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Introduction: The EmotiBit photoplethysmography (PPG) device allows
user-owned data collection for measures of cardiovascular activity (CVA) and
electrodermal activity (EDA) in naturalistic settings. The aim of this study was
to evaluate the validity of this device for collecting high-quality data while
participants experience varying levels of cognitive workload.

Methods: Using a standardized criterion validity protocol, recordings of 15
participants performing a cognitive workload task were compared for the
EmotiBit and a reference electrocardiography (ECG) device (BITalino PsychoBit).
Multiple preprocessing pipelines and a signal quality check were implemented.
Parameters of interest including heart rate (HR), heart rate variability (HRV)
measures, skin conductance level (SCL), and skin conductance response (SCR)
measures were assessed using Bland-Altman plot and ratio (BAr) analyses, as well
as cross-correlations of the EDA signal time series of both devices.

Results: BAr results indicated good agreement between devices regarding HR
with an average di�erence of 1–2 beats per minute (bpm). HRVmeasures yielded
an insu�cient BAr, albeit most data points lay within a priori boundaries of
agreement. EDAmeasures yielded insu�cient agreement for comparing SCL and
SCR number and amplitude.

Discussion: The results are comparable to the validation of similar wearable
PPG devices and extend the validation of the EmotiBit by assessing the acquired
signals during varying levels of cognitive workload. While the device may be
used to collect HR for scientific data analysis, its quality regarding HRV and EDA
measures is not comparable to a standard ECG.

Significance: This study provides the first systematic validation following a
standardized protocol of the EmotiBit PPG device relative to an ECG when
considering recordings collected during cognitive workload induction.

KEYWORDS

photoplethysmography, electrocardiography, electrodermal activity, heart rate, skin

conductance, cognitive workload

1 Introduction

The introduction of consumer-grade wearable sensors has extended physiological

monitoring beyond clinical applications to everyday, occupational, and consumer settings.

These devices offer the potential to assess cardiovascular activity (CVA), cognitive

workload, and stress in real-time, providing valuable insights for domains such as
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human performance, neuroergonomics, and adaptive work

environments (Brandt-Rauf and Ayaz, 2024; Hogervorst et al.,

2014). The most prominent way for mobile devices to assess

physiological signals is photoplethysmography (PPG). This

method non-invasively captures the blood volume changes in

the microvascular tissue of the skin by detecting changes in light

transmission from a light-emitting diode (LED) to a photodiode

(Peláez and Villegas, 2007). PPG is well-suited for wearable devices

as it is cost-effective in production and can be worn flexibly without

gel or any other supporting material, unlike the electrodes utilized

during electrocardiography (ECG). Although ECG is superior in

detecting CVA and related phenomena and remains the standard

in medical settings, PPG is considered sufficient for most consumer

uses like measuring heart rate (HR), heart rate variability (HRV),

or oxygen saturation (Huhn et al., 2022).

Wearable sensors are increasingly applied in neuroergonomics

to unobtrusively monitor physiological correlates of mental effort,

fatigue, and stress in naturalistic work environments. While some

PPG wearables have medical certifications (e.g., Empatica series)

and may thus be considered for clinical use cases, the data is

not solely user-owned, and algorithms are usually not published.

The importance of open-source PPG software and hardware is

apparent for applications in science and a focus on data privacy.

Open-source wearables like the EmotiBit attempt to bridge the

gap between cost-effective consumer-grade affordability and high-

quality research-grade data acquisition (e.g., Empatica series,

BIOPAC series, BITalino series). Such devices enable customizable

data pipelines, algorithmic transparency, and cost-effective large-

scale data collection—critical aspects when monitoring cognitive

states in real-world work environments (Langevin et al., 2021; van

Lier et al., 2020).

The EmotiBit has already gained some popularity. Numerous

studies utilized the EmotiBit in applied scenarios (Gao and Zhou,

2022; Lobosco, 2023; Morris et al., 2023; Olivaz and Kulgod, 2023;

Pelc et al., 2023; Reyes-Consuelo et al., 2023; Rizzi et al., 2023).

Guarducci et al. (2025) included the EmotiBit in a comprehensive

technical review of wearables detailing software and hardware

features. The developer team released a validation of the device

utilizing simultaneous data collection with an ECG device (the

Brain Products V-Amp) from participants watching videos in

sitting and standing positions (Montgomery et al., 2024). A recently

published study by Haratian (2024) focusing on utilizing body-

sensing technologies to assess user experience and safety during

human-robot interaction employed both Empatica and EmotiBit

devices and compared the recorded HR and galvanic skin response

(GSR) data. On a descriptive level focusing on mean values over

time, they found that HR detection seemed similar in devices,

whereas GSR recordings seemed to differ substantially with the

EmotiBit not correctly capturing the changes. Prior validation work

furthermore includes a study by Langevin et al. (2021). The authors

validated the EmotiBit PPG data of CVA and electrodermal activity

(EDA) with a reference ECG device during resting state recordings.

They utilized a standardized validation protocol for physiological

signals from wearable technology (van Lier et al., 2020). It focuses

on signal comparison, employing cross-correlations and inspecting

parameters of interest commonly derived from the physiological

signals. While the EmotiBit has shown promise in resting-state

evaluations of HR, this prior validation work revealed limitations in

HRV and EDA measurement accuracy (Langevin et al., 2021). No

studies to date have systematically validated the EmotiBit during

cognitive workload induction against a reference device. Given the

increasing use of wearable sensors in applied neuroergonomics and

workload monitoring, assessing the EmotiBit under task-induced

cognitive workload is essential to establish its reliability in applied

contexts such as neuroergonomics.

This study aims to assess the validity of the EmotiBit wearable

sensor for measuring cardiovascular activity (HR and HRV)

and electrodermal activity (EDA) under task-induced cognitive

workload, following the standardized protocol proposed by van

Lier et al. (2020) and extending the validation studies of the

Emotibit device (Langevin et al., 2021; Montgomery et al., 2024).

We specifically evaluated the EmotiBit’s PPG sensor performance

compared to an ECG and EDA system (BITalino PsychoBit; Batista

et al., 2017) across two workload levels, while positioning the sensor

on the upper arm—a location more practical for field applications

but potentially challenging for signal quality (Kasos et al., 2020).

2 Methods

2.1 Mobile multi-sensor wearable device

The EmotiBit (https://www.emotibit.com) is an open-source,

mobile wearable capable of measuring physiological andmovement

data with 16 signals including PPG measurements, EDA,

temperature, accelerometer, and gyroscope. We used the device

built with the Arduino FeatherWing module (featherwing version

“Adafruit Feather HUZZAH32,” hardware version “V05c”). The

device can be attached at multiple different body locations

through differently sized Velcro straps. All data are recorded

on a built-in 32Gb-sized SD card and are thus 100% user-

owned. Wireless data streaming options are also possible via

a local network for live analysis and evaluation of signals’

quality. The EmotiBit stores three distinct wavelengths as

separate PPG signal streams. The wavelengths are those of

green, red, and infrared light as measured by the MAX30101

sensor (see Figure 1). With an alternative open-source firmware

version (“EmotiBit_stock_firmware_PPG_100Hz,” version 1.9.0;

https://github.com/EmotiBit/EmotiBit_FeatherWing/releases), the

sampling frequency of the PPG can be enhanced to 100Hz as

opposed to the default firmware with 25Hz. The present study

focuses exclusively on the PPG and EDA data, which were recorded

at a sampling frequency of 100Hz and 15Hz, respectively. The

recordings were performed with the corresponding oscilloscope

and data parser software. Timestamps of experimental events and

recorded data of the EmotiBit as well as the reference ECG device

were synchronized using Lab Streaming Layer (LSL; Kothe et al.,

2024; Kothe, 2025).

2.2 Reference device

The BITalino PsychoBit (BITalino [6.2] v5.2; https://www.

pluxbiosignals.com/collections/bitalino/products/psychobit) is a

data acquisition tool that is utilized in the measurement of various

physiological parameters, including ECG, EDA, respiration, pulse
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FIGURE 1

Light wavelengths of EmotiBit PPG sensor. The absorption spectra of oxygenated hemoglobin (HbO) and deoxygenated hemoglobin (Hb)
represented by the molar extinction coe�cient (cm−1/M) on a logarithmic scale is plotted against wavelength (nm) with highlighted bands
corresponding to specific light wavelengths used in the MAX30101 sensor (values derived from SparkFun Photodetector (MAX30101) Hookup Guide
- SparkFun Learn, 2025). The highlighted bands include the wavelengths measured of the green light spectrum (530–545nm), the red light spectrum
(650–670nm), and the infrared light spectrum (870–900nm) built into the sensor. Reproduced from Prahl (1999).

rate, and light. In the present study, the BITalino PsychoBit was

employed for the measurement of ECG and EDA. The ECG

and EDA data were recorded at a sampling rate of 1,000Hz

using the corresponding recording software OpenSignals (version:

1.1; https://www.pluxbiosignals.com/pages/opensignals).

2.3 Participants

A total of 18 participants were recorded for this study (nine

female, nine male; 48.67± 13.95 years old). They were recruited via

the participants database of the research team. Three participants

were excluded prior to analyses: for one participant, we experienced

technical difficulties with the stimulus presentation; for two

participants, the EmotiBit recording with LSL failed due to network

issues. Thus, the data of 15 participants (46.87± 14.40 years; seven

females, eight males) was used for analyses.

2.4 Experimental procedure

Following the recruitment, participants signed informed

consent and were informed about the study’s procedure. The

study was approved by the ethics commission of the University of

Tübingen (Germany) and conducted according to the Declaration

of Helsinki (502/2023BO2; the preregistered study design can be

found at https://doi.org/10.17605/OSF.IO/AUVDR). Firstly, the

study commenced with a pre-test in the form of an adapted

Wiener Matrices Test (WMT; Formann, 1979). After completing

theWMT, the participants were equipped with the sensors. For this

study, only the CVA and EDA activity will be reported. However,

additional research questions involved electroencephalography

(EEG) data of a 64-channel gel-based system and a commercial

PPG-Sensor (Fitbit Sense 2). After all the sensors were set up, the

main experiment and physiological data acquisition commenced.

Participants completed an operation span task in two difficulty

levels counterbalanced across participants. The task consisted

of a calculation component interjected with a delayed recall

component (Daneman and Carpenter, 1980; Scharinger et al.,

2017; Turner and Engle, 1989). The recall component involved the

memorization of sequences of individual digits of varying lengths,

whilst the calculation component necessitated the performance

of calculations (addition, subtraction, multiplication) within each

round. The dual nature of this task is known to impose significant

demands on cognitive processing and, by extension, on cognitive

workload (Scharinger et al., 2017). For inducing two distinct

difficulty levels—easy and hard runs— the complexity of the

calculations was varied (one-digit vs. two-digit numbers) and the

length of sequenced numbers presented per recall phase (two vs.

four numbers in a row). In addition, an auditory oddball task was

presented throughout both conditions (Squires et al., 1975). The

participants were not instructed to respond to the auditory task but

rather to listen to the sounds passively as an additional measure

of attentional resources. Finally, the participants completed the

second half of the WMT as a post-session measurement (see

Figure 2).
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FIGURE 2

Experimental pocedure. (A) The timeline of the experimental procedure is illustrated with time estimates for each phase. The experimental block
consisted of an operation span task with an easy and hard workload condition counterbalanced in order across participants. Note that the adapted
Wiener Matrices Test had a fixed duration while the other time periods were dependent on the individual speed of completion. (B) The experimental
blocks are illustrated for both workload conditions. During the visual OSPAN task, participants performed mental calculations and delayed recalls and
responded with button presses (left or right) counterbalanced across participants. This was interjected with three types of questionnaires to assess
current mental load, stress, and emotional state. An auditory implicit oddball task was presented and implicitly attended to with counterbalanced
frequencies for oddball and frequent sounds and jittered inter-stimulus intervals. BFI10, Big Five Inventory-10 (Rammstedt et al., 2017); ISI,
inter-stimulus interval; MDBF, German Multidimensional Mood State Questionnaire (Hinz et al., 2012); NASA-TLX, NASA Task Load Index (Hart and
Staveland, 1988); OSPAN, operation span task; PSQ, Perceived Stress Questionnaire (Fliege et al., 2001); Stanford Scale, Stanford Sleepiness Scale
(Hoddes et al., 1972); WHO5, WHO-5 WellBeing Index (Brähler et al., 2007).

2.5 Sensor positioning

The EmotiBit was positioned on the inner aspect of the

left arm at the level of the biceps. The veins beneath the

skin were identified and the EmotiBit was positioned above

them for optimal signal detection (see Figure 3). This body

location allows for comfortable placement without impeding

natural movements. The PsychoBit ECG configuration comprised

three electrodes: two positioned beneath the left and right

clavicular bones and a reference electrode on the left elbow

bone. The EDA sensors were adhered to the left palm (see

Figure 3).

2.6 Data analysis

We compared both the EDA and CVA as measured by the

EmotiBit and PsychoBit. For analysis, the python library neurokit

(version 0.2.10; Makowski et al., 2021) was primarily used and

multiple configurations of preprocessing steps were tested. The

conditions of the experimental task were assessed separately.

2.6.1 Preprocessing pipelines
To assess the comparability of the measures between devices,

we implemented several preprocessing pipelines derived from
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FIGURE 3

Picture of the sensor positioning at the arm. The EmotiBit device was placed on the upper arm and the PsychoBit EDA sensors were adhered to the
left palm. Additionally, the PsychoBit pulse sensor was attached to the index finger and a consumer wearable (Fitbit Sense 2) was positioned above
the wrist, albeit not reported in the present study.

FIGURE 4

Processing pipelines for CVA and EDA signals. The processing pipelines are depicted for ECG (blue), PPG (red), and EDA (green) data. For data
cleaning, signal decomposition of the EDA, and peak detection, various methods were tested. ECG, electrocardiography; EDA, electrodermal activity;
PPG, photoplethysmography; RMSSD, root mean square di�erence of the successive di�erences; SCL, skin conductance level; SCR, skin
conductance response; SD, standard deviation.

Frontiers inNeuroergonomics 05 frontiersin.org

https://doi.org/10.3389/fnrgo.2025.1585469
https://www.frontiersin.org/journals/neuroergonomics
https://www.frontiersin.org


Vorreuther et al. 10.3389/fnrgo.2025.1585469

previous studies for both EDA and CVA signals (for details, see

Figure 4; Table 1).

2.6.1.1 CVA
For the CVA signal, the PsychoBit ECG signal was

downsampled to match the 100Hz sampling frequency of

the EmotiBit PPG and allow for accurate comparison. For

comparative analysis with the ECG, we averaged the wavelengths

to one PPG signal stream (Orphanidou et al., 2015). We followed

various processing pipelines for the CVA data of both devices, as

detailed in Figure 4 and Table 1. To ascertain the parameters of

interest, the distances between two successive R-peaks from the

QRS complexes (RR-interval) in the ECG signal were determined.

Concurrently, the corresponding time intervals between the top

of two peaks in the blood volume pulse signal (PP-interval) from

the PPG signals were detected. The parameters of interest for

subsequent comparative analysis were the following: (1) The

mean RR/PP intervals which were converted to HR in beats

per minute (bpm), (2) the standard deviation (SD) of RR/PP

intervals, and (3) the root mean square of the successive differences

(RMSSD) of RR/PP intervals, which is related to HR variability

(Kim et al., 2018).

After preprocessing the signals were checked for quality by

computing a signal quality index (SQI; Langevin et al., 2021;

Orphanidou et al., 2015). The signals were epoched into 10 s time

segments and sequentially checked for the biological plausibility of

the measured signals. Each epoch was checked for the following

rules: (1) The extrapolated HR is within the range of 30–180 bpm;

(2) the maximum gap between two successive peaks is 3 s to ensure

no more than one beat is missed; (3) within a 10 s epoch the HR

is not expected to change more than 10% and thus the ratio of

the maximum beat-to-beat interval to the minimum beat-to-beat

interval within an epoch should be <2.2.

Finally, the average correlation coefficient between each pulse

peak within an epoch was calculated (Orphanidou et al., 2015).

For each sample, the median beat-to-beat interval was calculated

using all the detected pulse peaks. Individual pulse waves were

extracted by taking a window of width equal to the median beat-

to-beat interval centered on each peak. A template of the average

pulse wave was obtained by taking the mean of all waves of the

sample. The correlation coefficient of each individual pulse wave

with the template was then calculated. The average correlation

coefficient was obtained by averaging all correlation coefficients

over the whole sample. If this coefficient was smaller than 0.66

for the ECG signal and 0.86 for the PPG signal (Langevin

et al., 2021; Orphanidou et al., 2015) or the epoch did not

pass the physiological rules, the epoch was labeled as “bad.”

Epochs of sufficient quality were concatenated for computation of

the parameters of interest, since the variance of especially HRV

measures increases by short signal lengths (Fujita and Suzuki,

2019; Taoum et al., 2022). To allow for a balanced comparison

of devices, the signals were trimmed to equal lengths based

on the minimum number of good epochs per condition. That

is, if the PPG signal retained fewer good epochs compared to

the ECG signal, the ECG signal was cut to the length of the

PPG signal.

2.6.1.2 EDA
For the EDA signal, we first down sampled the PsychoBit

signal to match the 15Hz sampling frequency of the EmotiBit. For

the following steps, different configurations of preprocessing steps

were tested. The resampled data was initially low-pass filtered with

either a 3Hz (neurokit default) or 5Hz (BioSPPy default; Carreiras

et al., 2015) cut-off frequency and a 4th-order Butterworth filter to

remove noise and smooth the signal. Subsequently, the EDA was

decomposed into the phasic and tonic components of the signal by

applying three different signal decomposition methods (for details,

see Table 1). The following parameters of interest were retrieved:

(1) The mean and standard deviation of the skin conductance level

(SCL) was calculated by averaging the tonic component of the

data over each run; (2) the number of skin conductance responses

(SCRs) per minute, and (3) their amplitudes as derived from

the phasic signal component. The implemented approaches are

detailed in Table 1.

Biologically plausible values for the number of SCRs are

on average 1–3 per minute during resting state (Braithwaite

et al., 2013) and 20–25 per minute during high-arousal states

(Boucsein et al., 2012). Since the initial inspection of results

revealed implausibly high SCR detection for some processing

pipelines, a quality check was implemented based on the average

SCRs per minute detected in the reference device. If the average

across participants was higher than 30 responses per minute, an

overestimation of SCR was assumed, and the pipeline was excluded

from further analysis.

2.6.2 Signal comparison of EDA:
cross-correlations

Data of both devices was processed using multiple different

processing pipelines (for details, see Section 2.6.1). For an initial

assessment of similarity, the cross-correlation between the z-

scored, detrended signals of the two devices was determined

for time lags from −8 to +8 samples, which corresponds to a

time window of −0.53 s and 0.53 s at a sampling rate of 15Hz

(Langevin et al., 2021; van Lier et al., 2020). Note that due to

the different sensing technology employed by PPG and ECG

for HR measurement, the signal waveforms exhibit substantial

disparities. Consequently, the time-series data of these two signals

was not compared.

2.6.3 Parameter comparison: Bland-Altman plots
To compare the measurements of the EmotiBit PPG and the

PsychoBit ECG as well as the EDA signals, a Bland-Altman ratio

(BAr) was computed (Bland and Altman, 1986; Langevin et al.,

2021; Orphanidou et al., 2015; Schäfer and Vagedes, 2013; van Lier

et al., 2020). The primary focus was to assess the absolute agreement

between the devices, for which Bland-Altman analyses and Bland-

Altman ratios offer a direct and well-established framework. The

ratio quantifies the relative agreement between two devices and is

defined as

BAr=
1.96 · SD

Apm
,
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TABLE 1 Overview of processing configurations.

Abbreviation Processing

Data cleaning Signal decomposition Peak detection

ECG

Neurokit default High-pass 5th-order Butterworth

filter with cut-off frequency of

0.5Hz, followed by powerline

filtering at 50Hz

n.a. Method of Brammer (2020)[1] : QRS complexes are detected based

on the steepness of the absolute gradient of the ECG signal and

subsequently, R-peaks are detected as local maxima in the QRS

complexes

Langevin et al.

(2021)

Notch filter with a cut-off frequency

of 0.05Hz

n.a. n.a.

Elgendi et al.

(2010)

IIR Butterworth filter following the

second-order-section method with

cut-off frequencies of 8Hz and 20Hz

n.a. Dual moving averages with dynamic thresholding

Nabian et al.

(2018)

n.a. n.a. A sliding window approach identifies local maxima within a defined

window size, marking points as R-peaks if they are the highest

within their respective window

Gamboa (2008) n.a. n.a. Zero crossings in the second-order derivative of the normalized

signal are filtered for potential peaks based on amplitude and timing

constraints, and R-peaks are selected by finding local maxima

PPG

Langevin et al.

(2021)

Band-pass filter with cut-off

frequencies of 0.7Hz and 3.5Hz

n.a. n.a.

Neurokit

default/Elgendi

et al. (2013)

3rd-order Butterworth filter with

cut-off frequencies of 0.5Hz and 8Hz

n.a. Dual moving averages with dynamic thresholding

Nabian et al.

(2018)

2nd-order Butterworth filter with

cut-off frequencies of 40Hz

n.a. n.a.

EDA

Neurokit default Low-pass filter with a cut-off

frequency of 3Hz and a 4th-order

Butterworth filter

High-pass 4th-order Butterworth

filter with a cut-off frequency of

0.05Hz is applied to decompose the

phasic and tonic signal components

Local maxima in the first-order derivative exceeding a dynamic

threshold are identified and validated as peaks based on the

expected SCR waveform shape

BioSPPy default Low-pass filter with a cut-off

frequency of 5Hz and a 4th-order

Butterworth filter

n.a. same as Kim et al. (2004)[5]

Kim et al. (2004) n.a. n.a. Convolution of the phasic component with a 20-point Bartlett

window is performed and the output waveform is checked for the

occurrence of the SCR by finding two consecutive zero-crossings,

from negative to positive and positive to negative

Gamboa (2008) n.a. n.a. Local maxima (peaks) and minima (onsets) are identified by

computing the second derivative and to ensure proper peak-onset

pairing and SCR amplitudes are calculated based on the difference

between these points.

Nabian et al.

(2018)

n.a. n.a. The amplitude of the SCR is obtained by finding the maximum

value between these two zero-crossings, and calculating the

difference between the initial zero crossing and the maximum

value; detected SCRs with amplitudes smaller than 10% of the

maximum SCR amplitudes that are already detected on the

differentiated signal will be eliminated

Greco et al. (2016) n.a. A convex optimization approach

grounded in Bayesian statistic

models the components by fitting a

Bateman autoregressive moving

average (ARMA) model and

applying spline and trend regressors

n.a.

Biopac’s

AcqKnowledge

(BIOPAC Systems,

Inc., 2015)

n.a. A median smoothing convolutional

filter with a window of 4 s is applied

to extract the tonic component and

subtract it from the original signal

to obtain the phasic component

n.a.

Processing steps were derived from previous work by Brammer, 2020; Elgendi et al., 2010; Elgendi et al., 2013; Gamboa, 2008; Kim et al., 2004; Langevin et al., 2021; Nabian et al., 2018; Greco

et al., 2016; BIOPAC Systems, Inc., 2015. ECG, electrocardiography; EDA, electrodermal activity; IIR, infinite impulse response; n.a., not applicable; PPG, photoplethysmography; SCR, skin

conductance response.
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where the 95%CI of the standard deviation is divided by the average

of the pairwise means (Apm). A BAr < 0.01 is considered as an

excellent agreement, values between 0.01 and 0.1 are considered

as a good agreement, values between 0.1 and 0.2 as a moderate

agreement, and values >0.2 are defined as insufficient agreement.

To visualize differences between methods in detail, Bland-Altman

plots were created as well. The mean values of two measurements

were plotted on the abscissa (the x-axis) and the difference

between the two values on the ordinate (the y-axis). The 95%

confidence intervals (CIs) of the differences were indicated to

be interpreted as limits of agreement. To compare the signals

of devices per condition, the mean values per participant were

first log-transformed with base 10 (Euser et al., 2008). For each

parameter, additional value boundaries depicting ±10% of the

biological plausible values following previous work to add to the

interpretability of observed values (see Supplementary Tables 5, 7)

(Boucsein, 2012; Braithwaite et al., 2013; Langevin et al., 2021;

O’Neal et al., 2016; van Lier et al., 2020). Note that these fixed

thresholds do not account for the actual variability in the data

and were thus not used for interpretation of signal comparability.

Additionally, violin plots of the z-scored parameters of interest

were created to visualize the distributions of data points across

conditions and devices.

3 Results

3.1 CVA processing

Several processing pipelines were implemented before assessing

the comparability of the devices. The pipelines were tested in

various combinations, though not all were originally intended

during development. Therefore, only pipelines successfully applied

to all runs were included in the signal quality assessment (for

an overview, see Supplementary Table 6). The SQI revealed which

processing pipeline yielded the highest percentage of good epochs

for both the ECG and PPG signals (see Supplementary Table 1). The

pipeline applied the data cleaning method implemented by Elgendi

et al. (2010) for ECG data and the method employed by Langevin

et al. (2021) for PPG data. Peak detection was performed using

the ECG method by Nabian et al. (2018) and the peak detection

algorithm by Elgendi et al. (2013) for PPG (see Table 1). This

yielded 97.76% of epochs rated with sufficient quality for ECG and

89.5% for PPG. The primary reason for ECG epoch rejection was

an insufficient correlation between R-peaks (<0.66) affecting 2.2%

of epochs. For PPG, the main reason was a ratio of the maximum

to the minimum beat-to-beat interval larger than 2.2 (9.1%).

3.2 EDA processing

Several processing pipelines consisting of data cleaning,

signal decomposition, and peak detection for the EDA signals

were implemented to comprehensively test the comparability

of devices. The pipeline combinations were not all compatible

(see Supplementary Table 3). No clear optimal choice for

preprocessing emerged from cleaning, decomposition, and peak

detection methods.

While the cross-correlations did not yield differentiable results

for the various pipelines, the inspection of the SCR peaks revealed

a gross overestimation of peaks per minute for several methods in

either the reference device or the EmotiBit or both. According to

Boucsein (2012), a realistic number of peaks per minute during

high arousal states should be up to 25 peaks/minute, whereas some

processing pipelines yielded more than 100 peaks/minute. The

pipelines were thus not used for further parameter comparison,

assuming that the results were inaccurate for both the reference

device and EmotiBit. In the same line of reasoning, one pipeline

yielded empty or close-to-zero values for the amplitudes of the

SCRs and was also excluded for parameter comparison. Several

processing pipelines resulted in the automatic exclusion of one or

more runs due to the incompatibility of the methods used per step.

For illustration of the parameter comparison, the processing

pipeline that resulted in the smallest standard deviation of

differences between means of devices was chosen, i.e., the pipeline

resulting in the most consistent differences between devices across

runs (for an overview, see Supplementary Table 3). The difference

in body location between devices during data collection likely

caused differences in measurements larger than 10% of the range

of plausible values (the definition of the boundaries). Therefore, we

assumed that the least variance within differences reflected themost

robust processing for signal comparison rather than themean of the

difference. Note that the chosen analysis pipeline is not necessarily

the best-suited for other analyses, for instance, for investigating the

effect of conditions on the EDA.

3.3 Parameter comparison: CVA

The Bland-Altman plots for CVA parameters of interest are

shown in Figure 5. Detailed results for all processing pipelines can

be found in Supplementary Tables 6, 7, including data on original

scales (i.e., not log-transformed; see Supplementary Figure 1). The

mean HR estimate from the EmotiBit PPG signal is close to the

estimate of the PsychoBit ECG signal with an average difference

of −0.1 ± 0.62 bpm with a 95% CI of [−1.31, 1.11] bpm for

the easy workload condition and −0.31 ± 0.73 bpm with a 95%

CI of [−1.73, 1.12] bpm for the hard workload condition. The

corresponding BAr of the log-transformed data indicated excellent

agreement (easy: BAr <0.01, hard: BAr = 0.01; see Figure 5). The

results of all runs are within the biologically plausible boundaries

of ± 5 bpm (see Supplementary Table 7). The difference between

the devices regarding the RR/PP interval SD were observed to be

−26.36 ± 24.65ms and a 95% CI of [−74.68, 21.95] ms for the

easy workload condition, and −23.41 ± 28.46ms with a 95% CI

of [−79.18, 32.37] ms for the hard workload condition. The BAr of

log-transformed data indicated a moderate agreement (easy: BAr

= 0.17, hard: BAr= 0.19; see Figure 5) and the majority of runs lay

within the agreement boundaries (86.36%). The RMSSD of the peak

intervals of the EmotiBit PPG was on average −51.88 ± 41.49ms

lower than that of the PsychoBit ECG with a 95% CI of [−133.19,

29.44] ms for the easy, and −51.78 ± 52.54ms with a 95% CI of

[−154.76, 51.19] ms for the hard workload condition. The BAr of

log-transformed data indicated insufficient agreement (easy: BAr=

0.29, hard: BAr= 0.36; see Figure 5).
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FIGURE 5

Device comparison of CVA parameters of interest. (A) Bland-Altman plots for the parameters’ comparison of the CVA signals in terms of the
log-transformed mean HR, the SD of the RR/PP intervals, and the RMSSD. Colored dots represent individual participants during the easy condition
(left) and the hard condition (right). Each color corresponds to one participant. The x-axis corresponds to the average of the two measures for one
parameter, and the y-axis shows the di�erence between the two measures. The theoretical di�erence of zero is marked as a gray dotted line. The
observed mean di�erence is plotted as a dashed blue line with the standard deviations marked as blue areas. The orange lines represent the observed
95% confidence interval limits. The computed BAr is indicated within each plot. (B) Violin plots of z-scored parameters of interest per condition for
ECG (blue) and EmotiBit PPG (red). The median (solid lines) and 1st and 3rd quartiles (dashed lines) for each measured parameter of interest are
indicated per device. Bar, Bland-Altman ratio; 1, Mean di�erence; ECG, Electrocardiography; HR, Heart rate; PPG, Photoplethysmography; RMSSD:
Root mean square of successive di�erences; SCL, Skin conductance level; SCR, Skin conductance response; SD, Standard deviation.

3.4 Signal comparison: EDA

All tested processing pipelines resulted in cross-correlation

coefficients ranging from 0.52 to 0.54 for the easy and 0.56

to 0.59 for the hard runs. In the case of the pipelines with

the highest correlation coefficients, 5/15 runs obtained a cross-

correlation higher than 0.8 for the easy condition of the

task. For the hard condition of the task, 3/15 runs obtained

a cross-correlation higher than 0.8 (see Figure 6). This is

considered a very high correlation (Evans, 1996). Cross-correlation

of the raw data of both devices yielded mean coefficients

of 0.51 for easy and 0.55 for hard runs, respectively (see

Figure 6).

3.5 Parameter comparison: EDA

The results of the parameters comparison for the EDA data are

illustrated through Bland-Altman plots (see Figure 7; for detailed

results see Supplementary Figure 2, Supplementary Tables 4, 5).

The pipeline underlying the presented Bland-Altman plots used

the BioSSPy default filter parameters for data cleaning, the convex

optimization approach introduced by Greco et al. (2016) for signal

decomposition, and finally the peak detection by Nabian et al.

(2018) as implemented in the Neurokit library (for details, see

Table 1). The parameters that were compared between the devices

were the mean SCL, the SCRs per minute, and the amplitude of the

SCRs. The mean SCL estimate differed by−12.32± 3.76 µS for the
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FIGURE 6

Highest cross-correlation coe�cients across subjects. The highest cross-correlation of raw (top) and processed (bottom) EDA signals of is plotted as
histogram devices between −8 and +8 sample time lags (corresponding to −0.53 to 0.53 s with a sampling rate of 15Hz) is plotted for each run
divided by easy (blue) and hard (red) condition of the workload task. The mean cross-correlations are indicated as dashed lines.

EmotiBit and PsychoBit with a 95% CI of [−19.68, −4.96] µS in

the easy workload condition and −13.57 ± 3.14 µS with a 95% CI

of [−19.73, −7.41] µS in the hard workload condition. The BAr

of log-transformed values indicated insufficient agreement (easy:

BAr = 2.69, hard: BAr = 2.18; see Figure 7). The SCRs per minute

derived from the EmotiBit differed on average by−1.6± 1.82 from

the count of the PsychoBit with a 95% CI of [−5.17, 1.96] for the

easy condition and−1.31± 1.53 SCRs with a 95%CI of [−4.3, 1.68]

for the hard condition. The BAr agreement was insufficient (easy:

BAr = 2.26, hard: BAr = 3.81). The amplitudes of the EmotiBit

SCRs were on average estimated smaller than those of the PsychoBit

(easy:−0.44± 0.28 µS, 95% CI of [−0.99, 0.12] µS; hard:−0.76±

0.51 µS, 95% CI of [−1.77, 0.24] µS). The BAr of log-transformed

data implied insufficient agreement (easy: BAr= 1.38, hard: BAr=

1.63; see Figure 7).

4 Discussion

The purpose of this study was to assess the validity of the

EmotiBit wearable sensor for monitoring CVA and EDA during

task-induced cognitive workload. We positioned the EmotiBit PPG

on the upper arm, a realistically applicable site for hands-free

monitoring in mobile work settings. Using a standardized validity

assessment protocol (Langevin et al., 2021; van Lier et al., 2020),

we compared PPG-derived HR and HRV measures as well as

EDA indices against an ECG and palmar EDA system (BITalino

PsychoBit) during two levels of cognitive workload.

4.1 CVA

Our results demonstrate excellent agreement between PPG-

based HR estimates from the EmotiBit and ECG-based HR

measures, with a Bland-Altman ratio (BAr) indicative of excellent

criterion validity (see Figure 5). The 95% CIs indicated that

the measures could differ by around one to two beats per

minute at most. This applied to runs of both the easy and hard

workload conditions. This is an important finding for applied

neuroergonomics, as HR is a well-established physiological marker

of mental effort and task engagement (Charles and Nixon, 2019;

Da et al., 2019; Hughes et al., 2019; Jorna, 1992). Its non-invasive,

wearable design allows for data collection in naturalistic settings,

thus minimizing laboratory constraints and enhancing ecological

validity. HR from the EmotiBit PPG can serve as a reliable surrogate

for ECG in mobile workload monitoring systems, enabling real-

time physiological assessments in operational environments such

as safety-critical industries, remote work monitoring, and adaptive

workstations. Furthermore, its integration with other biometric

signals, such as temperature and motion, offers the possibility

of multi-modal physiological research. In practical applications,

such as fitness tracking and stress detection, the reliability of the

EmotiBit ensures its efficacy as an alternative to ECG, which is often

unwieldy and requires specialist equipment. We demonstrated the

feasibility of using the Emotibit PPG device for measuring CVA.

Nevertheless, the recorded sample of participants was relatively

small, and thus robustness and generalizability of observed results is

likely affected. We recommend that another research team should

replicate our findings with a large and diverse sample to enhance

the generalizability of findings.

Conversely, HRV metrics (SD and RMSSD) derived from PPG

peak intervals showed moderate to insufficient BAr agreement with

ECG (see Figure 5). The SDs of peak-to-peak intervals were in

moderate agreement between devices, whereas the RMSSDs were

of insufficient agreement. This result aligns with prior validation

work of the EmotiBit (Langevin et al., 2021) as well as other PPG

devices (O’Grady et al., 2024; Schäfer and Vagedes, 2013; Taoum

et al., 2022). To be able to test the biological plausibility of the

PPG signal in line with the established criterion validity method

(Langevin et al., 2021; van Lier et al., 2020), all signal wavelengths

(green, red, infrared) were averaged to create the standard PPG

signal stream. The resulting signal might not be reliable to assess

the HRV-related measures of SD and RMSSD of the PP intervals,

similar to other PPG wearable devices (for a review, see Schäfer
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FIGURE 7

Device comparison of EDA parameters of interest. (A) Bland-Altman plots for the parameters’ comparison of the EDA signals in terms of the
log-transformed mean SCL, the number of SCRs per minute, and the mean amplitude of SCRs. Colored dots represent individual participants during
the easy condition (left), and the hard condition (right). Each color corresponds to one participant. The x-axis corresponds to the average of the two
measures for one parameter, and the y-axis shows the di�erence between the two measures. The theoretical di�erence of zero is marked as a gray
dotted line. The observed mean di�erence is plotted as a dashed blue line with the standard deviations marked as blue areas. The orange lines
represent the observed 95% confidence interval limits. The computed BAr is indicated within each plot. (B) Violin plots of z-scored parameters of
interest per condition for ECG (blue) and EmotiBit PPG (red). The median (solid lines) and 1st and 3rd quartiles (dashed lines) for each measured
parameter of interest are indicated per device. Abbeviations: Bar, Bland-Altman ratio; 1, Mean di�erence; ECG, Electrocardiography; HR, Heart rate;
PPG, Photoplethysmography; RMSSD, Root mean square of successive di�erences; SCL, Skin conductance level; SCR, Skin conductance response;
SD, Standard deviation.

and Vagedes, 2013). However, the EmotiBit stores the recorded

wavelength signals separately, thus allowing for separate analysis of

the three signals if desired.

The green light spectrum is best suited for HRV-related

measurements compared to red wavelengths (see Figure 1; Maeda

et al., 2011). Red and infrared light spectra offer a more detailed

insight into oxygenation levels of hemoglobin as they penetrate

deeper into the tissue (Nitzan et al., 2014). For the same reason,

this can introduce more noise and variability into the PPG signal

compared to the ECG signal, especially in wearable devices (see

Figure 8; Biswas et al., 2019). Therefore, it is recommended to use

the EmotiBit PPG signal streams independently from each other,

depending on the effect of interest.

4.2 EDA

Our findings indicate insufficient agreement between EmotiBit

EDA (upper arm) and BITalino EDA (palm) for all EDA

parameters (SCL, SCR count, SCR amplitude) as indicated by

the BAr ratios being considerably larger than 0.2 regardless of

the processing choices, thus indicating insufficient agreement (see

Figure 7 and Supplementary Table 4). Our findings extend prior

reports of EmotiBit’s limited EDA performance (Haratian, 2024;

Langevin et al., 2021) and are consistent with broader evidence

on anatomical variations in sweat gland density (Baker, 2019).

Given that the placement of the devices differed substantially,

we expected mean signal differences to some extent. The palm
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PPG signal with low variance in peak detection PPG signal with high variance in peak detection

FIGURE 8

Example of peak detection in PPG signal streams. The figure illustrates the e�ect of averaging the three light wavelength signals of a PPG (PG, PR, PI)
on the peak detection comparability to an ECG in the case of low variance between the signal streams (left) compared to high variance in the signal
streams (right). In the left panel, an example of consistent peak-to-peak intervals across signals is highlighted with arrows. The right panel shows
inconsistent peak-to-peak intervals across signals. ECG, Electrocardiography; PG: green PPG signal; PI, infrared PPG signal; PP, P-peak interval PPG,
photoplethysmography; PR, red PPG signal; RR, R-peak interval.

has more sweat glands compared to the upper arm (Baker,

2019). Therefore, it is highly unlikely to observe no difference

in signal level between the devices. The finding that the

upper arm site proved suboptimal for capturing EDA reactivity

relative to the palm reflects a broader challenge in the field

of neuroergonomics: the data acquisition in naturalistic settings

often prompts a trade-off decision between the comfortable,

unobtrusive functionality of a device and optimal signal recording

sites. It is recommended that future validation work systematically

harmonize placement locations when possible. Although the

quality of wearable sensors has improved in recent years (Huhn

et al., 2022), emerging alternatives to body EDA sensors, such

as facial thermal imaging, could offer a more reliable and

accurate solution for workload detection in the wild (Gioia et al.,

2022).

5 Conclusion

We evaluated the validity of utilizing the EmotiBit wearable

sensor for cardiovascular and electrodermal measures during

cognitive workload. We employed a standardized protocol for

signal comparisons following an analysis of both signals using

various processing pipelines. Our results pertaining to the CVA

measures highlight that the EmotiBit can be employed with

high biological plausibility in a natural setup and delivers

reliable HR recordings, even under various workload conditions.

However, when it comes to HRV and EDA measures, comparable

measurement values were not observed, although the inherent

differences between the measured body locations could be

held accountable for this observed disagreement. While the

EmotiBit HR monitoring is field-ready for workload detection

and adaptive human-system interaction, observed HRV and

EDA limitations necessitate algorithmic improvements or site-

optimized solutions for high-resolution cognitive state monitoring.

The trade-off between placement convenience and measurement

fidelity remains an unresolved challenge when moving from

laboratory ECG setups to consumer-oriented wearable solutions.

Thus, research in the field of consumer neuroergonomics

should focus on integrating high-quality multimodal physiological

sensing with user comfort to advance real-time workload-

adaptive environments.
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