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mental workload evaluation in
real-world settings
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Introduction:Mental Workload (MWL) is a concept that has garnered increasing

interest in professional settings but remains challenging to define consensually.

The literature reports a plurality of operational definitions and assessment

methods, with no established unified framework. This review aims to identify

objective and validated measurement methods for evaluating MWL in real-

worldwork contexts. Particular attention is given to neurophysiologicalmethods,

recognized for their e�ciency and robustness, enabling real-time assessment

without disrupting operator activity.

Method: To conduct this analysis, a systematic search was performed in three

databases (PubMed, ScienceDirect, and IEEEXplore), covering studies published

from their inception until March 30, 2023. Selection criteria included research

focusing on MWL and its derivatives, as well as neurophysiological measures

applied in real-world conditions. An initial screening based on titles and abstracts

was followed by an in-depth review, assisted by the bibliometric software Rayyan.

Results: The explored concepts, applied methods, and study results were

compiled into a synthesis table. Ultimately, 35 studies were included, highlighting

the diversity of measurement tools used in field settings, often combined with

subjective assessments.

Discussion: Furthermore, key physiological indicators such as ECG, eye data,

EEG and the relationship betweenMWLmetrics and those uses tomeasure stress

are emphasized and discussed. A better understanding of these interrelations

could refine the assessment of their respective impacts and help anticipate their

consequences on workers’ mental health and safety.

KEYWORDS

mental workload, cognitive load, stress, neurophysiological measures, field, autonomic

nervous system, sympathetic nervous system

1 Introduction

The assessment of mental demands at work (i.e., mental workload, hereinafter referred
to as MWL) has been the focus of extensive research in various disciplines (ergonomics,
psychology, cognitive sciences, neuroscience, etc.). The common objective of these studies
is to improve working conditions by considering both employees’ physical capacities
and cognitive resources. While the digitalization and automation of production systems
have led to a reduction in purely physical demands across many industries, these
transformations have also resulted in an increase in cognitive demands, particularly
due to the introduction of computerized systems and automated control mechanisms.
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The modernization and digitalization of companies over the
past decade have consequently resulted in operators being involved
in a broader range of tasks, including machine monitoring, quality
control, and production strategy verification (Cohen et al., 2018).
Human performance thus remains essential for maintaining quality
and productivity. However, by increasing mental workload, the
intensification and diversification of cognitive tasks may lead to
emotional distress and negatively affect employees’ psychological
health (Leslie and Hutchinson, 2018; Qu, 2013). More specifically,
cognitive overload can also lead to errors (Wittenberg, 2015),
increase the likelihood of incidents, workplace accidents, fatigue, or
musculoskeletal disorders (Das et al., 2020; Mehta, 2016; Rusnock
and Borghetti, 2018), and even cause postural and coordination
issues (Grobe et al., 2017; Muldner and Burleson, 2015). Similarly,
an underload state can have negative effects, such as decreased
performance due to a lack of attention to the task. The assessment
of MWL thus emerges as a major concern for both productivity and
occupational health and safety.

Certain sectors are particularly sensitive to the impact of MWL,
such as air traffic control, driving, and the medical field, where
errors can have critical consequences (Arico et al., 2017; Wilbanks
andMcMullan, 2018). In themedical sector, excessiveMWL among
physicians is indeed correlated with an increase in errors (Byrne,
2013; Mazur et al., 2014). In the construction industry, mental
workload acts as a stressor (Umer, 2022) that can contribute to
accidents due to inattentional blindness (Chen et al., 2016; Mack,
2003). In highly automated industrial environments, the difficulty
and complexity of tasks, compounded by multiple human-machine
interfaces, directly impact MWL levels and perceived stress among
operators (Kumar and Lee, 2022).

From a theoretical standpoint, MWL remains a
multidimensional and polysemic concept (Young et al., 2015).
Although definitions vary across disciplines, MWL is generally
described as the ratio between the cognitive resources required
to perform a task and those available to the operator (Coronado
et al., 2022; Heard et al., 2018; Parasuraman et al., 2008). Several
studies also emphasize the influence of additional factors such as
experience, age, and learning (Stanton et al., 2004). The diversity of
MWL assessment methods—including subjective self-assessment,
performance-based measurements, and physiological indicators—
complicates the establishment of a unified research framework
(Coronado et al., 2022; Heard et al., 2018).

Subjective measures, such as the NASA-TLX (Hart and
Staveland, 1988), are widely used but are subject to various
biases (e.g., social desirability bias, halo and horn effect, etc.).
Furthermore, they provide only a retrospective assessment of the
work situation (Podsakoff et al., 2003; Shakouri et al., 2018).
Physiological measures, on the other hand, enable continuous and
real-time monitoring of workers’ mental activity by recording,
for example, cardiac activity (Fallahi et al., 2016; Solhjoo et al.,
2019), brain activity (Aricò et al., 2016), skin conductance
(Elena and Anastasia, 2021), temperature (Murai et al., 2017),
and eye movements. They provide an unbiased insight into
MWL without affecting performance in real-world situations,
although they can be intrusive and sometimes sensitive to
environmental factors (Naismith and Cavalcanti, 2015). Finally,
no single method is unanimously recognized as the most reliable

for measuring MWL (Charles and Nixon, 2019). Many studies
recommend combining multiple physiological measures (e.g.,
heart rate variability, brain activity, skin parameters, etc.) with
subjective assessment methods (Lehrer et al., 2010; Sriranga et al.,
2023).

Charles and Nixon (2019) also highlight the challenge of
comparing laboratory and field data. For instance, heart rate
variations of up to 50% have been reported in field studies, whereas
in laboratory settings, they do not exceed 10% (Wilson, 1992).
These findings underscore the complexity of MWL assessment
and the necessity of distinguishing between laboratory and field
studies. For occupational health and safety professionals and
ergonomists working in real-world settings, identifying appropriate
physiological measures to complement traditional assessment
methods (performance metrics, questionnaires, interviews) is
crucial for real-time MWL evaluation. This would enable
the development of targeted recommendations to enhance
workplace health and safety. Emphasis will be placed on
physiological measures due to their reliability and ability to
capture workers’ cognitive states in real time as they respond
to task demands (Charles and Nixon, 2019; Dias et al.,
2019).

In light of these considerations, the objective of this study
is to provide a systematic review of physiological (objective)
measures used to assess MWL in real or in situ work environments
across all fields. A side goal is to identify the different fields
in which these techniques are applied to assess MWL in
real-world conditions, providing occupational safety specialists
and ergonomists with a comprehensive mapping of application
domains. To our knowledge, this has not been done before, as
existing reviews typically focus either on a specific field (aviation,
driving, surgery, etc.) or include both laboratory and field studies
(Kumar and Lee, 2022; Paxion et al., 2014;Wilbanks andMcMullan,
2018). Which, as previously mentioned, may not be accurate for
prevention specialists in real-world settings, as the transfer of these
measures from the laboratory to the field is not straightforward, and
correlations have been found to be low when such attempts were
made (Johnston et al., 1990).

The article is structured as follows: Section 2 details the review
methodology, Section 3 presents its results, and Section 4 discusses
the main findings and potential future research directions.

2 Methods

2.1 Literature review and study selection

We conducted a systematic review based on the PRISMA
methodology (Page et al., 2021; Figure 1), designed to ensure
a transparent and reproducible approach. PRISMA provides a
structured guideline consisting of 27 checklist items to assist
reviewers in reporting evidence with accuracy and reliability.
Our objective was to identify studies that employed at least one
physiological measure of MWL in real or near-real working
conditions while excluding protocols conducted solely in
laboratory environments with participants entirely naïve to
the field.
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FIGURE 1

Literature selection flow diagram based on the PRISMA approach (Page et al., 2021).

The literature search was performed across three databases
(ScienceDirect, PubMed, IEEE Xplore) from their inception until
March 30, 2023. The search strings used were as follows:

• PubMed: “physiolog∗ mental cognitive workload field study”.
• ScienceDirect: “physiology mental cognitive workload field

study wearable sensor”.
• IEEE Xplore: (“All Metadata”:physiology) AND (“All

Metadata”:mental OR “All Metadata”:cognitive workload)
AND (“All Metadata”:field study).

• For the International Journal of Occupational Safety and

Ergonomics via Taylor and Francis Online (TandFOnline):
“physiology mental cognitive workload field study wearable”.

We restricted our selection to studies published in English
(journal articles or peer-reviewed conference proceedings). In
this review, we deliberately use the terms “cognitive workload”
and “mental workload” interchangeably rather than as distinct
concepts. Although differences can be highlighted when compared,
it is suggested that they address the same problem and thus “should
be treated to mean the same thing” (Hancock et al., 2021, p. 204).

In the second stage, the titles, abstracts, keywords, and
highlights were screened to assess their relevance. The inclusion
criteria were:

1. Evaluation of MWL in occupational settings,
2. Use of at least one physiological measurement,

3. Investigation of a real or near-real work context,
4. Inclusion of real workers (or closely related profiles, such as

cadets or specialized interns).

Studies were excluded if they were purely theoretical
reviews or focused on research unrelated to actual work
environments (e.g., laboratory studies with exclusively
student participants or individuals distant from real workers).
Additionally, studies specifically addressing driving (either in
simulations or real conditions) were excluded, as they have
already been extensively reviewed elsewhere (Paxion et al.,
2014; Kabilmiharbi et al., 2022). For this systematic review,
we employed the Rayyan tool developed by Ouzzani et al.
(2016) to facilitate the screening process. Following title and
abstract screening, as well as full-text analysis, 35 articles were
retained for the final review, including two identified through
citation search (cf. Figure 1).

2.2 Data collection and summary measures

We compiled the main characteristics of each article in
an Excel table (publication type, study context, physiological
measures used, potential use of subjective measures, etc.). This
allowed for a descriptive analysis (chronological distribution
of publications, preferred application domains, most commonly
used techniques).
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3 Results of the literature review

Various physiological techniques are employed in the field for
assessing MWL, and the objective of this review is to identify these
techniques as comprehensively as possible. Studies indicate that
MWL leads to modifications in the autonomic nervous system
(ANS), which notably regulates stress responses (Causse et al., 2010;
Fairclough et al., 2005; Kurniawan et al., 2013). Among the most
frequently used markers are heart rate (HR) and its variability
(HRV), respiratory rate (RR), skin conductance (GSR, EDA),
oculomotor data (pupil diameter), electroencephalography (EEG),
and functional near-infrared spectroscopy (fNIRS; Sriranga et al.,
2023). Table 1 summarizes the techniques and metrics retained in
this review for MWL assessment in real-world conditions. This
section first presents a descriptive analysis, followed by a detailed
examination of each method used, highlighting their most relevant
metrics, advantages, and limitations. Indeed, we first compiled the
main characteristics of each article in an Excel table (publication
type, study context, physiological measures used, potential use of
subjective measures, etc.). This allowed for a descriptive analysis,
including the chronological distribution of publications, preferred
application domains, and the most commonly used techniques.

3.1 Descriptive analysis

This part provides a descriptive analysis of the 35 articles
identified during the literature search, considering: the evolution
of publications over time per field of application and year, the
distribution of techniques used and the representativeness of
each sector.

3.2 Temporal evolution of publications and
fields of application

Figure 2A presents the cumulative number of publications
per year and by sector of application. Most research (∼70%)
that evaluated MWL using physiological measurements in field
conditions was published after 2016, reflecting the recent rise and
democratization of portable technologies (glasses, non-invasive
sensors, etc.).

The analysis reveals that the most represented sectors are
industry (34%), aviation (17%), construction (14%), maritime
(12%), medical (11%), office work (9%), and traffic control (3%).
Temporal evolution is observed across all sectors.

3.3 Measurement methods

The most frequently employed techniques for assessing MWL
include ECG (and heart rate variability analysis), eye-tracking,
EEG, EDA (electrodermal activity), respiration, skin temperature,
EMG, fNIRS, and voice analysis. ECG, eye-tracking, and brain
signals (EEG, fNIRS) constitute nearly half of the identified
methods (Figure 2B).When examining the frequency of occurrence
of techniques within each domain, it appears that specific

techniques are prioritized in different fields, as illustrated in Table 2.
This table provides insights into the techniques applicable in
field settings for evaluating MWL across various occupational
sectors. However, these techniques are not exclusive to any
single domain.

3.4 Electrocardiogram (ECG) and heart rate
variability (HRV)

The electrocardiogram (ECG) measures the electrical activity
of the heart. It is the most widely used method for assessing
mental workload (MWL), both in laboratory settings (Charles and
Nixon, 2019) and in real-world conditions. The majority of studies
included in this review employ ECG. ECG analysis encompasses
heart rate (HR) and heart rate variability (HRV; Hermans et al.,
2014).

Heart rate (HR), defined as the number of beats per minute, is
considered by Jung and Jung (2001) to be the simplest and most
reliable indicator of MWL. These authors tested the validity of an
overall workload (OWL)measure in 28 workers from nine different
departments in the machine processing industry, recording heart
rate using a pulse sensor placed on the earlobe. They calculated the
average (WP) and relative work pulse (% RWP) by determining
the difference between baseline heart rate (resting HR) and heart
rate during the task. Regression analysis and classification enabled
them to distinguish different HR levels based on workload. For
example, an HR of 60–70 bpm (0–10 WP) is considered a resting
value or baseline (Grandjean, 1980), while 70–100 bpm (10–40
WP) corresponds to low workload, 100–125 bpm (40–65 WP) to
moderate workload, 125–150 bpm (65–90 WP) to high workload,
150–175 bpm (90–115 WP) to very high workload, and >175
bpm (>115 WP) to extremely high workload. Notably, this study
assesses overall workload (both physical and mental), in line with
the observation that HR increases in response to both physical
and cognitive demands (Grandjean, 1980; Green et al., 1986). It is
worth noting that this study includes a strong physical component;
nevertheless, it has the merit of proposing threshold values for
the evaluation of both mental and physical workload. This can be
particularly valuable for field practitioners, as both components,
mental and physical, are often simultaneously at play in many
work environments.

Furthermore, HR elevation is associated with increased stress
levels (Kaklauskas et al., 2011), reflecting the close relationship
between MWL and stress. Several studies indicate that these two
mental states are highly interconnected and mutually influence
each other (Sanders, 1983; Yerkes and Dodson, 1908). It is
therefore recommended to assess stress levels concurrently when
investigating MWL (Alsuraykh et al., 2019).

Heart rate variability (HRV) is currently one of the most
studied indicators for assessing mental stress and appears more
sensitive than HR alone. HRV refers to variations in successive R-R
intervals on the ECG and can be analyzed in the time, frequency,
and non-linear domains. It can be measured over long periods
(24 h), short periods (5min), or very short periods (<5min). When
faced with a stressful event, the sympathetic nervous system is
activated, while the parasympathetic system withdraws, leading
to characteristic changes in HRV components. Temporal metrics
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TABLE 1 Techniques and dependent variables used to assess MWL in the context of field studies.

Techniques Concept studied DVs Results References Domain

ECG/Salivary

measures/EMG/EYE

/ST/respiration/EDA/video/

questionnaires

Mental workload (MWL) HR (average work pulse) Increased heart rate with increased workload (Jung and Jung, 2001) Industry

MWL HR, HRV features, EMG amplitude Increased HR, LF/HF, EMG (Fallahi et al., 2016) Traffic density monitoring

Decreased SDNN, RMSSD, pNN50

MWL HRV, salivary cortisol pNN50, RMSSD decreased, LF/HF increased.
HR, Mean RR, SDNN, HRV Index, TINN,
Cortisol (N.S)

(Cinaz et al., 2013) Office work

MWL/stress HRV, salivary NO3 concentration Increased LF/HF and salivary
NO3 concentration. HR (N.S)

(Kitamura et al., 2016)

(Murai et al., 2017)

Maritime

MWL/stress HR, HRV, Breathing rate, ST, PD,
EDA

Can be validly used to evaluate cognitive states
(MWL) & improve the interaction between
operators and industrial workplaces. HR, PD
increase; HRV, fixation/sacadic frequency
decrease

(Peruzzini et al., 2017, 2020)

(Brunzini et al., 2021a)

Industry

CL (cognitive load)/stress HRV, EDA (mean SCL, amplitude
SCR peaks), motion pattern (head
pose, skeleton tracking)

LF/HF increased with high MWL. Both tonic
and phasic components revealed a significant
main effect of the load condition

(Lagomarsino et al., 2022) Industry

CL HRV, IBI, Shannon entropy Decreased in Shannon entropy & IBI
(interbeat intervals) associated to high
cognitive workload

(Dias et al., 2019) Surgery

Eye data/pupillometry/

EEG/questionnaire

MWL/error PD Increased PD (Srinivasan et al., 2019) Chemical plant

CWL (cognitive workload) PD, blink frequency, gaze metrics
(fixation, entropy, saccades)

Greater workload involved less blinks, reduce
fixation rate and increase pupil size/fixation
duration/gaze entropy.

(Naik et al., 2022) Surgery

CWL Fixation duration, fixation counts,
pupil size

Increased fixation (duration, count) during
high workload situation (during travel).
Significant PD changes during task (decrease
between pallet loading/unloa-ding activities
and travel loaded)

(Ulutas and Firat Ozkan, 2019) Warehouse forklift driver

MWL Fixation frequency, fixation
duration, saccade duration, saccade
amplitude, fixation/saccade ratio

Fixation duration/fixation frequency/saccade
amplitude/fixation-saccade ratio increased
with workload and saccade duration decreased
with high workload.

(Das et al., 2020) Construction

(Continued)
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TABLE 1 (Continued)

Techniques Concept studied DVs Results References Domain

MWL/engagement Mean PD, gaze entropy, EEG
(engagement index)

Gaze entropy and engagement index both
showed a significant negative correlation with
performance during surgeon task. Pupil
diameter (PD) was not significant (N.S.).

(Wu et al., 2021) Surgery

MWL Eye gaze (fixation, saccade,
entropy), PD

Bigger pupil diameter indicates higher mental
workload

(Zheng et al., 2022) Manufacture, logistic

EEG/EDA/PPG/questionnaires MWL EEG spectral features: Frontal &
Parietal Theta, parietal alpha
frequency bands (Workload index)

Increased theta band (frontal), decreased
alpha over parietal brain areas: increased EEG
workload index EEG workload index highly
correlate to subjective

(Aricò et al., 2015)

(Aricò et al., 2016)

Air traffic control

CL Features extract from physiological
signals (EEG: alpha, beta bands;
PPG, EDA) classified with NASA
TLX questionnaire+ predictive
model (deep neural network)

EEG predict cognitive load with 72% accuracy,
PPG and EDA led to 60% accuracy.
EEG+PPG+EDA led to 86% accuracy

(Shayesteh et al., 2023)

(Liu et al., 2021)

Construction

MWL EEG time frequency analysis,
engagement index (alpha, beta,
theta)

Engagement index reflect mental workload, it
increases when workload is high. Frequency
bands can be used to assess workload in field
study

(Chen et al., 2016)

(Saedi et al., 2022)

Construction

MWL EEG frequency bands: Delta, theta,
alpha, beta, gamma; Signal power
measurements, phase locking value

Higher brain activity in the beta2/theta bands
during more demanding task. Significant
brain activation in gamma rhythms reported.

(Kosti et al., 2018) Office Work

MWL Power spectral density of theta (θ)
waves

Positively correlated to workload (Iqbal et al., 2020) Chemical process control room

EDA/ECG/EEG/ST/

respiration/eye/questionnaire

MWL Average skin conductance Increased skin conductance activity during
high workload phase

(Elena and Anastasia, 2021) Aviation

MWL Skin conductivity response, mean
respiration rate, fixation duration,
pursuit distance, saccadic
amplitude

Machine learning framework
(physiological/subjective data) prediction of
operator performance reach 75%−83%
accuracy

(Zhang et al., 2020) Nuclear power plant control room

Salivary or biochemical

indices/ST/ECG

MWL HRV, Salivary amylase, facial
(nasal) temperature

RRI, salivary biomarkers, and nasal
temperature suggested as relevant indicators;
however, no specific directional relation to
MWL is reported. Increased salivary
NO3 concentration

(Murai, 2017)

(Kitamura et al., 2016)

Maritime

MWL Salivary cortisol Salivary cortisol not appropriate to evaluate
MWL (N.S)

(Zoaktafi et al., 2020) Power Plant

MWL Salivary cortisol, HRV Cortisol (N.S), pNN50, RMSSD decreased,
LF/HF increased. HR, Mean RR, SDNN, HRV
Index, TINN.

(Cinaz et al., 2013) Office work

(Continued)
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include mean R-R interval duration (RRI), the standard deviation
of R-R intervals (SDRR), the square root of the mean squared
differences of R-R intervals (RMSSD), and the proportion of NN50
to the total number of NN intervals (pNN50). Frequency-domain
metrics often include high-frequency (HF) power and the low-
frequency to high-frequency (LF/HF) power ratio. In non-linear
analysis, entropy indices are commonly used. These metrics exhibit
significant variations in both high workload situations and stress-
inducing contexts (Castaldo et al., 2015).

With regard to MWL specifically, Fallahi et al. (2016)
evaluated 16 urban traffic control center operators, using subjective
(NASA-TLX) and physiological (ECG, EMG) measurements.
They observed that increased traffic density (resulting in greater
monitoring workload) was associated with increased heart rate
(HR), modifications in HRV components (increased LF/HF ratio
and decreased SDNN, RMSSD, pNN50), and an increase in EMG
amplitude. The authors concluded that higher MWL contributes
to mental fatigue and stress, negatively impacting operators’
mental health.

Studies highlight:

• An increase in mean RRI in maritime environments (Murai,
2017),

• An increase in the LF/HF ratio during high-workload
tasks, including traffic control (Fallahi et al., 2016), office
work (Cinaz et al., 2013), maritime navigation and port
coordination (Kitamura et al., 2016; Murai et al., 2017), and
industrial activities (Lagomarsino et al., 2022),

• A decrease in parasympathetic HRV indicators (RMSSD,
pNN50, SDNN) in office tasks (Cinaz et al., 2013) and traffic
control (Fallahi et al., 2016),

• A reduction in non-linear HRV parameters (e.g., Shannon
entropy) during real-life surgical procedures (Dias et al.,
2019).

The review indicates that the ECG-derivedmeasures of interest,
which have demonstrated effectiveness in assessing MWL in real-
world conditions, are: HR, mean RRI, RMSSD, pNN50, SDNN,
LF/HF, and entropy measures. Thus, these measures can be used
for an effective assessment of MWL in real-world settings.

3.5 Eye-tracking and oculometric measures

Ocular data (pupil diameter, blink frequency, fixations, etc.)
are also reliable indicators of increased mental workload (MWL).
In recent years, oculomotor measurements (e.g., via smart glasses)
have become more prevalent due to their ease of use and
accessibility (Tao et al., 2019). Among the most commonly used
indicators are the number and duration of blinks, eye gaze (fixation
duration), and pupil diameter (PD).

Pupillometry, themeasurement of pupil diameter, is considered
a reliable method for assessing MWL in both laboratory and real-
world conditions (Fan et al., 2020; Tao et al., 2019). In industrial
environments, several studies have shown that increased pupil
dilation is correlated with higher MWL (Brunzini et al., 2021a,b;
Peruzzini et al., 2017, 2020). This phenomenon is influenced
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FIGURE 2

Descriptive analysis of the selected publications. (A) Cumulative number of publications per year and by sector of application. (B) Distribution of

techniques used in studies.

by a noradrenergic system known as the Locus Coeruleus (LC),
which acts as an inhibitory mechanism of the parasympathetic
oculomotor system (Laeng et al., 2012). The LC operates in two
modes: tonic (environmental exploration and novelty detection)
and phasic (focused processing of relevant stimuli—more complex

tasks result in greater pupil dilation; Aston-Jones and Cohen,
2005). Pupil dilation is thus linked to mental effort, task difficulty,
and physiological arousal levels (Rodríguez et al., 2015). It also
reflects cardiac variations (Murata and Iwase, 2000) and is
positively correlated with error rates, indicating higher MWL,
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TABLE 2 Technique used by order of importance (number of occurrences) in each application area.

Domain 1 2 3 4 5 6 7 8

Industry Eye data (7) ECG (5) Video (5) EDA (4) Respiration
(4)

Temperature
(2)

EEG
(2)

Salivary cortisol
(1)

Aviation EEG (3) ECG (2) EDA (2) Speech analysis
(1)

EMG (1) fNIRS (1) PPG
(1)

Temperature
(1)

Construction EEG (4) EDA (1) Eye data (1) PPG (1)

Maritime ECG (3) Salivary amylase
(1)

Salivary NO3 (1) Temperature
(1)

Surgery EEG (2) Eye data (2) Video/audio (1) ECG (1)

Office work Salivary cortisol (1) ECG (1) EEG (1)

Trafic
control

ECG (1) EMG (1)

as demonstrated by Gao et al. (2013) in a nuclear power plant
task simulation.

Blinks and eye gaze metrics are also utilized for MWL
estimation. In their review of oculomotormeasures in surgery, Naik
et al. (2022) noted that increased cognitive load is associated not
only with pupil dilation but also with a decrease in blink frequency,
consistent with previous findings in aviation (Bednarik et al., 2018;
Veltman and Gaillard, 1996; Zheng et al., 2012). They also observed
that experts (unlike novices) exhibit fewer fixations but with longer
durations. Furthermore, gaze entropy, i.e., the uncertainty in gaze
position at a given moment, tends to increase as task complexity
and cognitive demand rise, although some studies suggest divergent
results (Allsop and Gray, 2014; Di Nocera et al., 2007; Di Stasi et al.,
2016).

In summary, high mental workload tasks are generally
associated with:

• Increased pupil diameter (Naik et al., 2022; Srinivasan et al.,
2019; Zheng et al., 2022),

• Longer fixation duration and higher fixation frequency (Das
et al., 2020; Ulutas and Firat Ozkan, 2019),

• Greater saccade amplitude and a higher fixation-to-
saccade ratio,

• Shorter saccade duration (Das et al., 2020),
• Fewer blinks,
• Increased gaze entropy (Naik et al., 2022; Wu et al., 2021).

Most studies show statistically significant distinctions between
different MWL levels based on pupil diameter, fixation frequency
and duration, and blink rate and duration (Das et al., 2020).
These measures can be used alongside entropy measures to
evaluate MWL.

3.6 Electroencephalography (EEG)

Electroencephalography (EEG) is a direct tool for exploring
brain activity. EEG records electrical brain activity. Frequently
studied parameters include mean amplitude, mean amplitudes of
Event Related Potential (ERP) components, mean spectral power
in each frequency band, and power ratios (Alberdi et al., 2016).

Aricò et al. (2015) calculated a MWL index based on frequency
bands associated with MWL (frontal and occipital theta, parietal
alpha), integrating it into a classification model (Aricò et al.,
2014; Borghini et al., 2016). Machine learning techniques applied
to EEG are widely used for MWL evaluation (Aricò et al.,
2014; Kohlmorgen et al., 2007), although the need for frequent
recalibration may limit their operational use (Aricò et al., 2015).
Despite this, Aricò et al. (2016) demonstrated that real-time MWL
monitoring is feasible for air traffic controllers in highly realistic
simulation tasks by analyzing frontal theta and parietal alpha bands.
Increased MWL is associated with higher frontal theta power and
lower parietal alpha power, resulting in an EEGworkload index that
correlates strongly with subjective assessments.

In the construction industry, Shayesteh et al. (2023) used
a machine learning approach combined with physiological
measures (EEG, EDA, PPG) to evaluate MWL during human-
machine collaboration tasks. Their EEG-based model achieved
72% accuracy, PPG and EDA 60%, and the EEG+PPG+EDA
combination 86%. Liu et al. (2021) also confirmed the effectiveness
of EEG (temporal and frequency domains: alpha, beta, gamma)
in predicting MWL with high accuracy (81.91%) in human-robot
collaboration contexts.

Other studies validate the relevance of in situ EEG for
MWL assessment, such as in construction (Saedi et al., 2022).
Chen et al. (2016) demonstrated that an EEG engagement index
[beta power/(alpha power + theta power)] increases under high
MWL conditions. In programmers, Kosti et al. (2018) observed
increased theta and beta activity, linked to higher cognitive effort,
working memory, and concentration (Jensen and Tesche, 2002).
Additionally, Iqbal et al. (2020) reported that theta wave intensity
increases with workload, and alpha activity correlates with arousal
and workload: “a decrease in power spectral density of α is
associated with an increase in arousal, mental load, stress, and
anxiety” (Iqbal et al., 2020, p. 5).

EEG has the advantage of providing a direct measure of
neural processes compared to indirect techniques measuring blood
flow or metabolic activity (fMRI, fNIRS). It is highly sensitive to
changes in cognitive states and task difficulty (Antonenko et al.,
2010).

The results from studies using EEG indicate that the metrics
that have proven effective for assessing MWL in real-world
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settings include the EEG workload index, which increases as MWL
increases (Aricò et al., 2015; Chen et al., 2016), as well as neuronal
activity measurements in the frontal region, specifically theta and
beta bands, and alpha activity over the parietal brain, which also
appear to be reliable measures of MWL in the field (Kosti et al.,
2018; Aricò et al., 2016).

3.7 Electrodermal activity (EDA)

Sweating after a stressful event is one of the manifestations of
sympathetic nervous system (SNS) activation in a situation of high-
arousal. Electrodermal activity (EDA), also referred to as Galvanic
Skin Response (GSR) or Skin Conductance Response/Activity
(SCR/SCA), is used to measure this physiological response. EDA
is defined as a change in the electrical properties of the skin.
Since it is solely regulated by the SNS (without parasympathetic
innervation of the sweat glands), EDA is considered a “pure” index
of physiological arousal. In addition to GSR levels, EDA comprises
tonic and phasic components (SCR/SCL) and the mean, maximum,
or minimum amplitude of skin conductance peaks (Lim et al.,
1997). It has been widely used for a long time to quantify various
cognitive states such as stress and mental workload (Setz et al.,
2010).

In our corpus, seven studies employed EDA to assess MWL.
Elena and Anastasia (2021) examined flight simulator operators
under normal and degraded conditions, highlighting an increase
in skin conductance (average SC amplitude) during high-MWL
flight phases. Similarly, Lagomarsino et al. (2022) developed
a framework to analyze cognitive load in industrial assembly
tasks using video, ECG (HRV for mental effort), and EDA
(for stress). In this study, MWL and stress were measured
simultaneously through physiological sensors: the tonic (SCL)
and phasic (SCR) components of conductance showed significant
variations based on workload intensity (mean SCL value and
mean amplitude of SCR peaks). Shayesteh et al. (2023) assessed
the cognitive load of masons during human-robot interaction
in a virtual training environment. EEG, EDA, and PPG were
integrated into a deep neural network (DNN) to estimate
MWL: the EEG+EDA+PPG combination achieved 86% accuracy,
compared to 60% with PPG and EDA alone, and 72% with
EEG alone.

Brunzini et al. (2021b) proposed a protocol combining
multiple physiological data sources (EDA, ECG, pupillometry,
video, respiration) with subjective evaluations (NASA-TLX, NAS
stress scale) to differentiate stress and MWL. Their assessment
validated a workload evaluation model for industrial operators and
underscored its potential application by designers and engineers in
workload assessment and occupational disease prevention.

Zhang et al. (2020) also introduced a machine learning
framework to predict employee performance, including MWL,
based on physiological (electrodermal response, mean respiratory
rate, eye fixation duration, eye saccade amplitude) and subjective
(Halden Task Complexity Scale—HTCS) measures. Their model
achieved an accuracy between 75% and 83% using these data
(physiological MWL assessment techniques: eye-tracking, SCR),
integrated within an SVMmodel.

These studies demonstrate that electrodermal activity is a viable
measure for assessing mental workload. Therefore, key metrics of
interest for field evaluation include average SC amplitude, mean
SCL value and mean amplitude of SCR peaks (Elena and Anastasia,
2021; Lagomarsino et al., 2022).

3.8 Respiration

Respiration has also been considered a relevant parameter in
response to increasing task difficulty. In our sample, six articles
used respiration as an MWL indicator in real-world conditions,
often in conjunction with other physiological measures. The
literature emphasizes that the most pertinent respiratory index is
respiratory rate, commonly measured via a chest strap or inferred
from other physiological signals (Kuo and Chen, 2022). Several
studies show an increase in respiratory rate as task complexity
increases, particularly in air traffic control settings (Backs et al.,
2000; Brookings et al., 1996). This increase is attributed to
heightened metabolic demands associated with the effort required
by the task (Roscoe, 1992).

The study by Brunzini et al. (2021b), previously discussed,
incorporated respiratory monitoring and demonstrated that
increased mental effort led to an increase in respiratory rate and a
decrease in breathing depth (Roscoe, 1992). Additionally, Peruzzini
et al. (2017, 2020) integrated respiratory measurements along with
other indicators (ECG, skin temperature, posture, oculomotor
parameters) to assess MWL, stress, and fatigue. It appears that
respiratory rate and breathing depth are metrics of interest for
monitoring mental workload in the workplace.

3.9 Hormonal indicators (cortisol,
alpha-amylase)

Cortisol is a hormone secreted by the hypothalamic-pituitary-
adrenal (HPA) axis and plays a role in the body’s response to stress.
In the face of acute stressors, HPA activity rapidly increases, leading
to a sharp rise in cortisol levels (Chrousos, 2009). Cinaz et al.
(2013) measured MWL during routine office tasks using subjective
(NASA-TLX), objective (heart rate variability), and salivary cortisol
indicators, as well as performance-based measures. Although some
participants with high MWL showed elevated salivary cortisol,
no significant overall differences were observed across different
workload periods. The authors suggest that variations in salivary
cortisol are more pronounced in response to uncontrollable
and social-evaluative stressors (Dickerson and Kemeny, 2004).
Zoaktafi et al. (2020) also examined the relationship between
MWL and salivary cortisol in power plant technicians, finding
that despite high MWL levels, no correlation was observed
between salivary cortisol and subjective evaluations (NASA-TLX).
According to these studies, salivary cortisol may not be an
appropriate physiological assessment method for MWL, as it is
highly dependent on individual circadian rhythms, as well as
participants’ levels of fatigue, burnout, exhaustion (Chida and
Steptoe, 2009; Ying et al., 2011).
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Recently, salivary alpha-amylase (sAA) has emerged as a
novel biomarker for psychosocial and acute stress responsiveness
within the sympathetic-adrenomedullary (SAM) system (Nater and
Rohleder, 2009). It has also been used for MWL assessment in field
conditions. Murai (2017) combined salivary amylase/nitric acid
measurements with physiological parameters (heart rate variability,
nasal facial temperature) to assess MWL in a maritime bridge crew.
Kitamura et al. (2016) evaluated salivary NO3 concentrations, as
nitric oxide plays a role in various physiological processes (Caramia
et al., 1962). The advantage of this biomarker is that it reflects
endocrine rather than autonomic nervous system activity. The
findings of Kitamura et al. (2016) aligned with results obtained
from R-R interval (RRI) analysis, further validating this approach.
However, in field conditions, saliva sampling may be more complex
and prone to failure compared to simpler heart rate measurements.

Regarding hormonal indicators, salivary alpha-amylase and
salivary NO3 emerge as metrics of interest that can be used to assess
mental workload in the workplace.

3.10 Skin temperature

Facial skin temperature (ST) is also described as an indicator of
MWL. Several studies have observed a correlation between mental
load and a decrease in nasal temperature (Marinescu et al., 2018;
Murai et al., 2008; Or and Duffy, 2007), measured via infrared
thermography. According to Or and Duffy (2007), this decrease
is explained by vasoconstriction linked to stress or a negative
emotion, under the influence of the sympathetic nervous system
(Wallin, 1981). Shah et al. (2020) also observed, during a Stroop
test, a more pronounced vasoconstriction than during a memory
task (N-back) mobilizing MWL (Khaksari et al., 2019). This
study thus demonstrates that, like stress, high MWL can trigger
vasoconstriction and, consequently, a drop in body temperature.

Similar to other indicators previously discussed, variations in
skin temperature are associated with states of stress and anxiety
(McFarland, 1985). Alberdi et al. (2016) also point out that these
variations result from localized changes in blood flow, which
depend on the activity of the autonomic nervous system (ANS).
However, findings sometimes diverge between individuals. The
analyzed studies generally focus on mean, minimum, maximum,
or standard deviation values of skin temperature. The slope of
temperature variation is also used in order to reveal transient
temperature changes (Barreto et al., 2007).

In the maritime field, Murai (2017) measured the facial
(nasal) temperature of various crew members (captain, duty officer,
helmsman, pilot) and found that, when combined with HRV and
biochemical indices (amylase/nitric acid), it serves as a reliable
indicator of MWL. Murai et al. (2008) had already noted a decrease
in nasal temperature and an increase in the LF/HF ratio as workload
increased. Skin temperature is also used in field settings to quantify
MWL in industry (Peruzzini et al., 2017, 2020) and aviation (Elena
and Anastasia, 2021).

Peripheral vasoconstriction associated with increased MWL
can therefore induce variations in skin temperature. Variation
in nasal temperature may serve as a reliable indicator of
changes in mental workload, particularly when combined with
other measures.

3.11 Photoplethysmography (blood volume
pulse)

PPG is an optical technique that enables the acquisition of
a signal related to peripheral blood volume pulse (BVP). The
PPG waveform has been shown to have a good correlation with
the blood pressure waveform (Xing et al., 2019). It can also be
used to estimate heart rate variability (HRV). Commonly analyzed
parameters include BVP amplitude, heart rate (HR), and HRV
components (LF, HF, LF/HF).

In their study, Brunzini et al. (2021b) collected a PPG
signal to extract HR and inter-beat intervals (IBI), combining
these with other physiological (EDA, eye data) and subjective
(Numerical Analog Scale for stress and NASA-TLX for perceived
workload) measurements to propose a comprehensive framework
for assessing mental and physical load using portable sensors.
In aviation, Wang et al. (2022) also used PPG to derive HRV
as an indicator of MWL in pilots during flight simulation. In
the construction sector, Shayesteh et al. (2023) combined PPG,
EEG, and EDA with a deep neural network to evaluate human-
robot collaboration: PPG+EDA predicted cognitive load with 60%
accuracy, EEG alone reached 72%, and the combination of the three
measures achieved 78% accuracy.

Thus, it can be retained that features extracted from
physiological PPG signals (HR, HRV: IBI, pNN50/20) can be used
to effectively assess mental workload in field settings.

3.12 Functional near-infrared spectroscopy
(fNIRS)

Another measure of brain activity that has been validated for
MWL assessment is functional near-infrared spectroscopy (fNIRS).
This technique serves as a non-invasive and motion-tolerant brain
imaging method (Afergan et al., 2014; Solovey et al., 2009).
It utilizes near-infrared light to measure variations in cerebral
blood oxygenation, where oxyhemoglobin (HbO2) converts to
deoxyhemoglobin (HbR) during neuronal activity. By leveraging
the principle of neurovascular coupling, which posits that active
brain regions require increased blood flow due to higher metabolic
demand, fNIRS provides an indirect assessment of brain activity.

One of the primary cortical regions studied for MWL using
fNIRS is the prefrontal cortex. This area is associated with executive
functions involved in cognitive processing related to MWL (Ayaz
et al., 2012; Baddeley, 2012; Miller and Cohen, 2001). However,
the literature highlights that photon absorption may be affected by
hair, making fNIRS most reliable for regions such as the prefrontal
cortex, although other areas (e.g., the parietal cortex) also play a
role in workload assessment (Aricò et al., 2016).

fNIRS presents several advantages noted in the literature.
It is safe, portable, minimally affected by movement artifacts,
and does not require conductive gel or scalp abrasion. Unlike
electroencephalography (EEG), it is less sensitive to electro-
oculographic artifacts, environmental electrical noise, and facial
muscle activity (Aricò et al., 2016; Durantin et al., 2014).
Additionally, it offers a spatial resolution of ∼1 cm², superior to
that of EEG, and is suitable for simultaneous use with EEG (Ayaz
et al., 2012; Strangman et al., 2002).
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The dependent variable used by Ayaz et al. (2012) is the average
oxygenation change (HbO2-HbR) calculated using the Modified
Beer-Lambert Law (MBLL). These authors demonstrated that
fNIRS can be used in ecologically valid settings to assess the MWL
of air traffic controllers (ATC). They observed a more pronounced
increase in cerebral oxygenation in the anterior medial prefrontal
cortex as workload increased, confirming that activation in these
areas is a reliable measure of MWL in real-world conditions.
Notably, their study suggested a decline in fNIRS measures with
increased expertise and practice (e.g., piloting unmanned aerial
vehicles), illustrating that brain activation in these frontal regions,
linked to attentional and control processes, can serve as both an
indicator of operator expertise and a reflection of neuroplasticity
associated with training (Ayaz et al., 2012; Kelly and Garavan,
2005).

In an office task context, Midha et al. (2021) assessed MWL
variation and found an increase in oxygenated hemoglobin
and a decrease in deoxygenated hemoglobin during cognitively
demanding tasks. Their findings indicate that MWL can be
measured at the prefrontal level using fNIRS in office work
conditions, aligning with subjective assessments. This technology
has also been applied in the maritime sector to objectively assess
MWL for safety purposes (e.g., reducing errors and accidents).
For instance, Fan and Yang (2023) employed fNIRS to train a
predictive model based on an artificial neural network (ANN)
capable of identifying high mental load situations in seafarers.
The dependent variables considered included HbO2, HbR,
and total hemoglobin (Hb) recorded at the prefrontal cortex.
Results indicated that these psychophysiological data could
estimate MWL with 95% accuracy. However, it is important
to note that a study has shown that fNIRS measures in air
traffic control (ATC) tasks appeared to plateau, whereas
subjective measures (Instantaneous Self-Assessment, ISA;
Tattersall and Foord, 1996) continue to increase with task
complexity (Harrison et al., 2014). This observation illustrates
the complementarity of objective and subjective approaches in
cognitive state assessment.

Durantin et al. (2014) emphasize that, contrary to the
hypothesis that the autonomic nervous system (ANS) and the
central nervous system (CNS) reach a saturation point when
demands exceed available resources, cognitive resources follow
a quadratic pattern similar to the inverted U-curve proposed
by Yerkes and Dodson (1908). Thus, the performance decline
followingmental overload is attributed to reduced neuronal activity
in the prefrontal regions, particularly in the dorsolateral prefrontal
cortex (DLPFC). This work shows that it is possible to assess
MWL both centrally and at the level of the ANS by probing
neurophysiological activity. Indeed, as mentioned above, MWL
exerts an influence on ANS activity, which can be measured
through heart rate variability (HRV; Fallahi et al., 2016), pupil
size (Tsai et al., 2007), electrodermal activity (Elena and Anastasia,
2021), respiration (Backs et al., 2000), biochemical markers (Murai,
2017), or temperature (Murai et al., 2008), all of which are regulated
by the ANS and are involuntary reactions. MWL also affects the
CNS, as demonstrated by neuronal activity measurements obtained
via EEG or fNIRS (Midha et al., 2021; Saedi et al., 2022).

In summary, it can be retained that fNIRS is a reliable technique
for assessing mental workload in field settings, with HbO2 and HbR
emerging as key metrics of interest.

3.13 Electromyography (EMG)

Measurements of electrical muscle activity (EMG) are
frequently associated with MWL. For instance, Fallahi et al. (2016)
assessed the MWL of 16 road traffic control center operators
during periods of rest, low traffic density, and high traffic density,
combining physiological (HRV, EMG) and subjective (NASA-TLX)
measures. Their findings indicate an increase in heart rate (HR),
the LF/HF ratio, and the EMG amplitude of the trapezius muscle as
traffic density increased. The increase in workload (both physical
and mental) results in intensified muscle contraction (O’Donnell
and Eggemeier, 1986).

Furthermore, the placement of EMG electrodes on the
trapezius muscle (at the shoulder) is also used as an indicator
of emotional stress (Cacioppo and Tassinary, 1990; Wijsman
et al., 2010). Lastly, Hancock et al. (2021), in a review on MWL
assessment methods, highlight that EMG measurements serve as
a valuable tool for examining cognitive states related to stress,
tension, and mental workload.

EMG amplitude at the trapezius muscle is a reliable and
indicative measure of mental workload level in the workplace.

3.14 Speech analysis

Finally, some studies rely on speech analysis (loudness,
fundamental frequency, speech rate, etc.) to detect signs of
cognitive overload. However, this remains rare in MWL research,
and there is still no clear consensus on the most robust vocal
indicators. In the studied sample, only one research study (Cosić
et al., 2019) used speech analysis to identify high MWL phases
in air traffic controllers (ATC) during a simulation task. The
authors combined several MWL assessment techniques and based
their approach on the premise that voice analysis is considered
a non-invasive method for measuring various cognitive states
(stress, fatigue, MWL; Greeley et al., 2006; Whitmore and Fisher,
1996).

Speech production—being a complex process that mobilizes
both the central nervous system and the peripheral nervous
system—the latter depending notably on the autonomic nervous
system (ANS)—vocal modifications can reflect variations in
sympathetic activity. Cosić et al. (2019) emphasize that cognitive
overload can be understood as a form of stress, aligning
with the definition proposed by Murray et al. (1996, p. 5):
“Stress is a psycho-physiological state characterized by subjective
strain, dysfunctional physiological activity and deterioration of
performance.” In other words, MWL constitutes an additional
demand imposed on the cognitive system, reinforcing the
idea that a stressful context often results in alterations in
vocal production (Patil et al., 2013; Womack and Hansen,
1999).
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3.14.1 Vocal markers of sympathetic activity
Various speech characteristics, such as vocal intensity (mean,

median), spectral parameters (FO = fundamental frequency;
MFCC = Mel Frequency Cepstral Coefficients, jitter, etc.), or
speech rate (number/mean of voice segments per second), are used
to describe the speech signal. Spectral and autocorrelation analyses
are employed to assess indices of sympathetic activity.

In the literature, fundamental frequency (FO) and vocal
intensity (loudness) are particularly associated with sympathetic
activity, increasing as sympathetic activation intensifies (Cosić
et al., 2016). Similarly, an increase in cognitive load has already
been linked to a increase in speech rate andmean FO (Scherer et al.,
2002), with similar results observed for stress (Giddens et al., 2013;
Lu et al., 2012; Wittels et al., 2002).

3.14.2 The loudness mean di�erence (LMD)
indicator

In their study, Cosić et al. (2019) extracted 26 vocal
characteristics and focused on the difference in mean vocal
intensity (LMD = loudness mean during a high-load phase
– loudness mean during a low-load phase). According to
them, a low LMD reflects lower sympathetic activity and a
better ANS balance. Consequently, individuals exhibiting this
characteristic may be better suited for demanding jobs, such
as piloting or air traffic control. In summary, it appears
that speech features (voice fundamental frequency, loudness,
speech rate) are effective for assessing mental workload in
field conditions.

4 Discussion

The main objective of this review was to identify studies
conducted in the field or under field-like conditions that assess
mental workload (MWL) using neurophysiological measures. The
underlying goal was to determine the most reliable and valid
indicators for objectively estimating MWL in real professional
contexts. Indeed, neurophysiological measurements have the
advantage of not interrupting workers during task execution and
overcoming the limitations inherent to delayed self-assessments
(subjective biases, inaccuracies, etc.), with subjective measures (e.g.,
NASA-TLX) remaining widely used.

One of the initial concerns was the actual use of these
measurement methods in real-world settings, particularly
considering certain constraints: acquisition costs, complex data
analysis, relative intrusiveness, etc. However, results indicate that
these techniques are effectively implemented in professional
environments and are becoming increasingly accessible
with technological advancements, such as miniaturization,
smartwatches, and wearable sensors.

Numerous studies highlight the relevance of cardiovascular
indicators, particularly electrocardiogram (ECG) and heart rate
(HR), which are relatively low-cost and minimally intrusive.
When combined with subjective scales (e.g., NASA-TLX), they
constitute robust tools for MWL assessment in professional
settings (Jung and Jung, 2001). The review also highlights
other techniques:

• Monitoring of ocular activity (pupil diameter, blinks,
fixations, etc.),

• Measurements of brain activity (EEG, fNIRS),
• Electrodermal activity (EDA),
• Respiration (frequency, amplitude),
• Hormonal indicators (cortisol, salivary amylase),
• Skin temperature (facial region, nose),
• Blood volume pulse (BVP) measured by

photoplethysmography,
• Electrical muscle activity (EMG),
• Speech analysis.

In general, these different approaches are frequently combined
with subjective scales (e.g., NASA-TLX, ISA) to leverage the
complementarity between objective measurements and workers’
self-reported perceptions. Table 2 illustrates the various techniques
used across the different work domains represented in the review
and that can be applied in the field. Overall, it appears that cardiac
activity measures, eye-tracking, and brain activity measurement
techniques account for nearly half of the assessment methods
used. For field evaluation, it would be appropriate to use one or
more of these techniques in combination with subjective measures.
Studies emphasize that certain physiological metrics may plateau
as MWL increases, whereas subjective measures continue to evolve
(Harrison et al., 2014). There is no “perfect measure” of mental
workload: each indicator (ECG, EEG, fNIRS, EDA, etc.) has
its own advantages and limitations (intrusiveness, sensitivity to
environmental factors, cost, etc.). Studies converge on the necessity
of a multimodal approach, integrating multiple physiological
measurements and subjective self-assessments to achieve a more
accurate estimation of actual MWL (Charles and Nixon, 2019;
Lehrer et al., 2010; Sriranga et al., 2023; Hancock et al., 1985).

4.1 Key indicators

The reviewed studies highlight specific physiological indicators
that are particularly sensitive and consistently associated with
MWL in field settings. Among them, ECG, eye data, and brain
activity measures (EEG and fNIRS) together represent over half
of the techniques employed in the reviewed literature. These
modalities appear especially promising for assessing MWL in real-
world environments.

For ECG, reliable metrics include heart rate (HR) and heart
rate variability (HRV) indices such as mean RRI, LF/HF, RMSSD,
pNN50, and SDNN, as well as non-linear indicators like Shannon
entropy (Cinaz et al., 2013; Fallahi et al., 2016). These metrics are
frequently used and have demonstrated robustness in detecting
MWL variations.

Fo eye data, several studies consistently report that pupil
diameter, blink rate, and fixation frequency and duration are
sensitive to changes in MWL (Naik et al., 2022; Das et al.,
2020). These indicators can be complemented by entropy-based
gaze measures, which have also shown promising results in
recent studies.

For EEG, spectral power in the theta and beta bands over the
frontal cortex, alpha power over parietal regions, and the EEG
workload index are repeatedly identified as reliable neurometrics

Frontiers inNeuroergonomics 13 frontiersin.org

https://doi.org/10.3389/fnrgo.2025.1584736
https://www.frontiersin.org/journals/neuroergonomics
https://www.frontiersin.org


Diarra et al. 10.3389/fnrgo.2025.1584736

for MWL assessment in real-world tasks (Aricò et al., 2015; Kosti
et al., 2018; Saedi et al., 2022).

Regarding electrodermal activity (EDA), metrics such as
average SC amplitude, mean SCL, and SCR peak amplitude
have demonstrated consistent associations with MWL (Elena and
Anastasia, 2021; Lagomarsino et al., 2022). Similarly, respiratory
rate and breathing depth are valuable indicators for monitoring
MWL at the workplace (Brunzini et al., 2021b; Roscoe, 1992).

Although hormonal markers such as salivary alpha-amylase
and cortisol have been explored (Cinaz et al., 2013; Murai,
2017), the latter presents mixed findings and is more susceptible
to circadian and emotional variability. In contrast, salivary
NO3 and alpha-amylase have emerged as more promising for
field assessment.

Skin temperature variation, particularly nasal temperature, may
also serve as a reliable MWL indicator, especially when combined
with other measures (Murai et al., 2008).

From photoplethysmography (PPG), extracted features such
as inter-beat interval (IBI) and pNN50 can effectively reflect
MWL levels. EMG amplitude at the trapezius muscle is another
robust indicator, particularly under combined physical and
cognitive demands.

For brain hemodynamic activity, fNIRS has proven to be a
reliable technique, with HbO2 and HbR identified as relevant
metrics (Ayaz et al., 2012). Lastly, speech features, including
fundamental frequency, loudness, and speech rate, are effective in
evaluating MWL in field conditions (Cosić et al., 2019).

To help guide researchers and field practitioners in selecting
appropriate methods, Table 2 summarizes which techniques were
most frequently applied across different work domains in the
reviewed studies. This table can support informed decisions when
choosing the relevant physiological metrics for MWL assessment in
operational settings.

It is also relevant to compare the findings from this review
with those of previous reviews that included both laboratory and
field studies. Many of the physiological techniques and metrics
identified here, such as heart rate variability (HRV), EEG spectral
power in theta and beta bands, electrodermal activity (EDA), and
oculomotor indicators, have also been reported as effective for
MWL assessment in prior systematic reviews that covered both
laboratory and field-based studies (Charles and Nixon, 2019).

However, Charles and Nixon (2019) emphasize the inherent
limitations in generalizing laboratory data to field applications.
For example, Wilson (1992) observed that heart rate variations
can reach up to 50% in real-world settings, compared to only
10% in the lab. Similarly, earlier studies have shown that
correlations between lab and field physiological data tend to be
weak (Johnston et al., 1990). This discrepancy highlights the
impact of contextual complexity in operational environments
and the necessity of distinguishing between simulated and
real tasks.

Therefore, this review offers a complementary perspective
by focusing solely on field-based studies. It provides a targeted
synthesis of physiological techniques that have demonstrated
reliability and applicability in real-world working conditions,
thus helping bridge the gap between experimental research and
operational practice.

4.2 Links between MWL and stress

This review highlights that many physiological metrics used to
assess MWL are also applied to stress evaluation. Some authors
even consider cognitive overload as a form of stress (Cosić
et al., 2019). Several studies suggest that an excessive MWL
level negatively impacts performance, increases the risk of errors
and psychological disorders (burnout, emotional distress), and
adversely affects workers’ health (Leslie and Hutchinson, 2018; Qu,
2013; Das et al., 2020; Han et al., 2017; Rusnock and Borghetti,
2018).

MWL and stress appear to share partially overlapping
neurophysiological mechanisms and physiological markers. Similar
variations in the sympathovagal ratio (LF/HF), pupil size, brain
activity (decrease in alpha, increase in beta), and skin temperature
have been observed in both stressful situations and high mental
workload conditions (Alberdi et al., 2016; Tuscan et al., 2013).
Cosić et al. (2019) suggests that the physiological consequences
of MWL on speech features are comparable to those observed in
stressful situations, particularly through the overactivation of the
sympathetic branch of the ANS. MWL and stress exert similar
effects on the autonomic nervous system, and several studies
acknowledge that excessive cognitive load can induce stress in
workers (Cinaz et al., 2013).

However, the literature emphasizes the need to clearly
distinguish MWL from stress. Some studies have demonstrated
distinct vocal profiles depending on whether it is “psychological
stress” or high cognitive load (Scherer et al., 2002). Indeed, stress
can occur even with a low MWL, while a highly demanding
task does not necessarily trigger significant stress (Gaillard, 1993;
Causse et al., 2022). It is therefore essential to closely examine
the neurophysiological substrates and the distinct (or shared)
mechanisms underlying each of these states.

Alsuraykh et al. (2019) addressed this issue and demonstrated
that stress and MWL are highly interconnected. They further note,
as previously mentioned, that their respective measures influence
one another. In fact, the authors highlight similarities between Cox
(1978) transactional stress theory and Wickens (2008) framework
forMWL. Causse et al. (2022, p. 1012) observe thatMWL and stress
are often indistinctly referred to in the literature under the term
“mental stress.”

The prefrontal cortex (PFC) plays a central role: it is both a
key component of executive control (and thus working memory,
which is highly engaged under increased MWL) and is involved
in stress regulation (through modulation of amygdala and locus
coeruleus responses; Bremner, 2006; Pozzi and Matteoli, 2018;
Dehais et al., 2020). Increased MWL leads to the recruitment of the
lateral frontoparietal network, while stress induces increased ECN
(executive control network) activity (Causse et al., 2022). Similar
to stress, increased MWL also deactivates the PFC (Dehais et al.,
2020). This suggests thatMWL and stress share common functional
structures at the brain level, which is reflected in their measurement
through overlapping physiological metrics.

Furthermore, it has been shown that dopamine (DA) mediates
the cognitive effort exerted in task execution (Westbrook and
Braver, 2016). When its release increases, PFC deactivation is
observed, similar to what occurs following a stressful situation. The
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PFC operates under the quadratic influence of neuromodulators
(dopamine, noradrenaline), which exhibit an inverted U-shaped
relationship with these neurons (Dehais et al., 2020). These key
neuromediators may thus be involved in both stress and MWL
situations (Arnsten, 2009; Dehais et al., 2020). These studies
demonstrate the interrelations between these two cognitive states.

It remains necessary to clarify the operationalization of
MWL and stress in measurement protocols and to consider
explicitly assessing the stress component using additional dedicated
indicators or questionnaires during MWL evaluation. To do so,
researchers should clearly define in advance whether the goal
is to assess MWL, stress, or both. When the primary focus is
on MWL, efforts should be made to minimize the induction of
stress during experimental tasks. However, given the conceptual
and physiological overlap between the two constructs, it may
be necessary, when stress cannot be excluded, to evaluate its
contribution. This can be achieved by combining physiological
indicators with validated stress questionnaires such as the STAI
(State-Trait Anxiety Inventory), particularly when MWL is
manipulated experimentally. This approach, already recommended
in the literature (Alsuraykh et al., 2019), would help to better
disentangle the respective contributions of MWL and stress in
applied settings.

4.3 Limitations of the review and future
directions

This review has certain limitations, including its restriction to
three databases and the use of specific keywords (which may have
excluded some work). In particular, the combined use of the terms
“mental” and “cognitive workload” within a single search query
could have significantly limited the number of retrieved results.
Nevertheless, it offers a substantial overview of the published
research and proposes a synthesis integrating the variety of
physiological measures studied. In the future, a more in-depth
analysis could consist of comparing the predictive validity of the
different metrics (ECG, EEG, EDA, etc.) to discriminate various
levels of MWL, taking into account the level of stress and inter-
individual differences (experience, age, etc.).

5 Conclusion

Mental workload (MWL) is a critical concern for employee
health, safety, and performance across a wide range of sectors,
including industry, transportation, and healthcare. This systematic
review highlights the potential of physiological measures,
such as cardiac, cerebral, electrodermal, respiratory, and
oculomotor signals, for assessing MWL directly in real-world
settings, thus offering a valuable complement to traditional
subjective approaches.

Recent progress in wearable technologies and portable sensors
has significantly enhanced the feasibility of real-time physiological
monitoring in the workplace. In particular, emerging studies
employing predictive modeling techniques, such as artificial
intelligence and classification algorithms, have demonstrated that
it is possible to detect and predict states of cognitive underload

and overload from physiological signals like EEG, EDA, and PPG
(Zhang et al., 2020; Shayesteh et al., 2023; Liu et al., 2021). When
coupled with neurophysiological data, these methods show strong
potential for implementing adaptive systems capable of monitoring
MWL continuously and preventing human error in high-risk
environments such as nuclear power plants or construction sites.

From a prevention perspective, however, it remains essential to
combine these objective measures with subjective assessments and
performance-based indicators. This multimodal approach allows
for a more comprehensive understanding of mental demands by
accounting not only for the physiological cost of tasks but also for
individual perception and environmental context.

Finally, future research should prioritize the simultaneous
integration of multiple physiological measures, the development
of standardized in situ protocols, and a deeper investigation
into the relationship between MWL and stress, two constructs
that, while closely linked, must be clearly distinguished in
operational evaluations.
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