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Neuroadaptive technologies are a type of passive Brain-computer

interface (pBCI) that aim to incorporate implicit user-state information

into human-machine interactions by monitoring neurophysiological signals.

Evaluating machine learning and signal processing approaches represents a

core aspect of research into neuroadaptive technologies. These evaluations

are often conducted under controlled laboratory settings and o	ine, where

exhaustive analyses are possible. However, the manner in which classifiers are

evaluated o	ine has been shown to impact reported accuracy levels, possibly

biasing conclusions. In the current study, we investigated one of these sources

of bias, the choice of cross-validation scheme, which is often not reported

in su�cient detail. Across three independent electroencephalography (EEG)

n-back datasets and 74 participants, we show how metrics and conclusions

based on the same data can diverge with di�erent cross-validation choices.

A comparison of cross-validation schemes in which train and test subset

boundaries either respect the block-structure of the data collection or not,

illustrated how the relative performance of classifiers varies significantly with the

evaluation method used. By computing bootstrapped 95% confidence intervals

of di�erences across datasets, we showed that classification accuracies of

Riemannian minimum distance (RMDM) classifiers may di�er by up to 12.7%

while those of a Filter Bank Common Spatial Pattern (FBCSP) based linear

discriminant analysis (LDA) may di�er by up to 30.4%. These di�erences across

cross-validation implementations may impact the conclusions presented in

research papers, which can complicate e�orts to foster reproducibility. Our

results exemplify why detailed reporting on data splitting procedures should

become common practice.

KEYWORDS

passive Brain-Computer Interfaces, pBCI, electroencephalography, EEG, cross-
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1 Introduction

Neuroadaptive and passive Brain-Computer Interfaces (pBCIs) aim to improve

human-machine interactions by providing the machine with neurophysiological

information about the user. Using this information to estimate cognitive states like

high mental workload and adapting the ongoing task accordingly could facilitate the

development of personalized human-machine interactions (Fairclough, 2022; Zander and

Kothe, 2011). A major challenge for this nascent type of technology is the development
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of neurophysiological-based classifiers that generalize across

recording sessions, tasks, and people (Krusienski et al., 2011;

Lotte et al., 2018; Saha and Baumert, 2020). These challenges

are primarily driven by the non-linearities and non-stationarities

inherent in electroencephalography (EEG), electrocorticography

(EcoG), or magnetoencephalography (MEG) data, which are highly

subject- and context-dependent (Krauledat, 2008; Mayer-Kress,

1998). However, these non-stationarities may also inflate pBCI

model evaluation metrics, but this is sometimes overlooked in

studies. Such is the case when model evaluation procedures fail to

account for temporal dependencies between data used for training

and testing classification models (Brouwer et al., 2015; Lemm et al.,

2011). Positively biased evaluation metrics that essentially inform

future research (such as choices regarding preprocessing, feature

selection, and classification techniques) counteract the desirable

goal of increasing reproducibility within pBCI research.

In the field of mental state classification, a considerable portion

of research focuses on the development of new methodologies

and comparative analyses of existing approaches (Demirezen et al.,

2024). While it would be ideal to evaluate these methods in applied

settings (Aricò et al., 2018; Lotte et al., 2018), in practice, achieving

such evaluations poses considerable challenges (Brouwer et al.,

2015). As a result, most model evaluations are conducted offline,

typically through cross-validation procedures (Lemm et al., 2011).

Cross-validation serves as a key technique in this context, as it

maximizes the use of available data by repeatedly partitioning data

into training and testing subsets to compute evaluation metrics.

The choice of cross-validation method is crucial, as it directly

impacts the bias and variance of the evaluation metrics. Reducing

bias typically requires larger training splits, which enhance model

accuracy, whereas minimizing variance often necessitates larger

testing splits, offering more robust estimates of evaluation metrics

across iterations (Lemm et al., 2011).

Despite the ubiquity of cross-validation in the field, its

implementation often lacks transparency (Li et al., 2020). In a

review conducted by Demirezen et al. (2024), 93% of studies

reported the cross-validation method used, while only 25%

provided specific details regarding their data-splitting procedures.

This lack of clarity complicates efforts to improve reproducibility—

an issue highlighted as critical by researchers in the field (Gramann

et al., 2024; Putze et al., 2022). Insufficient documentation of

cross-validation details can hinder the assessment of bias-variance

trade-offs and, in some cases, obfuscate issues regarding temporal

dependencies between train and test splits (Li et al., 2020). In

some cases, classification may actually be driven by temporal

dependencies rather than class differences (Brouwer et al., 2015;

Ivucic et al., 2024; Lemm et al., 2011; Li et al., 2020; Lotte et al.,

2018; Riascos et al., 2024; Varoquaux et al., 2017; White and Power,

2023).

Temporal dependencies in neuroimaging data are likely to

arise from various sources and exist across multiple timescales.

Not only are they inherent to neural time-series (Bullmore et al.,

2001; Linkenkaer-Hansen et al., 2001), but they may also be

introduced due to experimental design choices. The recording

hardware itself may be one source of such dependencies, such

as when there are minor shifts or movements in the positions

of EEG sensors. Other dependencies may stem from cognitive

or behavioral factors. For instance, participants who start the

session feeling nervous might gradually relax as they adapt to

the experimental conditions. Increasing drowsiness may be visible

in the theta and alpha (Strijkstra et al., 2003) as well as beta

band of the EEG power spectrum (Aeschbach et al., 1997).

Temporal dependencies may also present in more complex forms,

as increasing drowsiness also affects theta- and alpha-specific

connectivity metrics as well as the occurrence and prominence

of microstates (Comsa et al., 2019). Initial nervousness, on the

other hand, is often visible in heart rate dynamics (Lampert,

2015), which may affect the aperiodic activity (1/f slope) of

the EEG power spectrum (Schmidt et al., 2024). Effects of

bodily needs (i.e., hunger, thirst, dry eyes, caffeine/nicotine

craving, etc.) may also exert influence after a certain point

and affect EEG dynamics in unsuspecting ways. For example,

when participants experience eye strain, they may start squinting

their eyes, leading to power increases in higher frequency bands

caused by the activations of facial muscles. In cases where

data is split irrespective of the underlying block structure, the

combination of a myriad of ongoing processes gives rise to

multivariate temporal dependencies (Figure 1), which likely offer

more information for classification than the class differences

themselves (Ivucic et al., 2024; Li et al., 2020; Varoquaux

et al., 2017; White and Power, 2023). The ways in which

such temporal dependencies bias model evaluation metrics likely

vary across cross-validation implementations, feature types, and

classification algorithms, ultimately rendering conclusions drawn

from underspecified cross-validation schemes unreliable sources

of information.

The following section outlines previous work that explored

the impact of different cross-validation schemes in neuroimaging

research. The paper goes on to lay out what differentiates the

current study from prior efforts.

Varoquaux et al. (2017) showed that leave-one-sample-

out cross-validation schemes can inflate accuracy metrics due

to temporal dependencies, overestimating performance across

different fMRI decoding studies by up to 43% compared to

evaluations on independent test sets. Model evaluation metrics

from Leave-one-sample-out schemes are not only prone to bias

from temporal dependencies but also suffer from high variance,

due to the test set consisting of a single sample (Lemm et al.,

2011; Varoquaux et al., 2017). K-fold cross-validation reduces the

variance of model evaluation metrics by splitting the available

sample data into k subsets, of which k-1 are used for training and

the remaining subset is used to compute the evaluation metrics.

This procedure is repeated k times until each subset was once

used as a test set. However, temporal dependencies may also bias

the results of k-fold cross-validation schemes when the available

data is split into subsets without taking account of the underlying

block/trial structure of the data. Ivucic et al. (2024) demonstrated

that k-fold splits independent of trial structures caused inflated

accuracy estimates in three open access EEG datasets dealing

with auditory attention detection. Another inquiry demonstrated

that deep-learning approaches for image and video classification

based on EEG data fail entirely when stimuli are presented in a

randomized rapid event-related fashion instead of a blocked design

(Li et al., 2020).
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FIGURE 1

Schematic of multivariate temporal dependencies. Three individual processes, which, through their combinations, su�ce to uniquely identify the

individual condition repetitions presented over three blocks.

With respect to pBCIs, one function of this technology is

to differentiate between brain states (or cognitive/mental states),

which may be considered more diffuse targets compared to the

decoding of perceptual information. Manipulations aiming to

induce specific emotional states or states of high mental workload

may add systematic confounds that can bias model metrics (i.e.,

conditions differing in motor requirements; Brouwer et al., 2015).

However, one major difference to domains like percept decoding

or motor BCIs is that conditions tend to be presented in longer

blocks of a single condition rather than short trials that allow for

rapid event-based presentations with randomized condition orders.

Interleaving 1 to 5-s-long trials of different motor conditions

(e.g., left arm vs. right arm) or image conditions (e.g., houses

vs. faces) assures that temporal dependencies are evenly spread

across conditions. In the case of the Multi-Attribute Task Battery

(MATB), a popular workload manipulation paradigm, a recent

review has found duration of single condition presentations to

range from 4–15min (Pontiggia et al., 2024). Another popular

paradigm for manipulating mental workload is the n-back, where

block durations can be as short as 40 s (Shin et al., 2018) or

as long as 10min (Ke et al., 2021). Such long block durations

increase the number of samples that share not just condition-

specific dynamics but also the same temporal dependencies.

Designing experiments with long blocks also reduces the number

of repetitions of single conditions, which could be presented

in a randomized order, in a standard-length recording session.

Together, this range of factors complicates the evaluation of pBCIs

in offline analyses.

White and Power (2023) focused on mental state classification

and investigated the difference between block-independent k-

fold splits and block-wise splits that assured samples from a

single trial/block did not occur in both train and test subsets.

Using open access EEG datasets manipulating emotional valence,

they showed that k-fold accuracies were systematically higher

than block-wise accuracies. They further showed that randomly

reassigning class labels to half the blocks did not reduce the

accuracy of the k-fold evaluations, concluding that the classifiers

evaluated via k-fold made use of temporal dependencies rather

than class differences. Further, they collected their own data,

varying the trial durations of single condition repetitions (5,

15, and 60 s), thereby manipulating the number of samples

sharing both class-labels and temporal dependencies. Here again,

they demonstrated that a trial structure independent k-fold

scheme overestimated accuracies, even using the short 15 s block

durations. However, they also argue that their tested classifiers

seemed to overfit on block-specific temporal dependencies when

evaluated using the block-wise cross-validation scheme, leading

to underestimated performance metrics (compared to extracting

a single sample per block in the 5-s condition). While this

study offered insight into how temporal dependencies can bias

pBCI cross-validation results, their results may underestimate

the issue, as their maximum trial length (60 s) was not

reflecting the long block durations usually reported in pBCI

experiments. Furthermore, all their tested classifiers used canonical

band power features. However, the extent to which temporal

dependencies bias cross-validation results may differ between the

type of feature extracted from EEG, especially when additional

dimensionality reduction techniques are applied during the

training phase.

In the current study, we are focusing the inquiry into biased

cross-validation metrics on three separate n-back datasets, as n-

backs often serve as a workload manipulation paradigm that

includes minimal motor-related confounds. We want to expand

on previous works (Ivucic et al., 2024; Varoquaux et al., 2017;

White and Power, 2023) by I exploring multiple classification

pipelines and II adding additional cross-validation schemes. As

cross-validation methods tend to ignore chronological order, they

may underestimate the impact non-stationarities can have on

model metrics (Riascos et al., 2024). Hence, we added a pseudo-

online evaluation method in which only the very first occurrence

of a condition is used for training. Lastly, we also added a

worst-case scenario in which k-fold splits are not carried out on

sequentially ordered data but rather on shuffled samples, which

likely exacerbates the bias (Brouwer et al., 2015; Riascos et al., 2024).
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2 Methods

To assess the impact of various cross-validation schemes on

pBCI evaluation metrics independently of experimental design

decisions, this analysis included three distinct datasets containing

repeated presentations of three n-back conditions. Two were

publicly available (Hinss et al., 2023; Shin et al., 2018) and one

stems from our own previous study (Schroeder et al., 2024). These

datasets differed in several aspects, including the n-back conditions

employed, their presentation order, the intervals between repeated

condition presentations, and the specifics of their EEG montage

configurations. Following a general overview of the individual

datasets, the methods for preprocessing and data selection to

improve comparability are described.

2.1 Dataset descriptions

2.1.1 Shin et al.

This study involved 26 participants completing 0-back, 2-back,

and 3-back conditions. Numbers from 0–9 were used as stimuli,

with targets making up 30% of the 20 trials that were presented

per run. Each trial presented the stimulus for 0.5 s, followed by a

1.5 s fixation cross. Participants were instructed to respond to both

targets and non-targets using a single hand (numpad 7 and 8 keys).

Participants received instructions at the start of each run, but the

authors provided no details about possible training periods before

the data recording.

Conditions were presented in a counterbalanced order in

blocks of 9 with 20 s breaks in-between runs. Three of these blocks

were completed one after another before the experiment continued

with different tasks not relevant to the current inquiry. It is unclear

if participants took breaks between blocks, and if so, how much

time passed between blocks.

EEG was recorded at 1,000Hz with 30 active electrodes

arranged according to the 10–5 system. Electrode TP9 was used as

the online reference and TP8 as the ground. The authors did not

report details about the impedance of the EEG electrodes.

2.1.2 Hinss et al.

This study involved 29 participants completing 0-back, 1-back,

and 2-back conditions. Numbers from 1–9 were used as stimuli,

with targets making up 33% of the 48 trials that were presented

per run. Each trial presented the stimulus for 0.5 s, followed by a

1.5 s fixation cross. Participants were instructed to only respond to

targets using a single hand (spacebar).

Conditions were presented in a blocked format, each block

containing 3 runs of a single condition without any reported

times regarding breaks in-between runs. The blocks were randomly

spread out over a 65–80 min-long recording period containing

other tasks not relevant to the current inquiry, so the exact time

between conditions is unknown. However, a special difference to

the previous datasets is that participants returned twice (1 and 2

weeks after the first session) to repeat the experiment.

EEG was recorded at 500Hz with 63 active electrodes arranged

according to the 10–20 system. One electrode was sacrificed to

record ECG. Electrode FCz was used as the online reference and

Fpz as the ground. Electrode impedance was kept below 25 kOhm

during the experiment.

2.1.3 Schroeder et al.

This study involved 19 participants completing 1-back, 3-back,

and 6-back conditions. A selection of letters (B, F, G, H, K, M, P,

R, S, T, X, Z) was used as stimuli, with targets making up 30% of

the 70 trials that were presented per run. Each trial presented the

stimulus for 0.5 s followed by a 1.5 s question mark. Participants

were instructed to respond to both targets and non-targets using

both hands (Keyboard Z and M keys). Participants received

extensive training (3 runs per condition) on a day prior to the

experiment and practiced once more before recording data (1 run

per condition).

Conditions were presented in blocks of 3, containing all 3

conditions in a randomized order. Exact data for how much time

passed between runs within a block is not clear as participants were

instructed to take self-paced breaks. In-between blocks, participants

completed another task not relevant to the current inquiry, leading

to at least 15min separating the three blocks.

EEG was recorded at 500Hz with 64 active electrodes arranged

according to the 10–20 system. The Iz electrode was sacrificed and

instead used as a peri-ocular EEG channel. Electrode FCz was used

as the online reference and Fpz as the ground. Electrode impedance

was kept below 25 kOhm during the experiment.

2.2 Dealing with the di�erences between
datasets

Differences in the EEG recordings concerned the sampling

frequency, online reference, number of channels used, and, to

a lesser extent, the spacing of the electrodes. In order to make

the EEG data more comparable across datasets, we preprocessed

them to contain the same channel locations, reference electrode,

and frequency content (Figure 2). Pre-processing was carried out

in Matlab (Version: 2023a) and EEGLAB (v2021.1; Delorme and

Makeig, 2004).

For the comparison, all channels in Schroeder et al. and Hinss

et al. not contained in Shin et al. were removed. The only electrodes

contained in Shin et al. that were not recorded in the other

two datasets were AFF4 and AFF5. These are close in space to

AF4 and AF5, which were retained in their stead with Hinss

et al. and Schroeder et al. Since Cz was missing in the first 9

participants of Hinss et al., it was also removed from all three

datasets. FCz was used as the online reference in Schroeder et al.

and was recovered after computing a common average reference.

For the comparison, all data was re-referenced to Pz, as this was

one of only two shared midline electrodes between the datasets.

Additionally, all data was notch filtered at 50Hz (zero-phase,

non-causal, with −6db cutoff frequencies at 49.25 and 50.75),

highpass filtered at 1Hz (zero-phase, non-causal, with−6dB cutoff

frequency at 0.5Hz), and resampled to 128Hz to assure comparable

frequency content across datasets. Lastly, EEGLAB’s clean_rawdata

function (v. 2.9.1) was used to remove channels when their

correlation with neighboring channels was below 0.8 (see Table 1

for details).
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FIGURE 2

Preprocessing steps applied to all datasets. The topologies under the data cleaning step showcase that channel removal was not homogeneous

across experiments, but mostly focused on posterior channels (I: single-day Hinss et al., II: multi-day Hinss et al., III: Shin et al., IV: Schroeder et al.).

TABLE 1 Channels removed per dataset.

Dataset Average #
channels
removed

Maximum #
channels
removed

I. Single-day Hinss et al. 0.86 5

II. Multi-day Hinss et al. 1.69 6

III. Shin et al. 1.19 4

IV. Schroeder et al. 0.79 2

Average number of channels removed across participants and maximum number of channels

removed for a single participant per dataset.

While the datasets listed above all made use of the n-

back task, their n-back implementations likely differed in how

demanding they were. The Schroeder et al. dataset placed the

greatest working memory load on participants by utilizing a 6-

back. However, the impossible nature of the 6-back may have

led to effort withdrawal, rendering the condition less taxing than

the dataset’s 3-back. Both Hinss et al. and Shin et al. presented

a 0-back, which removes the working memory aspect of the

n-back and could be considered psychometrically distinct from

other n-back conditions. For the comparison we decided to follow

previous works described in the introduction and included two

contrast per dataset—the widest difference in workload comparing

the easiest and hardest conditions making for a higher class-

separability contrast (Shin et al.: 0 vs. 3-back; Hinss et al.: 0 vs.

2-back; Schroeder et al.: 1 vs. 6-back) and the smallest difference

in workload which we determined was the hardest and second

hardest conditions making for a lower class-separability contrast

(Shin et al.: 2 vs. 3-back; Hinss et al.: 1 vs. 2-back; Schroeder et al.:

3 vs. 6-back).

Also important for the current inquiry was the order and

spacing with which the n-back conditions were presented. Within

a single session, the Hinss et al. dataset did randomize condition

order, but repetitions of a single condition were grouped together in

a single block. This likely resulted in temporal dependencies being

highly informative to distinguish between conditions. However, the

addition of two further recording days leaves this dataset with the

most spread-out condition repetitions. Shin et al. and Schroeder

et al. both only recorded on a single day but presented three

spaced-out blocks of n-backs containing all three conditions in a

pseudo-randomized order (Figure 3). Shin et al. placed these three

blocks one after another, whereas Schroeder et al. spaced them

out with other tasks in between, leaving at least 15min between

a repetition of a single condition. The blocks themselves were

designed differently in Shin et al. and Schroeder et al. Schroeder

et al.’s blocks contained one 140-s run per condition, whereas

Shin et al. presented each condition three times in smaller 40-s

runs concatenated together in a pseudo-random order, assuring a

single condition was not presented twice in a row. Consequently,

temporal dependencies are likely somewhat less informative for

classification in the Shin et al. data compared to the other

two datasets.

For the comparison, we arranged each participant’s data into

three sets (Figure 3). For Hinss et al., two separate procedures were

adopted. The first only made use of the first recording day (96 s per

condition per set) as an example of the additional bias introduced

by the lack of a randomized and spaced-out presentation order.

The second procedure made use of all three recording days. Each

day was used as a separate set (288 s per condition per set). For

Shin et al., runs of single condition (40 s each) within a block

were sliced out of the continuous data and merged into a single

file (120 s per condition per set). For Schroeder et al., the three

condition repetitions were already spread out over the course of

the experiment (140 s per condition per set). Samples within a

set were expected to share more condition-unrelated information

with each other, compared to samples from different sets, due to

their temporal proximity in the original experiments (excluding the

single-day Hinss et al. sets).

2.3 Classification approaches

All features were computed from 2-s windows, corresponding

to the length of a single trial in the Shin et al. and Hinss
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FIGURE 3

Block structure and splitting procedures for the three datasets. For each dataset, the available data was split into three equal-sized sets. Temporal

dependencies were expected to be stronger within than between sets, as n-back blocks presented in conjunction with each other in the original

experiments were grouped together within a single set. Presentation order of the n-back conditions was not necessarily as presented in the

schematic.

et al. datasets. Windows were extracted without overlap from

the continuous data, after classifier-specific filter operations

were carried out. By extracting non-overlapping windows, we

ensured that any bias to the performance metrics in the k-

fold cross-validation schemes stemmed from underlying temporal

dependencies and not from reusing the same data in successive

samples. The classification approaches below were implemented

using the pyRiemann (v0.7; Barachant et al., 2025), sci-kit learn

(v1.2.2; Pedregosa et al., 2011) and MNE (v1.6.1; Gramfort

et al., 2014) python libraries and are described in the order

in which we expected them to overfit on training data specific

temporal dependencies (likely showing greater bias in block-

structure independent cross-validation strategies). This order was

based on two ideas. The first being that with an increasing number

of free parameters, the propensity of a classifier to overfit to

training-specific information increases (Domingos, 2012; Lemm

et al., 2011). The second being that Riemannian classification has

previously been shown to generalize well to unseen data (Congedo

et al., 2017; Yger et al., 2017).

2.3.1 Broadband Riemann minimum distance to
mean (RMDM)

Before windowing, the data for this classifier was bandpass

filtered (1–25Hz; default MNE FIR filter with −6 dB cutoff

frequencies at 0.50Hz and 28 Hz). Covariance matrices were

computed per 2-s window with ledoit-wolf shrinkage (Ledoit

and Wolf, 2004) to ensure semi-positive definite matrices. No

hyperparameters were tuned, limiting the chance to overfit on

trends in the training data. Classification was carried out using

a Riemann minimum distance classifier (Barachant et al., 2010,

2012).

2.3.2 Narrowband Riemann minimum distance to
mean (narrow-RMDM)

Using a filter bank of butterworth filters (zero-phase, non-

causal, passband ripple = 3db, stopband attenuation = 10 db,

transition bandwidth = 1Hz), the data for this classifier was
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FIGURE 4

Splitting procedure of the tested cross-validation strategies. Visualization of how the separate sets built in Figure 3 were split for training and testing

the classifiers within the four cross-validation procedures.

separately bandpass filtered with passbands in canonical delta (1–

4Hz), theta (4–7Hz), alpha (8–12Hz), and beta (13–25Hz) ranges.

Ledoit-wolf shrinkage was carried out separately per frequency

bin, after which all four frequency bins’ covariance matrices were

combined into a diagonal block matrix for classification. This

procedure was inspired by the block-diagonal matrices proposed

for the classification of SSVEPs (Congedo et al., 2017) and

previous efforts to focus Riemannian classification on specific

neurophysiological aspects (Näher et al., 2024; Yamamoto et al.,

2023). To keep the computational requirements manageable, a

previously proposed algorithm for efficient electrode selection on

covariance matrices (Barachant and Bonnet, 2011) was used to

reduce each frequency bin to its most informative combination

of 8 electrodes at each training step. This pipeline was included

as an example of a Riemannian classifier with an added train-set

specific tuning step. Due to the fact that different channels could

be selected per frequency band, all off-diagonal elements in the

block-covariance matrix (theoretically containing cross-frequency

coupling information) were set to 0.

2.3.3 Narrowband power LDA (PSD-LDA)
After windowing, we computed the power spectral density

within canonical delta, theta, alpha, and beta ranges per electrode

using a one-dimensional discrete Fourier Transform. During

training, all features were normalized using the mean and standard

deviation of the training set. Additionally, every training iteration,

the 18 most informative and least correlated features were

selected from the 4 (frequency bands) x n_electrodes number

of computed features using a minimum redundancy maximum

relevancy algorithm (Peng et al., 2005).

2.3.4 Filter bank common spatial pattern LDA
(FBCSP)

Using a filter bank of butterworth filters (zero-phase, non-

causal, passband ripple = 3 db, stopband attenuation = 10 db,

transition bandwidth = 1Hz), the data for this classifier was

separately bandpass filtered into 4Hz wide frequency bins ranging

from 3–25Hz in steps of 2Hz. Each filtered signal was used to

compute 8 spatial filters via common spatial pattern analysis (4

highest and 4 lowest eigenvalues) (Ang et al., 2012; implemented

in MNE) and the log-variance of the filtered 2-s windows was

extracted as the classification feature. Every training iteration, a

subset of 18 features was selected from the 80 computed features

(10 frequency bins x 8 spatial filters) using a minimum redundancy

maximum relevancy algorithm to select the most informative and

least correlated features (Peng et al., 2005).

2.4 Cross-validation strategies

Four different validation strategies were tested (Figure 4),

ranging from likely producing conservative performance estimates
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to likely producing inflated performance estimates and presented

in that order below. We computed classification accuracy as

our performance metric, as all cross-validation methods used

assured no class imbalances in the train or test sets (see

Supplementary Table 1 for exact sample sizes).

2.4.1 Pseudo-online
The most conservative of the four tested cross-validation

strategies. In it, only the first set of conditions was used for training

and the remaining two sets were used for testing. This evaluation

scheme represents situations in which limited calibration data is

available, such a “cold-starting” a newmodel for a user in an applied

setting. The single training set mimics a calibration round while

the test sets offer two separate opportunities to estimate classifier

performance without making use of future data, as is the case in the

following cross-validation strategies.

2.4.2 Leave-one-block-out
This strategy assured that no data of the same set occurred in

both the testing and training data. However, using this strategy,

some folds will use training data that occurred after the testing

data. Since this is impossible for a real BCI system, its performance

estimates could be considered somewhat artificial and might be

overestimated (Riascos et al., 2024).

2.4.3 Sequential K-fold
This is a common default cross-validation strategy in which

the data are split into, here, 10 equal-sized segments. 9 of the 10

segments are used for training, while the 10th is held out for testing.

This process is repeated 10 times until all samples were once used

for testing. The risk of splitting the data into equal sized segments of

an arbitrary size is that data from a single session may occur both in

the training and testing sets within a single fold.We used a stratified

k-fold procedure to avoid class imbalances.

2.4.4 Randomized K-fold
Here as well, the data were split into 10 equal-sized segments,

using a stratified procedure to avoid class imbalances. However,

in this version, all samples are first shuffled randomly before

being split into 10 folds, a step that should only be performed

if all observations are statistically independent from each other.

We included it here as an example of the worst-case scenario

for overestimating classifier performance on data from block-

based experiments.

2.5 Statistical analysis

As a first step, the distributions and descriptive statistics

of subject-wise classification accuracies were visualized for each

dataset, cross-validation strategy, and classification approach (see

Figure 5).

To analyse differences between cross-validation strategies,

we computed bootstrapped 95% confidence intervals of the

differences in accuracy between the conservative pseudo-online

cross-validation scheme and the other tested schemes over 10.000

iterations per classifier. Each iteration randomly sampled 15

subjects with replacement across datasets and class-separability

contrasts to compute the 3 difference scores per classifier (within-

subject).

We further analyzed the impact of cross-validation schemes

on comparisons between classifiers across datasets. To investigate

this, we tested for significant differences among the four classifiers

within the low and high class-separability contrasts for each cross-

validation scheme. Non-parametric Friedman tests were employed

to account for the non-normality of the data. Additionally,

post-hoc Durbin-Conover pairwise comparisons were conducted

to provide more detailed insights into whether the differences

between classifiers varied across evaluation schemes. P-values of the

pairwise comparisons were adjusted using the Benjamini-Hochberg

procedure to control the false discovery rate (FDR) at α = 0.05

(using the PMCRplus package—Pohlert, 2024).

3 Results

Across all datasets, we could observe the expected increases

going from pseudo-online to the randomized k-fold cross-

validation scheme (Figure 5). The most noticeable inflation from

conservative to the block-structure independent schemes was

visible for the FBCSP classifier. Interestingly, differences between

the high and low-separability contrasts seem to be maintained even

in the inflated accuracy estimates of the two k-fold approaches

(e.g., if we see a difference between high and low separability

in the conservative schemes, it is also visible in the biased

schemes). A Friedman test across datasets, classifiers and cross-

validation strategies [χ²(1) = 25.252, p < 0.001], followed

by pairwise Wilcoxon signed-rank tests conducted per dataset,

revealed that only the data from Shin et al. exhibited significant

differences in the classification accuracy between the low and high

class-separability contrasts across cross-validation schemes and

classifiers (p < 0.001).

Looking at the two panels belonging to the Hinss et al. dataset,

we can observe the effect of not interleaving conditions with each

other. Using only the first day of their dataset, in which three

repetitions of a single condition were presented in sequence, we

observed on average 10.1% higher accuracy estimates compared

to the panel next to it (which used data from all 3 days), even

for the conservative pseudo-online and leave-one-block out cross-

validation schemes.

3.1 Impact of cross validation choices
across datasets

To get a general idea of how different cross-validation

strategies affected estimates of model accuracy, Table 2 displays the

bootstrapped mean classification accuracies across datasets with

additional bootstrapped 95% confidence intervals for each cross-

validation strategy’s difference to the most conservative strategy

(pseudo-online). The confidence intervals were computed across

datasets and class-separability contrasts, excluding the single-day
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FIGURE 5

Accuracy scores per classifier and cross-validation scheme. Boxplots of mean classification accuracies for single-day Hinss et al. (A), multi-day Hinss

et al. (B), Shin et al. (C), and Schroeder et al. (D). Black point ranges represent the mean accuracies across subjects and their standard errors. The

dashed horizontal lines display the theoretical chance level, while the solid horizontal lines display the average sample size corrected chance levels.

Hinss et al. dataset because the lack of randomization for that

dataset portrayed a different violation of independence as described

in section 2.2.

3.2 Pair-wise comparisons across datasets

The Friedman tests conducted on the pseudo-online

evaluations revealed significant effects for both the low class-

separability contrast [χ²(3) = 51.867, p ≤ 0.001] and the high

class-separability contrast [χ²(3) = 9.795, p ≤ 0.001]. In the low

class-separability context, pair-wise comparisons showed the

Narrow-RMDM classifier outperformed all other classification

approaches (see Figure 6A). In the high class-separability context,

the PSD-LDA, Narrow-RMDM, and FBCSP approaches did not

differ significantly from each other (Figure 6B). For the leave-one-

block-out evaluation scheme, the low class-separability contrast

did not show significant differences between classifiers [χ²(3) =

5.475, p = 0.14]. However, significant differences were observed

for the high class-separability contrast [χ²(3)= 45.944, p ≤ 0.001],

with pair-wise comparisons now showing the FBCSP classifier to
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TABLE 2 Bootstrapped average accuracies and di�erences by cross-validation scheme.

Classifier Pseudo-online Leave-one-block-out Sequential K-fold Randomized K-fold

Broad-RMDM 59.4% (–) 61.7%

(−1%, 4.4%)

65% (2.5%, 9%) 66%

(3.6%, 10.7%)

Narrow-RMDM 65.7% (–) 67.4%

(−5.8%, 4%)

72.7% (1.67%, 10.2%) 74.6%

(3.8%, 12.7%)

PSD-LDA 62.5% (–) 65.4%

(−0.8%, 4.3%)

72.4% (6.6%, 14.6%) 73.3%

(8.4%, 17.1%)

FBCSP 65.9% (–) 69.8%

(−0.1%, 7.9%)

81.8% (13.3%, 26%) 85.2%

(17.5%, 30.4%)

Average classification accuracies across class-separability contrasts and experiments (excluding single-day Hinss et al. results) with bootstrapped 95% confidence intervals of the differences

between each cross-validation scheme and the pseudo-online results.

be significantly more accurate than the broadband RMDM and

PSD-LDA classifiers. The performance differences between the

Narrow-RMDM and FBCSP classifiers were no longer significant

(see Figure 6D).

In the sequential k-fold evaluation, both the low [χ²(3) =

91.276, p ≤ 0.001) and high class-separability contrasts [χ²(3) =

150.74, p ≤ 0.001] displayed significant differences. In this case,

the FBCSP classifier demonstrated significantly better performance

compared to the Narrow-RMDM classifier (see Figures 6E, F).

This performance difference remained highly significant in the

randomized k-fold evaluation, where significant differences were

again observed for both the low [χ²(3) = 135.05, p ≤ 0.001) and

high [χ²(3)= 162.84, p ≤ 0.001] class-separability contrasts.

4 Discussion

The objective of the current study was to investigate the extent

to which pBCI model evaluation metrics may be biased when

temporal dependencies between train and test samples are not

considered in cross-validation. To achieve this, we used data from

three datasets involving the n-back task, which often serves as

a workload manipulation paradigm with minimal motor-related

confounds. Our analysis evaluated four classifiers, ranging from

models using Riemannianminimumdistancemetrics onminimally

pre-processed broadband EEG data to models using supervised

dimensionality reduction on narrowband filtered EEG data. The

results showed that not observing temporal dependencies in cross-

validation methods impacts model evaluation metrics to a great

degree, as reported in other areas dealing with neuroimaging-based

classification (Ivucic et al., 2024; Li et al., 2020; Varoquaux et al.,

2017;White and Power, 2023). Importantly, our results additionally

showed that this bias is not equal across classifiers. Models with

greater propensity to tune to the available training data (Domingos,

2012; Lemm et al., 2011) tended to outperform alternative

models in block-structure independent cross-validation schemes,

while they performed at similar levels or even significantly less

accurately in more conservative evaluation schemes. Consequently,

model comparisons based on offline cross-validation need to be

interpreted carefully and should be questioned if cross-validation

splits were carried out independently of the experiment’s block

structure or not thoroughly documented.

Themost conservative validationmethod assessed in this study,

pseudo-online evaluation, adhered strictly to the chronological

order of the data and utilized only a single data block for

model training. This reflects scenarios such as calibrating a

classifier for a new user in real-time classification. In our

implementation, the pseudo-online evaluation likely provided

overly conservative performance estimates. This was by design,

as we were interested in comparing the other schemes to a

lower bound. It did indeed result in the lowest classification

accuracies (Table 2), frequently failing to surpass adjusted chance

levels in all datasets (Figure 5). In contrast, the leave-one-block-out

cross-validation scheme, which also preserved the block structure

but disregarded the temporal order of samples, achieved better-

than-chance classification across a greater number of classifiers

by training on two data blocks instead of one. Notably, none

of the four tested classification approaches showed significantly

higher accuracy comparing the leave-one-block-out evaluation

to the pseudo-online evaluation (all bootstrapped 95% CIs in

Table 2 included 0), even though their training data was double

in size.

When comparing the conservative evaluation methods

to the two k-fold cross-validation approaches, where data

splitting disregarded the experimental block structure, significant

inflations in classification accuracy were observed across all

classifiers we tested. For the simple RMDM approach, accuracy

increased by up to 9%, while the electrode-selection variant

of RMDM displayed increases of up to 12.7% accuracy. Even

more pronounced increases were evident in the two LDA

classifiers, which utilized canonical band power features combined

with additional dimensionality reduction techniques. When

only employing feature selection on band power features

during the training phase, accuracy estimates rose by up to

17.1% compared to the pseudo-online evaluation. Adding

another dimensionality reduction step (FBCSP) further

inflated accuracy estimates, increasing them by up to 30.4%

(Table 2).

Against expectations, the upper bounds of the confidence

intervals for the sequential and random k-fold approaches did

not differ substantially across the three datasets tested (Table 2).

This was surprising, as the random k-fold approach represents

a more obvious violation of the assumption of independence.

The observation that merely sharing non-overlapping data of a

single session in train and test sets can cause similar biases in the

accuracy metrics, demonstrates the issue of temporal dependencies

in offline pBCI model evaluations aptly. An additional analysis
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FIGURE 6

Classifier comparisons across datasets and cross-validation schemes. Violin plots of subject-wise accuracy scores per class separability contrasts.

Low-separability results are displayed in the left column (A, C, E, G) and high-separability results in the right column (B, D, F, H). Significance was

assessed via Durbin-Conover pair-wise comparisons and average rank di�erences (left minus right) are displayed next to the significance signifiers.

*p < 0.05, **p < 0.01, ***p < 0.001.

demonstrating that condition-related similarity and similarity due

to temporal proximity are conflated in block-based experiments

can be found in the online Supplementary material 2.

Although the four evaluation schemes varied in the sizes of

their training sets, these variations alone do not suffice to explain

the results presented. The leave-one-block-out cross-validation,

despite two times the training data compared to the pseudo-online

evaluation, showed negligible accuracy gains. In contrast, k-fold

methods differed much more from the pseudo-online evaluation

with a not quite threefold increase in training set size.

Furthermore, since the degree of inflation to model

accuracy seemed to differ between feature/classifier types,

model comparisons based on evaluation metrics computed on

block-structure independent cross-validation schemes may lead

to erroneous conclusions that would not replicate in applied

settings. We demonstrated this in section 3.2 where the FBCSP

classifier showed great advantages over the other tested classifiers

in the k-fold evaluations, but was either not significantly different

to its alternatives in the high-separability case and was actually

outperformed by the Narrow-RMDM in the low-class separability
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case (Figure 6). In general, it is to be expected that the propensity

to overfit on training-specific information increases with classifier

complexity (Domingos, 2012; Lemm et al., 2011)—a problem

underlined by the extreme differences found between evaluation

schemes used for deep-learning-based M/EEG decoding (Ivucic

et al., 2024; Li et al., 2020).

Interestingly, of the tested high-separability contrasts, the Shin

et al. dataset showed the best performance in the pseudo-online

cross-validation scheme (Figure 5). The difference to the other

datasets might be linked to the manner in which conditions were

interleaved with each other within a single presentation block in

the Shin et al. dataset. Interleaving several shorter repetitions of

different conditions likely caused different classes to share the

same temporal trends, leaving the trends less informative for

the classification task. Another contributing factor could have

been that the high separability contrast contained the 0-back

condition. Reacting to a single stimulus in a stream rather than

having to repeatedly encode and maintain new stimuli could

be considered psychometrically distinct from the other n-back

conditions, making for an easier classification problem (Gerjets

et al., 2014).

We also included an example of only making use of a single

day of the Hinss et al. dataset (see Figure 5A; not included

in the other analyses). Here, all blocks of a single condition

were presented in sequence together, leading to samples of a

single class sharing temporal dependencies regardless of whether

they stemmed from a single or separate blocks. Due to the

lack of randomization, classifiers were likely utilizing temporal

dependencies regardless of the cross-validation scheme used.

Results garnered using the data from a single day were, on

average, 10.1% higher than those from the full multi-day dataset.

Using the Pseudo-online or leave-one-block-out cross-validation

scheme on a single day (rather than all 3 days) would erroneously

lead to the conclusion that the FBCSP classifier performed the

best of the four tested classifiers (i.e. the classifier with the

highest propensity to utilize temporal dependencies instead of

class differences).

The various differences between the methods of the three

datasets described in 2.1 could be viewed as a hindrance to our

cross-dataset analyses. We considered them a strength, as the

reported results appeared consistent regardless of the differences

pertaining to participant training regime, presentation order,

condition contrast, etc. Similar results could likely be garnered

from various kinds of block-based experimental designs with

(pseudo-) randomized condition orders. However, as demonstrated

through the example of only using a single day of the Hinss

et al. data, the results may differ if conditions were presented

without randomization. Furthermore, slower physiological signals,

such as fNIRS or ECG, may exhibit even stronger biases in block-

structure independent cross-validation due to their slowly evolving

nature, which may be accompanied by longer-lasting temporal

dependencies (Blanco et al., 2024). Finally, as alluded to in the

introduction, the bias stemming from splitting training and testing

data irrespective of experimental structure can be avoided in event-

based experimental designs, provided that the condition order is

fully randomized and no more than a single sample is drawn from

any given trial (White and Power, 2023).

The results we presented should by no means be viewed

as a complete treatment of the issue at hand. Future studies

could further deepen the understanding of biases in pBCI model

evaluation by focusing on specific facets in pBCI processing

pipelines. For the sake of parsimony, the current study did

not include data cleaning steps beyond the removal of faulty

channels. Employing additional cleaning steps like artifact subspace

reconstruction (ASR) or removing artifacts via independent

component analysis (ICA) would likely improve the accuracy

metrics we reported here (Liu et al., 2021; Sannelli et al.,

2009). However, their implementation details, as well as the

length and selection of calibration data, may produce different

dynamics across cross-validation methods and should be explored

in a dedicated inquiry. We also avoided tuning hyperparameters

to individual subjects to simplify the current analyses. Given

our results, the addition of nested cross-validation to tune

various hyperparameters would likely exacerbate the influence of

temporal dependencies in block structure independent evaluation

schemes. Lastly, the offline evaluation of adaptive machine learning

approaches may require their own detailed investigation into

similar evaluation biases, as their methods aim to actively remedy

mismatches between data distributions used for training and testing

(Kumar et al., 2019; Lotte et al., 2018; Schlögl et al., 2010).

4.1 Key takeaways

• To avoid the biased model evaluation discussed in the current

study, experimental manipulations should ideally be delivered

on a trial-by-trial basis to allow for better randomization

and reduce the likelihood of conflating condition differences

with temporal dependencies. Importantly, if train and test sets

consist of shuffled samples, only a single sample should be

extracted per trial (White and Power, 2023).

• If blocked designs are required, data splitting for model

evaluation should consider the experimental structure and

be documented in great detail to increase transparency for

the sake of reproducibility. Given the superior pseudo-online

classification results in the Shin et al. dataset, it may also be

favorable to opt for many shorter blocks rather than fewer

longer blocks.

• Model comparisons based on insufficiently documented data

splitting procedures should be interpreted with caution, as

complex models are likely more prone to overfit on training-

specific trends in block-structure-independent evaluation

schemes, leading to more pronounced performance metric

inflation compared to their less complex counterparts.

5 Conclusion

Our study adds to the literature exploring the impact that

different choices in cross-validation practices can have on pBCI

evaluation metrics across three sets of n-back data. While the

problem of temporal dependencies in neuroimaging data is well

known (Lemm et al., 2011; Linkenkaer-Hansen et al., 2001;

Bullmore et al., 2001), the prevalence of underreported details
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on cross-validation methods (Demirezen et al., 2024; Li et al.,

2020) prompted us to revisit the issue in this current study. The

bias introduced by not observing temporal dependencies when

splitting EEG data for cross-validation favors models with more

training data-specific optimisation steps, possibly inviting false

conclusions about their true generalizability. This should motivate

researchers to ask themselves whether they have provided enough

information in a given study to assure colleagues and stakeholders

that they did everything in their power to limit the influence

of temporal dependencies before drawing conclusions from their

model evaluation metrics.
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