.22 0.41 0.23 0.3 0.34

Elec 30 18 35 35 43 18 35 35 33 18 35 35

(Continued)
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TABLE 6 (Continued)

Dataset 1 Dataset 2 Dataset 3

Nr Param GWO B & W Left Right GWO B & W Left Right GWO B & W Right Left

Feat CSPw CSP CSP CSPw wav CSP CSPw CSP CSPw CSP wav CSP

15 Acc 0.54 0.36 0.28 0.30 0.37 0.19 0.25 0.18 0.40 0.26 0.28 0.25

Elec 32 18 35 35 32 18 35 35 35 18 35 35

Feat wav wav wav wav CSP wav wav wav wav wav wav wav

Avg Acc 0.56 0.31 0.34 0.34 0.40 0.19 0.21 0.21 0.40 0.27 0.28 0.28

Elec 38 18 35 35 wav 18 35 35 35 18 35 35

Feat wav wav wav wav wav CSP CSP CSP wav CSP wav CSPw

The results on feature extraction methods appear to support

our findings from a previous study (Rekrut et al., 2020, 2021)

as they are highly individual. For the GWO, one could claim

a preference toward the wavelet decomposition, closely followed

by the CSP algorithm and the CSPwav. Considering the other

electrode reduction methods, however, there is no clear evidence

for a preference for a specific feature extraction method. The

occurrence in the top sets is rather balanced, and it appears to

depend highly on the individual. To preserve these individual

preferences, we recommend evaluating different methods on

the individual’s data. However, we would limit the selection in

our study to CSP, DWT (wav), and the combination of the

two, CSPwav.

4.2 Optimal electrode count and subset
selection

The results presented in the previous section showed that

it was not possible to determine one specific subset or number

of electrodes that can be applied as a standard setup for

EEG-based imagined speech BCIs. Although, on average, 38

electrodes were removed in the three datasets, we observe a

strong variation among subjects with respect to the number of

electrodes. Upon examining the three feature extraction methods,

it can be concluded that feature extraction using the Discrete

Wavelet Transform requires fewer electrodes compared to the

CSP-based methods, which, on average, appear to include more

electrodes in the top sets for classification. However, a concrete

number could not be determined, as the results vary and are

highly subject-specific. What can be concluded concerning the

number of electrodes is that the 64-channel setup as used in

all three studies appear to be oversized. Figure 5A illustrates

that we could clearly reduce the number of electrodes for

each participant by 20 without excluding any of the top sets

determined by our fuzzy inference system. Furthermore, this

was the case in all three different imagined speech datasets

evaluated in our study. Increasing this number to 30 would still

include all top sets of the wavelet feature extraction method and

75% of the two CSP-based methods, which shows that EEG-

based imagined speech BCIs appear to work perfectly fine with

smaller electrode setups. Our recommendation in this case is

to limit further studies on imagined speech to setups with 32

electrodes, as they appear to have worked reasonably well for the

three investigated datasets in our study. Starting with a higher

number of electrodes and systematically reducing it to the best-

performing subset of the individual appears necessary, as evidenced

by the high variation in the remaining results above 30 electrodes

removed. In the individual case, the number could be reduced

even further.

4.3 Identifying key electrode positions

Similar to the results regarding the electrode count, the findings

on specific electrode positions did not yield a clear picture either.

Although the different numbers of electrodes for the individual top

sets could be clearly divided into separate clusters for low, medium,

and high numbers of electrodes, these clusters did not reveal

specific positions on the cortex that could be seen as significantly

contributing to the classification process. We expected to see a

dominant role for speech-related brain areas, such as Brocas or

Wernickes. However, not even in those areas could we identify an

increase in the number of electrodes in the top sets. Furthermore,

speech-related processes are usually handled by the left hemisphere

of the brain in 90% of right-handed and in ∼60–70% of left-

handed persons (Chakravarthy, 2018). However, our classification

results on subsets of exactly those left-lateralized brain regions

were outperformed by our custom-selected electrode positions by

the Gray Wolf Optimization algorithm, with differences of up

to 20% on average for dataset one. Investigating the different

hemispheres and their occurrence in the top set, we observed a

minimal dominance of the right hemisphere, which was small

enough to be neglected. The handedness of participants in dataset

1 was not available in the notes of the BCI competition. For

the two other datasets, all participants were right-handed, which

should have led to a dominant presence of electrodes from the

left hemisphere.

One possible explanation is that the process of producing

imagined speech and the resulting brain activity are widely

distributed across the cortex rather than being concentrated

in a specific area. The average classification accuracies

achieved using the separate subsets of electrodes from the

right and left hemispheres support this hypothesis, as they

were, on average, identical. This would also clarify the
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individual results regarding preferences for feature extraction

methods and the number of electrodes, which proved to be

highly subject-specific.

4.4 Impact of dataset selection

Regarding the dataset selection for our evaluation, we

outlined the differences between them in the methodology

section. We demonstrated that they are as similar as possible,

considering that different research groups recorded them. All

three studies employed the same headset, electrode layout,

recording configuration, and imagined speech paradigm. The

setups differed in the language of the words, being Korean for

Dataset 1, German for Dataset 2, and English for Dataset 3,

which was notable in this case for non-native English speakers.

While datasets 1 and 3 used five words for silent repetitions,

dataset 2 used 9, which has an impact on the chance level;

however, given the reduced number of electrodes, we did not

observe a difference in our results. Regarding the imagined speech

paradigm, datasets 1 and 2 employed short-block repetitions

of the word, which required participants to perform several

cued repetitions of the same word in a row, four times for

dataset 1 and five times for dataset 2, using a standard training

procedure and presenting words on a screen. In contrast, the

recording of Dataset 3 involved only single-word repetitions

within a specific task, namely, moving a robot through a maze.

Taking into account the equal average number of electrodes

removed from the three datasets and the same wide variation and

distribution of electrodes as shown in the boxplots in Figure 5B,

we do not see any evidence for differences between the sets,

which would make them not comparable. However, upon closer

examination of the average classification accuracies, it remains

suspicious that the 5-class dataset recorded with random stimulus

presentation (dataset 3) performed worse on average than the 5-

class dataset using short-block presentation (dataset 1). The fact

that dataset 2, which includes nine classes, was also recorded

with short blocks and produced equal results as dataset 3, with

only five classes, raises doubts about the short-block stimulus

presentation paradigm.

We can once again observe a clear preference for the short-

block datasets toward Discrete Wavelet Transformation, while

dataset 2, featuring random stimulus presentation, displayed a

balanced distribution between feature extraction methods with

no evident preference. Our conclusion in this case is that the

blocks may induce detectable patterns in the EEG data, leading

to label leakage and enhancing the classification process, thereby

improving classification results. These effects may be weaker

compared to a complete blockwise presentation and probably

do not manifest in all participants; however, they are observable

and further supported by the broad distribution of results and

larger deviations, particularly when employing the wav feature

extraction method. However, our findings are preliminary and

require further investigation. We can envision a similar setup

to Porbadnigk et al. (2009) to shed light on this issue in

the future.

4.5 Limitations and future studies

The primary contribution and assertion of this work, that

imagined speech EEG recordings can be effectively conducted

with half the number of electrodes, is not without limitations. As

we were unable to identify clear patterns in the reduced sets of

electrodes, we cannot conclude which specific positions or areas

are best suited for EEG-based imagined speech detection. All our

datasets were recorded with 64 electrodes positioned according to

the standard 10–20 system, which provides for a widely distributed,

homogeneous distribution of the electrodes across the cortex.

By systematically reducing the number of electrodes based on

classification accuracy and occurrence in top sets, independent

of their specific location, we lose the original homogeneous

distribution of the 10–20 system and proceed with an individual

distribution of electrodes. Our results, therefore, still depend on

the layout of a 64-channel setup based on the 10–20 system,

albeit with a reduced number of electrodes in this specific layout.

Consequently, the results cannot be directly transferred to a 32-

channel standard 10–20 layout but must be determined based on

an initial measurement with the 64-channel headset as mentioned

previously. The overall homogeneous distributions observed in the

electrode plots could suggest that a standard 10–20 setup with 32

electrodes might, on average, produce similar results. However, this

needs to be confirmed in a direct comparison of 64- and 32-channel

measurements of imagined speech for the same subject.

As one of our conclusions is that the analysis should be tailored

to the individual, we need to consider that the data evaluated in

our experiments has been recorded from individual participants

on single days. A closer examination of the individual’s data over

a specific period could help further investigate the widespread

patterns of electrode positions and whether they remain consistent

within the data of the same subject over time.

Finally, the primary focus of this study was to reduce

the number of electrodes, with classification accuracy as the

performance metric. Consequently, the methods were tailored

toward electrode reduction rather than source localization. Our

analysis followed a systematic stepwise reduction based on

classification accuracy, regardless of the overall contribution of each

electrode or the specific areas to which it belongs. A more detailed

examination of source localization that is independent of channel

reduction may, therefore, represent the next step for future studies

aimed at reducing electrodes in EEG-based imagined speech BCIs.

5 Conclusion

In this study, we systematically investigated electrode reduction

for EEG-based imagined speech BCIs across three datasets, each

consisting of 15 participants. We evaluated different methods for

electrode reduction, identifying Gray Wolf Optimization (GWO)

as the most effective. Additionally, our results highlight the

strong performance of Extreme Gradient Boosting (XGB) as a

classifier for imagined speech EEG data, especially when combined

with Discrete Wavelet Transform (DWT) for feature extraction.

Building on these insights, we investigated the optimal subsets

of electrodes and their spatial distribution across subjects. A

fuzzy inference system identified the best-performing electrode
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sets based on classification accuracy in relation to the number

of electrodes. While no single universal set could be determined,

which confirms that the optimal number of electrodes is highly

subject-specific, we found that in 83% of cases, 30 electrodes

could be removed without significantly affecting classification

performance. This suggests that commonly used high-density EEG

setups with 64+ electrodes are likely oversized and that comparable

accuracy can be achieved with approximately 32 electrodes.

However, as no distinct electrode positions consistently contributed

to classification across subjects, and a homogeneous distribution

was observed instead, it remains unclear whether a standard

32-channel EEG following the 10-20 system would produce

the same results. Therefore, we recommend beginning with a

high-density electrode configuration and optimizing the selection

individually. For both research and real-world applications,

these findings enable a significant reduction in the number

of electrodes by nearly half, improving practicality, reducing

setup time, and lowering costs. Future studies should validate

these results by comparing high-resolution EEG recordings with

individually optimized reduced configurations. Additionally, real-

time experiments that dynamically assess electrode contributions

could provide a more efficient and adaptive approach to

electrode selection.
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