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Towards neuroadaptive chatbots:
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Introduction: Large-language models (LLMs) are transforming most industries
today and are set to become a cornerstone of the human digital experience.
While integrating explicit human feedback into the training and development of
LLM-based chatbots has been integral to the progress we see nowadays, more
work is needed to understand how to best align them with human values. Implicit
human feedback enabled by passive brain-computer interfaces (pBCIs) could
potentially help unlock the hidden nuance of users’ cognitive and affective states
during interaction with chatbots. This study proposes an investigation on the
feasibility of using pBCIs to decode mental states in reaction to text stimuli, to
lay the groundwork for neuroadaptive chatbots.
Methods: Two paradigms were created to elicit moral judgment and
error-processing with text stimuli. Electroencephalography (EEG) data was
recorded with 64 gel electrodes while participants completed reading tasks.
Mental state classifiers were obtained in an offline manner with a windowed-
means approach and linear discriminant analysis (LDA) for full-component and
brain-component data. The corresponding event-related potentials (ERPs) were
visually inspected.
Results: Moral salience was successfully decoded at a single-trial level, with
an average calibration accuracy of 78% on the basis of a data window of
600 ms. Subsequent classifiers were not able to distinguish moral judgment
congruence (i.e., moral agreement) and incongruence (i.e., moral disagreement).
Error processing in reaction to factual inaccuracy was decoded with an average
calibration accuracy of 66%. The identified ERPs for the investigated mental states
partly aligned with other findings.
Discussion: With this study, we demonstrate the feasibility of using pBCIs to
distinguish mental states from readers’ brain data at a single-trial level. More work
is needed to transition from offline to online investigations and to understand if
reliable pBCI classifiers can also be obtained in less controlled language tasks
and more realistic chatbot interactions. Our work marks preliminary steps for
understanding and making use of neural-based implicit human feedback for
LLM alignment.
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1 Introduction

AI-powered chatbots are becoming a ubiquitous part of the modern human experience.
Since the tech company OpenAI deployed the ChatGPT1 model in November 2022,
numerous ever-increasingly powerful large language models (LLMs) have been created,
with new releases and improvements being announced weekly. LLMs are now widely used

1 www.chatgpt.com
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by knowledge workers for summarization, brainstorming,
information organizing and searching, coding, and more. To
this end, recent surveys have shown a stark improvement in
productivity and quality of work for people who get assistance
from chatbots (Noy and Zhang, 2023). Outside of working hours,
people realized LLMs can serve not only as tutors and assistants
but also as counselors who can help with solving conflicts, offer
relationship advice (Vowels, 2024), or help understand oneself
better (Giubilini et al., 2024). Several companies aimed to seize
the rising tide of opportunity and developed LLM-based products
meant to offer friendly and romantic companionship (Babu
and Prasad, 2024), or therapeutic personas (Haque and Rubya,
2023). Despite the ease of access to such services, a recent review
into the effectiveness of LLM-based mental health applications
concludes that “current risks associated with clinical use might
surpass their benefits” due to their tendency to offer inconsistent
advice and hallucinate, which might result in more harm and
confusion for the end user (Guo et al., 2024). This concern is
not only limited to mental health services, but applies broadly to
many areas that require a deep understanding of human emotions
and perception, empathy, and contextual judgment (Huang
et al., 2023). For example, an intricate cognitive and emotional
understanding of the human mind is needed to excel at tasks
related to education, ethics, or diplomacy. Such qualities remain
difficult for LLMs to fully replicate, rendering a subtle gap between
man and machine that becomes increasingly apparent in situations
requiring moral reasoning and emotional nuance. While recent
technical developments in the Natural Language Processing (NLP)
domain have led to better LLM soft skills, there is still room for
improvement (Sorin et al., 2024).

The call for human-AI alignment started early in the
development of AI but has remained a fringe topic until recently.
The alignment problem refers to the challenge of keeping AI
systems consistent with human values, intentions, and preferences
as they become more intelligent and complex. It also involves
that no unintended and harmful consequences arise as AI systems
scale (Russell, 2019). With the advent of powerful LLMs and
empirical demonstrations of misaligned AI behavior that was once
just theory and speculation (Meinke et al., 2024; Pan et al., 2024),
this call has amplified. The daily mainstream tech news titles now
constitute a mix of Terminator-type doomsday predictions (The
Independent, 2023) and the latest winner of the world AI race.
The concerned voices are especially louder nowadays due to the
emergence of agentic AI systems, which are potentially soon to
take over the oracle-type of AI tools used today (Chan et al., 2023).
Consequently, companies and governments are actively working on
integrating into digital infrastructures AI systems that are designed
to act and make decisions autonomously, without human input. It
therefore becomes imperative to address misalignment concerns
and explore new ways to enhance machines’ understanding of
human goals and values. So far, utilizing human feedback within
the training of AI models has been the main approach for LLM
alignment (Ziegler et al., 2019), as well as a crucial factor behind
ChatGPT’s overwhelming success. Reinforcement Learning with
Human Feedback (RLHF) has been employed to effectively replace
the standard reward signals in reinforcement learning with explicit
feedback meant to symbolize the quality of an LLM’s output in

terms of criteria such as relevance, factual accuracy, coherence, and
even adherence to ethical standards (Li et al., 2024). As a cognition-
driven approach, RLHF tries to decipher the underlying user intent
that guides the preferred responses in language models and then
steer the model to generate outputs that align with that intent
(Chaudhari et al., 2024). While this approach transformed previous
clunky language models into the friendly assistants we interact
with today and was successfully applied to non-LLM contexts
(Christiano et al., 2017), it is by no means a final solution for
human-AI alignment. More specifically, collecting large amounts
of qualitative human feedback is notoriously difficult and resource-
intensive. Human annotators are screened based on characteristics
such as education level, and then trained or selected to achieve
high inter-annotator agreement and expert agreement, such that
they agree with each other on how to give specific feedback and
also agree with experts (Kreutzer et al., 2018; Chaudhari et al.,
2024). The most common two types of feedback used in RLHF are
ratings i.e., a given number on a defined scale, and pairwise ranking,
i.e., indicating a preferred output from a specific output list. The
annotators generally need to ensure LLM outputs align with the
triple H (HHH) criteria: Helpfulness, Honesty, and Harmlessness
(Askell et al., 2021). The obtained feedback is then further used
to train a reward model that will serve as a surrogate for human
feedback in further fine-tuning steps. Based on the described
constraints, certain limitations of RLHF were observed in recent
years (Perez et al., 2022; Casper et al., 2023; Chaudhari et al.,
2024). The requirement for large amounts of feedback data is often
infeasible and impractical, leading to an imperfect reward model
and creating missgeneralization in the context of unseen prompts
or situations, where the LLM generates wrong outputs, also known
as hallucinations. Another relevant limitation lies in the nature of
the delayed human feedback, which is only given at the end of
a complete output, which means that the model doesn’t receive
real-time guidance. Additionally, both the common rating and
ranking feedback types are sparse, as they don’t communicate to
the model the reasoning behind the provided feedback. These and
more limitations are elaborated in a recent critical analysis of RLHF
(Chaudhari et al., 2024). While the scalability issue is currently
being addressed with new methods such as Reinforcement Learning
from AI Feedback (RLAIF) (Lee et al., 2023), the lack of density and
nuance are yet to be solved.

Implicit feedback, rather than explicit feedback, could address
such limitations by extending this approach to training LLM
models (Kaufmann et al., 2023). Human communication and
interaction with the world is characterized by a richness of
non-verbal information in terms of facial expressions, gestures,
gaze cues, body movements etc. Some of these non-verbal cues
can be decoded through psychophysiological measures such as
eye-tracking, heart rate, and electroencephalography (EEG), and
could potentially augment or replace explicit feedback to better
approximate human preference for training artificial systems
(Candon et al., 2023). EEG-based passive brain-computer interfaces
(pBCIs) (Zander and Kothe, 2011) have demonstrated the ability
to implicitly decipher cognitive and emotional states without the
need for user awareness. Among other states, workload (Gerjets
et al., 2014; Gherman et al., 2025), surprise (Pawlitzki et al., 2021),
and error perception (Parra et al., 2003) have been successfully
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decoded. PBCIs differ from active and reactive types, as they
don’t require the user’s controlled brain state modulation (Triana-
Guzman et al., 2022) or visual stimuli (De Vos et al., 2014) to
produce a functioning real-time response in an external system.
Instead, the user’s naturally occurring mental states to changes in
the environment or during the interaction are captured (Zander
et al., 2016). Depending on the level of interactivity, this implicit
information can either produce open-loop adaptations, where the
system responds without altering the user’s mental state, or closed-
loop adaptations, where the system’s response directly influences
and modifies the user’s mental state (Krol et al., 2018). Systems
could gradually learn from this implicit information and adapt to
the user in a neuroadaptive manner (Zander et al., 2016). While the
field of neuroadaptive technology is still an emerging field (Krol and
Zander, 2022), recent studies have shown promising results when
utilizing EEG-based implicit human rewards in reinforcement
learning systems for playing Atari games (Xu et al., 2021) and
gamified autonomous driving (Shin et al., 2022). Moreover, the
potential of pBCIs for the AI field is gaining increasing media
attention (Zander, 2025), and patents for this technology have
recently been released (Zander et al., 2024). Using EEG signals
in the context of NLP has previously been researched for tasks
such as sentiment analysis (Hollenstein et al., 2021) and there
exists a large body of literature for averaged event-related potentials
(ERPs) for different types of text stimuli (Kaan, 2007), yet pBCI-
LLM investigations have not been made so far. In comparison
with traditional RLHF methods for LLM alignment, neuroadaptive
methods via pBCI integration could meaningfully expand the depth
and breadth of user understanding, as non-verbal cognitive and
affective reactions to LLM outputs could be captured in real-
time, rather than at a delayed pace, hence allowing for more
nuance and density in human feedbacks. With our current study,
we propose investigating the feasibility of using pBCIs to decode
single-trial mental states from text stimuli, as a first step toward
neuroadaptive chatbots.

Conforming to the HHH criteria of “harmlessness, honesty,
and helpfulness” for LLM output quality, we focus here on two
aspects: moral judgment, and error perception. Concerning moral
judgment, both cognitive and emotional factors have been found
to contribute to a reaction of moral agreement or disagreement
with a certain topic or statement (Decety et al., 2012; Hundrieser
and Stahl, 2016). The moral stance of an individual can depend
on a number of factors such as personality, culture, or motivation
(Haidt, 2001) and it has previously been found to activate both
prefrontal cortical areas (Fede and Kiehl, 2020), and deeper
brain structures (Cunningham et al., 2004). In previous ERP
studies, increased potentials such as N400 (Van Berkum et al.,
2009) and the Late Positive Potential (LPP) (Van Berkum et al.,
2009; Leuthold et al., 2015) have been associated with morally
incongruent words, as opposed to neutral or morally-congruent
words. In (Van Berkum et al., 2009) pre-selected participants with
Christian values were presented with statements such as “I think
euthanasia is acceptable/unacceptable” in a word-by-word manner,
where the last word in the statement represented the critical
event. Similarly, in this study, we will present morally congruent
and incongruent statements with a word-by-word approach and
critical last words representing our classification trials. With

few exceptions, most previous studies looked at averaged neural
responses. In (Andreessen, 2023), the data from (Van Berkum et al.,
2009) and (Leuthold et al., 2015) have been analyzed at a single-trial
level, by training classifiers on morally congruent and incongruent
words. The resulting accuracies have not reached significance.

Factual accuracy is always an important criterion used by
human annotators to determine the quality of LLM outputs.
However, it is difficult to obtain fine-grained information about
which specific parts of an output are incorrect (Wu et al., 2023).
As such, decoding implicit human reactions of error perception
to factual inaccuracy could potentially be useful. When it comes
to error perception in the context of text, numerous studies have
found an N400 effect associated with the perception of semantic
or syntactic errors (Kutas and Hillyard, 1980, 1983; Nieuwland
and Van Berkum, 2006). N400 also occurs when expectations of
world knowledge are violated (Chwilla and Kolk, 2005; Leuthold
et al., 2015; Troyer et al., 2024). For instance, a study compared
the averaged EEG signal associated with correct words (“The Dutch
trains are yellow and very crowded.”), words that are inconsistent
with world knowledge (“The Dutch trains are white and very
crowded.”), and words that should evoke semantic violation (“The
Dutch trains are sour and very crowded.”) (Hagoort et al., 2004).
They found that both semantic and world knowledge violations
trigger an N400 effect, but not correct words. Heightened P200
amplitudes when readers encounter either words that violate
readers’ world knowledge or their moral values have also been
observed, indicating early attentional allocation of resources to the
processing of unexpected or incongruent information (Leuthold
et al., 2015).

In this study, we will test the feasibility of decoding three
chatbot-relevant mental states with passive BCI in an offline
manner. Firstly, we will examine whether moral salience can
be distinguished from neutrality in response to morally charged
and neutral words, respectively. Secondly, we will also assess
the feasibility of decoding moral judgment by distinguishing
reactions to morally congruent and incongruent words. As a
strong association has been previously found between affective
priming and moral judgment (Decety et al., 2012; Demel et al.,
2019), we want to trigger moral reactions more effectively. For
this purpose, this study also integrates video-based emotional
elicitation with realistic stimuli before sentence presentation.
Participants will be selected based on a participant profile with
the help of four questionnaires, ensuring the moral judgment
paradigm stimuli are relevant and salient. More specifically, the
stimuli were related to four topics: immigration, racism, gender
equality, and LGBTQ rights, and were meant to induce moral
agreement and disagreement. Hence, we administered a battery
of four questionnaires before selecting participants. Participants
who fit our participant profile had the following trait tendencies:
they have a strong preference for quality among social groups,
rather than dominance or hierarchy (Pratto et al., 1994); hold
less racial prejudices against minorities; have a positive attitude
toward homosexuality, and hold no discriminatory attitudes
toward women. During the moral judgment paradigm, morally
incongruent statements went against these views. Additionally,
statements are attributed to fictive moral agents as opposed
to more commonly used passive statements, which have also
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been previously shown to better induce moral reactions (Pantazi,
2012). Lastly, we will assess the feasibility of distinguishing error
perception and correctitude perception in reaction to factually
incorrect and correct words at a single- trial level, respectively.
We interpret error perception here as a reaction to statements that
violate factual world knowledge.

As an initial step toward the development of neuroadaptive
chatbots, this study aims to answer the following
research questions:

1. Can we detect neural correlates of moral salience from human
readers at a single-trial level?

2. Can we detect neural correlates of moral agreement and
disagreement from human readers at a single-trial level?

3. Can we detect neural correlates of error perception from human
readers at a single-trial level?

2 Methods

2.1 Participants

We administered a battery of four questionnaires before
selecting participants. The questionnaires assessed participants’
attitudes toward the social justice issues mentioned in Section 1.1.
and they were completed digitally: Social Dominance Orientation
Questionnaire (SDO-6) (Pratto et al., 1994), Modern Racism Scale
(MRS) (Mcconahay, 1986), Attitudes Toward Lesbians and Gay
Men (ATLG) (Herek, 1988), and The Ambivalent Sexism Inventory
(ASI) (Glick and Fiske, 2018). The wording used in MRS was
slightly changed to reflect contemporary terminology by replacing
the term “Black people” with “African Americans,” while the rest
of the original items were maintained. For all questionnaires,
low scores represented a higher tendency to fit our participant
profile. Also, participants were asked to rate their level of English
proficiency on a scale of 1 (elementary) to 6 (proficient). Based
on the obtained response, only participants with English scores
of 5 and 6 and a mean of total questionnaire scores under the
mean over participants (M = 26.72) were considered. A total of
18 participants responded to our invitation. One participant’s data
was removed from analyses due to not complying fully with one
of the instructions. Other four participants’ data were removed
from the analysis due to noisy eye-tracking data necessary for
the completion of the final stage of this study. The data analyzed
in this investigation comes from a total of 13 participants (8
females, 5 males) with a mean age of 30.46 years (SD = 6.60). All
invited participants were students at the Brandenburg University of
Technology Cottbus Senftenberg.

2.2 Procedure

All participants completed a total of three paradigms. The first
paradigm consisted of a simulated chatbot interaction where eye-
tracking was also recorded. For all participants, this was always
the first phase of the experiment and was meant to represent the
application task, on which classifiers trained on two calibration
paradigms will be applied. The data recorded during this first
application phase will not be addressed here, but in an additional

study dedicated to the applicability of this pBCI approach. The
order of the other two paradigms, the calibration paradigms, was
randomized for each participant. In this study, only the data
recorded during these calibration paradigms is addressed. These
are referred to here as the moral judgment and error-processing
paradigms. Written, as well as verbal instructions were provided
before each paradigm and a trial version of the corresponding task
was presented. The total duration of all the paradigms, including
the self-paced breaks, was ∼3 h and a half.

2.3 Equipment

A total of 64 active actiCAP slim gel electrodes (Brain Products
GmbH, Gilching, Germany) were used according to the extended
10–20 international system (Klem et al., 1999). The signal was
sampled at 500 Hz with an actiCHamp amplifier. The data was
recorded reference-free (where each channel reflects the difference
between a single electrode and an internal virtual ground) and
average-referenced at the offline analysis stage. The ground
electrode was set on the Fpz electrode. During gelling, the electrode
impedances were kept under 20 kΩ . Lab Streaming Layer (LSL)
(Kothe et al., 2024) was used to synchronize all channel streams.

2.4 Paradigms

2.4.1 Moral judgment paradigm
The moral judgment paradigm consisted of 16 selected video

clips from YouTube2, each followed by 10 randomized statements.
Each video clip lasted ∼1 min and illustrated news pieces of
stories around the world related to the four social justice issues.
The participants were tasked with carefully watching the videos.
Then, statements were presented word by word. We created all
statements ourselves as experimenters. To the participants, this
was communicated as a selection of comments from YouTube
left by strangers on the Internet for the video they had just
seen. After each video, an instruction appeared: “You will see
a selection of comments from YouTube left by strangers on
the Internet for the video you’ve just seen. Please read each
comment carefully and evaluate whether you agree or disagree
with the sentiment expressed. Press Enter to continue.” This was
disclosed to participants at the end of the experiment. After
clicking Enter, 10 statements (5 morally congruent, 5 morally
incongruent) related to the seen video were presented in a
randomized order. These statements were meant to induce moral
agreement and disagreement, in line with the information we
gathered in the pretest about this morally aligned group of
participants. For example, one video clip showed a news piece
detailing the oppression of Iranian women under the Iranian
government. Statements associated with this video would either
agree with the oppression (“Iranian women not covering their
heads should be imprisoned.”) or disagree and condemn such
oppression (“Women in Iran deserve more independence.”). After
each statement, participants had 3 s to indicate by a button press

2 www.youtube.com
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FIGURE 1

Experimental design for the moral judgment paradigm. The figure illustrates an example3 of a morally congruent statement presentation following the
presentation of a news video about women’s mistreatment in Iran. Participants were instructed to carefully watch each video, then read a series of
statements presented word by word, which were meant to represent the comments of other people for the corresponding video. For all statements, the
moral stance of each statement would become apparent only when the last word was presented. Then, participants had to indicate by button press if
they agreed (left arrow), disagreed (right arrow), or were uncertain (downward arrow) about the read statement with their dominant hand.

3 https://youtube.com/shorts/5MiYDE8y1VI?si=CWXvE1b3tgh3e8i4

if they agree, disagree, or if they are uncertain about the statement
they had just read. Participants were also instructed to choose the
“uncertain” button whenever they were unsure about the meaning
of a word, the general statement, or realized they were not paying
enough attention during the sentence presentation. The statements
were presented word by word in a Rapid Serial Visualization
Presentation (RSVP) (Potter, 2018), with an Optimal Recognition
Point (OPR) [also known as the Optimal Viewing Position (OVP)]
alignment of words in the center of the screen (Brysbaert and
Nazir, 2005), where the aligned characters were colored in red,
while the rest of the characters remained black. This display choice
was inspired by SpritzTM4, a speed-reading application that uses
the ORP concept to color a key letter within the word at a
fixed position, thereby increasing visual focus and reducing eye
movements. Previous studies that used this methodology found
that text comprehension is not affected by presenting sentences
word by word, when compared to traditional reading (Hester
et al., 2016). This method ensured a consistent and efficient
presentation across trials. The mean number of words per sentence
was 8.38, with a standard deviation of 2.37. The last word of each
statement served as the critical word, which was either congruent,
or incongruent, representing moral agreement and disagreement,
respectively. For all statements, the moral stance of the overall

4 www.spritz.com

statement was unknown before the presentation of the last word.
Before the critical words, a crosshair was presented in the center of
the screen at a random presentation time between 450 and 550 ms,
introducing a slight variation to avoid predictable timing. The non-
critical words were presented for a base duration of 800 ms, with
an additional 20 ms for each character beyond the first, as applying
a long, fixed duration to these words would have disrupted the
natural reading rhythm inherent in the RSVP format. For example,
a four-letter word would be presented for 860 ms. The presentation
duration for moral target words was fixed at 1,500 ms, irrespective
of word length, to ensure that participants had sufficient time
to fully process the moral meaning of each word in relation to
the sentence context and accompanying video stimuli. As these
words dictated the moral stance of the entire sentence, a consistent
and extended presentation time was essential to support deep
cognitive engagement. This design ensured both sufficient moral
processing time and a smooth reading experience for non-moral
content. Between the statement assessment and the next statement,
a crosshair was presented in the middle of the screen for 2,400 ms
to induce a mental break between statements. In total, there were
160 balanced statements and hence, 80 morally congruent and 80
morally incongruent trials. A schematic illustration of this paradigm
is shown in Figure 1. A total of 4 self-paced breaks were introduced.
To investigate the effectiveness of our affective priming approach,
the Positive and Negative Affect Schedule (PANAS) (Watson et al.,
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1988) questionnaire was administered before and after completing
the paradigm. This questionnaire is meant to measure the positive
and negative affect at a given time. Only the scores for the items
“distressed” and “upset” were statistically analyzed here.

2.4.2 Error-processing paradigm
Participants saw the following instruction at the beginning

of the task: “Review the following statements and assess their
correctness. Press Enter to continue.” After pressing Enter, the
instruction did not repeat. Statements were presented with the same
RSVP-OPR approach and the same speed as the moral judgment
paradigm. No video stimuli were present in this paradigm. Hence,
the non-critical words were presented at the pace of 800 ms basis
and 20 ms extra for each character besides the first one. Critical
last words would dictate the correctness of the entire statement and
were all presented for 1,500 ms. Before each of these critical words, a
crosshair was also presented in the middle of the screen at a random
speed between 450 and 550 ms. Between statements, a crosshair
was presented for 2,400 ms to allow a mental break. After each
statement presentation, participants had 3 s to indicate through
a keyboard button if they thought the statements were correct
(left arrow), incorrect (right arrow), or were uncertain about their
correctness (downward arrow). Also, participants were instructed
to choose the “uncertain” button whenever they were unsure about
the meaning of a particular word, the general statement, or realized
they were not paying enough attention. The statements focus on
obvious world knowledge regarding topics such as geography,
culture and language, food, or basic facts of science and were either
wrong (“A baby cat is called a puppy.”) or correct (“The taste of
sugar is sweet.”). A total of 160 general statements (80 correct, 80
incorrect) were created by experimenters.

2.5 EEG processing

The EEG processing EEGLAB v2021.0 (Delorme and Makeig,
2004) was used to pre-process data. The EEG data for all
participants and both paradigms went through a few pre-
processing steps in preparation for independent component
analysis (ICA) decomposition with an AMICA algorithm (Palmer
et al., 2011). The non-experimental data, such as data recorded
during breaks was removed. The data was resampled to 250 Hz.
The EEGLAB function clean_artifacts was used to remove noisy
channels and filter the data with a FIR forward-backward Kaiser
filter at a 0.5 Hz cutoff edge. Channels with a correlation below
0.8 to a robust estimate or exhibiting line-noise outliers above
4 standard deviations were removed, while flatline, burst, and
window criteria were disabled to focus on channel-level noise.
A spherical interpolation method was applied afterward. Then,
channels were re-referenced to a full-rank common average
reference. Finally, the noise-cleaned data was passed to the AMICA
algorithm with automatic sample rejection parameters (Klug et al.,
2022). We set the following rejection parameters: do_reject = 1
(rejects the outliers for the model being computed), numrej = 5
(five rounds of outlier rejection), and rejsig = 3 (flag samples falling
more than three standard deviations below the model likelihood).

After independent components were obtained, these were labeled
with the ICLabel algorithm version 1.4 with default parameters
(Pion-Tonachini et al., 2019). The EEGLAB DIPFIT plugin was
used for dipole fitting.

2.6 EEG classification

2.6.1 General classification method
A series of classification investigations were performed. The

following steps are common to all classification types. All models
were trained in an offline manner, using MATLAB R2022a (The
Mathworks, Inc., Natick, MA, USA) and BCILAB 1.4-devel (Kothe
and Makeig, 2013). For each participant, the models were trained
on 80% of the data and tested on 20% of each corresponding
dataset, referred to in the following sections as training data and
testing data, respectively. We chose this approach to mimic a
realistic pBCI setup, where a classifier is initially calibrated for
individual participants and tasks and then applied online. To
investigate the validity of the underlying neural signal used by
classification models, all classifications were performed twice: firstly
without removing artifact components, and then by removing non-
brain components with 15% residual variance after the automatic
ICALabel labeling. We refer to these two versions of data as full-
component data and brain-component data. Before classification,
trials that did not conform to the ground labels were removed
from training for both paradigms. We will refer to these trials as
inconsistent trials going forward. For example, if the ground label of
a specific trial in the moral judgment paradigm was set to morally
congruent, but the participant indicated disagree or uncertain,
this trial was not included in the training and testing of the
classification model. Similarly, if the ground label of a specific trial
in the correctness paradigm was set to correct, but the participant
indicated incorrect or uncertain, this trial was removed from the
classification. On average, 16.85 trials (SD = 11.42) per participant
were removed in the moral congruence analysis and 9.15 (SD
= 4.08) trials were removed in the error-processing analysis.
Across all participants, this represented ∼10.53% of the total
moral congruence trials, and 5.71% of the total correctness trials,
respectively. For all classifications, a windowed means approach
was used to extract features, which uses the averaged potential
amplitude (Blankertz et al., 2011) obtained from non-normalized
data. Epochs of 1 s were extracted at stimulus onset in each case.
The chosen time windows for ERP feature extraction were based
on both prior literature and inspection of the grand-averaged
data. A 200–800 ms interval was selected to focus on the ERPs
of interest, mainly the N400 (300–500 ms), P600 (500–700 ms),
and LPP (500–800 ms). A limit of 200 ms was set to exclude early
sensory responses (e.g., P1, N1), which are less relevant for the
investigated mental states. For all classifications, the data was
bandpass-filtered between 0.1 and 15 Hz, and the training was
done with a regularized linear discriminant analysis (LDA) with
a 5-fold cross-validation. We chose LDA, as it has been regarded
as a highly robust and popular algorithm for BCI classification,
exceeding performance obtained with more complex algorithms
(Lotte et al., 2018). The features were extracted from all 64 EEG
channels without prior spatial selection. This allowed the classifier
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to utilize the full spatial information available and identify the most
discriminative electrodes for each participant and condition.

2.6.2 Moral vs. neutral
To investigate the feasibility of detecting neural correlates of

moral salience, a classification model was trained and tested to
distinguish moral vs. neutral classes with the approach described
above. After the inconsistent trials were removed, the morally
congruent and morally incongruent trials were combined in a
single class by renaming them as moral. To obtain the neutral
class, a selection of non-critical words present in the statements
was renamed to neutral. Some examples of selected neutral words
are: “should, generally, about, concept, idea, fact.” After the trial
numbers were balanced in number, a total of 90 trials per class
resulted. Then, the cross-validated training was performed on 80%
of these trials, and tested on 20% of the data. The windowed means
approach used 12 sets of 50 ms time windows between 200 and
800 ms. To account for variability in randomized trial selection,
the classification was performed 10 times per data type (full-
component data, brain-component data, as previously described).

2.6.3 Morally congruent vs. morally incongruent
The same datasets recorded during the moral judgment

paradigm were used for this classification, which we refer to as
moral congruence classification. Again, the inconsistent trials were
removed, and then the training and testing of a classification
model for morally congruent and morally incongruent classes
was performed. The windowed means approach used 12 sets
of 50 ms time windows between 200 and 800 ms. Again, this
classification was done twice, with full components in and non-
brain components removed.

2.6.4 Correct vs. incorrect
The datasets recorded during the error processing paradigm

were used for this classification. Firstly, the inconsistent trials were
removed. Then, the training and testing were performed for correct
and incorrect classes using the 12 sets of 50 ms time windows
between 200 and 800 ms. The classification was performed twice,
with and without removing non-brain components.

3 Results

3.1 Event-related potentials

Event-related potentials (ERPs) and ERP difference scalp maps
were inspected for both paradigms and all classification types.
These were computed twice for each pair of classes, with and
without the removal of non-brain components. Figures 2–4 show
these ERPs for the moral vs. neutral, morally congruent and morally
incongruent, and correct vs. incorrect class pairs, respectively. We
showcase here grand-averaged ERP plots for channels Fz, Cz, and
Pz for full component data. Additional ERP plots for the same
channels, derived from data containing only brain components,
are available in the Supplementary Figures 1–3. It can be observed

that both full-component and brain-component data produced
very similar neural signals in all instances, validating that our
classifiers use the signal information generated at the cortical level
to distinguish classes. In all cases, a 0.1 Hz high pass filter, and a
15 Hz low pass filter were applied. A baseline of −200 to 0 was used
to obtain all ERPs.

3.2 Classification results and statistical
results

The training and testing average classification accuracy results
obtained for all the described classification models are outlined
in Table 1. The shown average classification results for the moral
vs. neutral classification analysis were obtained after averaging
accuracy results within subjects for the 10 classification runs and
then averaging these values across subjects. The average standard
deviation over classification runs across training accuracies was
3% accuracy points for full-component data and 3% accuracy
points for brain-component data. The average standard deviation
over classification runs across test accuracies was 5% accuracy
points for full-component data, and 5% accuracy points for brain-
component data. Individual subject classification accuracies for
full-component and brain-component data for all classification
analyses can be found in the Supplementary Figures 4, 5. For
all analyses, the chance accuracy was computed by simulating a
random classifier that guessed labels in proportion to the observed
class frequencies and taking the upper bound of its one-sided
95% Wilson confidence interval (Billinger et al., 2013; Müller-
Putz et al., 2008). For the moral salience classification (moral vs.
neutral), we obtained training results significantly above chance
for all participants and classification runs for the full-component
data. We obtained training results significantly above chance for
all participants across 8 classification runs, while one participant
did not achieve significance for 2 of the 10 classification runs for
brain-component data. The moral congruence (morally congruent
vs. morally incongruent) classification led to training classification
results significantly above chance for 1 out of the 13 participants
for the full-component data, and 2 out of the 13 participants for
the brain-component data. We obtained significantly above-chance
training results for the error-processing (correct vs. incorrect)
classification for 12 out of 13 participants for the full-component
data and 10 out of 13 participants for the brain-component data.
For each subject and each classification analysis, the activation
patterns of the classification were also obtained by multiplying
corresponding feature covariances and classifier weights, in line
with the method proposed by Haufe et al. (2014). The average
group-level patterns can be found in the Supplementary Figures 6–
11 for classification analyses on both full-component and brain-
component data types. These activation patterns illustrate the
contributions of individual features to the discriminative signal.

3.3 Affective priming results

One one-tailed paired t-test revealed the “distressed” scores
after completing the moral judgment paradigm (M = 2.33,
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FIGURE 2

Event-related potentials (ERPs) and topographical maps illustrating neural responses to morally charged and neutral stimuli for full-component data.
(A–C) Grand-averaged ERP waveforms recorded at electrodes Cz, Fz, and Pz, with shaded areas representing standard errors. Morally-charged trials are
shown in blue, while neutral trials are in orange. (D) Scalp topographies of ERP differences over 12 time windows between 200 and 800 ms, highlighting
differences in neural activation patterns across the scalp.

SD = 1.30) were marginally significantly higher than the
“distressed” scores before completing the paradigm (M = 1.66,
SD = 0.89) (p = 0.08). Another one-tailed paired t-test yielded
marginally significantly higher scores obtained for the “upset” item
after the moral judgment paradigm (M = 2.08, SD = 1.24) than the
scores obtained before completing the paradigm (M = 1.42, SD =
0.90) (p = 0.09). One subject was excluded from this analysis, as the
corresponding scores for the investigated scales before completing
the paradigm were missing.

4 Discussion

4.1 Mental states decoding

In this study, we investigated the detection of neural correlates
of moral salience, moral judgment and error processing from
human readers at a single-trial level. Our efforts represent an initial

step toward a better understanding of the feasibility of pBCI-
enabled implicit human feedback for LLMs. For this purpose,
we recorded EEG data from 13 participants who completed two
reading paradigms. In both these paradigms, statements were
presented and read word by word, in an RSVP manner with an OPR
alignment. For the moral judgment paradigm, video-based affective
priming was also included before presenting the statements. With
our approach, we were able to successfully distinguish moral
salience from text stimuli, as compared to neutral stimuli. Our
results were not as encouraging for moral judgment decoding,
where we obtained chance-level results. More specifically, we
demonstrate the feasibility of classifying single-trial reactions to
morally-charged words, but not the ability to differentiate between
moral agreement and disagreement. Similar chance-level results
were obtained in (Andreessen, 2023), where classification on data
from (Van Berkum et al., 2009) and (Leuthold et al., 2015)
was investigated at a single-trial level for reactions to morally
congruent and morally incongruent words. The low classification
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FIGURE 3

Event-related potentials (ERPs) and topographical maps illustrating neural responses to morally incongruent and congruent stimuli for full-component
data. (A–C) Grand-averaged ERP waveforms recorded at electrodes Cz, Fz, and Pz, with shaded areas representing standard errors. Morally incongruent
trials are shown in blue, while morally congruent trials are in orange. (D) Scalp topographies of ERP differences over 12 time windows between 200 and
800 ms, highlighting differences in neural activation patterns across the scalp.

performance is not surprising given the hardly distinguishable
difference in ERP waveforms between morally congruent and
morally incongruent trials. Hence, affective priming with realistic
video-based stimuli before statement presentation did not make a
difference in our case, although we achieved marginally significant
negative affective priming effects according to our questionnaire
results. We obtained moderate classification performance during
calibration for both full-component and brain-only data, for
the error-processing classification. Still, a drop in accuracy was
observed when applying the cross-validated models to the test data.

Our results hint toward the potential feasibility of accessing key
mental states at a single-trial level from just a few milliseconds
of data in reaction to text stimuli. While more work is needed
to increase decoding performance, we can envision what it would
mean to include pBCI-enabled implicit human feedback during
the training of LLMs, or during user interaction after deployment.
If this integration indeed becomes possible, we can speculate that
LLMs become implicitly aware of the moral saliency of an ongoing

interaction, perhaps learning that particular topics are sensitive for
the user and that a change of tone might be appropriate. In time,
this deeper insight into the moral sensitivities of the user could
nurture a more intimate, personalized alliance between the man
and machine. Moreover, gaining a nuanced understanding of what
an annotator considers to be factually correct or incorrect, could
improve the RLHF scaling by providing more human feedback
data, thereby reducing the chance for hallucination in future
deployed models (Huang et al., 2024).

4.2 ERP signatures

The ERP morphologies for the investigated mental states
resembled those reported in ERP studies of moral reactions. We
observed an increased P200 in the centroparietal region for the
morally charged words, which aligns with other findings (Chen
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FIGURE 4

Event-related potentials (ERPs) and topographical maps illustrating neural responses to incorrect and correct stimuli for full-component data. (A–C)
Grand-averaged ERP waveforms recorded at electrodes Cz, Fz, and Pz, with shaded areas representing standard errors. Incorrect trials are shown in blue,
while correct trials are in orange. (D) Scalp topographies of ERPs differences over 12 time windows between 200 and 800 ms for both conditions,
highlighting differences in neural activation patterns across the scalp.

et al., 2009; Leuthold et al., 2015). A small P200 increase can
be observed for the morally incongruent words in the frontal
region, as compared to morally congruent words, in line with
previous investigations (Hundrieser et al., 2021; Gao et al., 2023).
This suggests an early automatic moral salience detection due
to attentional allocation, confirming a potential “moral pop-out
effect,” where moral words are more perceptually salient (Gantman
et al., 2020). A broad positivity in the ERP for morally charged
words, as compared to neutral words could also be observed
between 400 and 800 ms, which we attribute to the LPP effect.
Similarly, in a study that aimed to uncover the time course of moral
perception, a comparison was made between moral words and non-
moral words. The researchers found a significantly larger LPP for
moral words, even when controlling for arousal and emotional
valence (Gantman et al., 2020). This effect is usually interpreted to
signify an increase in the attentional allocation resources. Unlike
findings from (Leuthold et al., 2015) and (Van Berkum et al., 2009),

who reported a larger positivity for morally unacceptable words
between 500 and 1,000 ms, we did not observe the same effect
for the ERP corresponding to morally incongruent vs. congruent
words. However, we did observe a more negative potential for
morally incongruent words in the central-parietal region, which
may reflect the N400 effect found in these and other studies
(Hundrieser and Stahl, 2016).

Interestingly, we could not observe an N400 effect for the world
knowledge violation trials. This differs from other studies on factual
violation that did identify an N400 effect for the centro-parietal
region (Hagoort et al., 2004; Leuthold et al., 2015). The absence
of an N400 could potentially be explained by the fact that none of
our participants were English native speakers, the language used
to create our text stimuli, although only participants with a high
level of self-reported English proficiency were included in the study.
It has been previously found that bilingual readers might not be
able to predict sentence-final words in their second language in
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TABLE 1 Training and testing mean classification results across conditions and component types.

Classification type Components Training accuracy
Mean (%)

Training
accuracy SD (%)

Testing accuracy
Mean (%)

Testing accuracy
SD (%)

moral vs. neutral all 78 6 76 8

moral vs. neutral brain 76 6 74 11

morally congruent vs.
morally incongruent

all 49 6 52 9

morally congruent vs.
morally incongruent

brain 50 6 52 10

correct vs. incorrect all 66 8 62 10

correct vs. incorrect brain 63 6 59 9

the same manner as natives, failing to show an N400 (Martin
et al., 2013). Instead, a broad positivity could be observed for
incorrect trials in this scalp region after 500 ms, which we attribute
to the so-called “semantic P600” (van Herten et al., 2005). While
traditionally associated with syntactic anomalies, many studies
have recently observed a positive deflection peaking at around
600 ms for semantic anomalies as well (Zheng and Lemhöfer, 2019;
Seyednozadi et al., 2021), which we believe we can observe in the
centroparietal region in our ERP plots. While our focus in this study
was single-trial classification, the ERP signatures we uncovered
suggest the validity of the mental state elicitation. Additionally,
these findings offer more insights into the expected neural patterns
for LLM-relevant mental states at the individual world level. It
remains to be further investigated what specific neural signals are
elicited during chatbot interactions, for larger snippets of text.

4.3 Limitations and future directions

The results we obtained here are promising, as they lay the
groundwork for enabling implicit human feedback for LLMs.
Nevertheless, several limitations in our study should be mentioned.
Firstly, we based our classification for moral salience on combined
morally congruent and incongruent trials, as compared to selected
neutral words. However, the neutral words are embedded within
the statements, in contrast with the morally charged trials, which
appear after a fixation cross as ending words in the statements.
While we chose a broad and later time window for the classification
of moral salience, other studies should also explore classification
on word stimuli presented invariably. Besides the positioning
within the sentence, moral and neutral words also differ in terms
of semantic salience, as in contrast to the neutral words, the
moral words offer semantic meaning to the sentences, which was
intentionally designed here to isolate the potential moral reactions
of readers. Moral words also naturally carry greater emotional
valence and arousal in comparison to neutral words (Marques et al.,
2022). Thus, our analysis reflects a broader cognitive response to
morally charged words vs. neutral words, without attributing the
observed effect solely to the moral dimension. From this point of
view, the morally congruent vs. morally incongruent classification
can be seen as a more direct test of the moral processes.

Moreover, similar investigations should explore pBCI
classification on moral and error-processing elicited from
text without the requirement for explicit feedback. Given the
preliminary nature of this investigation, we chose to gain complete
knowledge regarding the subjective processing of the constructed
sentences, such that we can remove from the calibration process
trials that do not conform to the ground labels of classes. Still,
previous studies have found potential differences in neural
activations and cognitive functions between implicit and explicit
moral reasoning (Greene et al., 2004; Fede and Kiehl, 2020), which
should be addressed.

Lastly, with our study, we tried to mimic a realistic BCI
scenario, where calibrated classifiers are applied in an online setting
by keeping a portion of our data as test data. More research
is needed to understand if pBCI classifiers can be successfully
applied in the context of chatbot interfaces where text is being read
not word by word, but word after word. For such applications,
eye-tracking is needed to match the gaze of the reader with
the corresponding text snippets that elicit specific mental states.
Building on these promising findings, we plan to investigate the
integration of eye-tracking and pBCI classification in a simulated
chatbot setting, bringing us closer to real-life applications of
implicit human feedback. This outlook is elaborated in Gherman
and Zander (2024). While two mental states are discussed in this
paper, one can imagine that others, such as confusion, cognitive
workload, and surprise would also be relevant. As such, decoding
of multiple mental states could happen in parallel, while an eye-
tracker detects the words or text snipes that are being read.
For instance, once high confusion and high cognitive workload
are decoded via pBCI in reaction to a given output (e.g., an
overview of quantum mechanics) and concomitantly inform the
LLM system of this change, the LLM could follow up by offering
an alternative, simpler explanation on a given sub-topic that
triggered these mental states (e.g., quantum entanglement). While
significant progress in sensor technology that is more compatible
with real life has been made in recent years (Niso et al., 2023),
there are still major leaps required before such sensors can
be robustly worn by humans tasked to supervise AI systems.
Moreover, more work needs to be done on the software side
to achieve universal classification, as BCI systems used today
still require a lengthy calibration phase for each task, subject,
and electrode type. Additionally, even if such obstacles toward
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realistic uses of BCI are overcome, it is currently unclear how to
safely navigate regulatory constraints for mental state detection
via automated tools [European Union, 2024, Article 5(1)(f)], while
strictly maintaining and safeguarding the privacy of users.

5 Conclusion

This investigation explored the feasibility of mental state
decoding from text stimuli at a single-trial level. While more
validation is needed, our findings suggest that moral salience and
error processing might be inferred from single-trial data with
passive BCIs. Further distinguishing between moral agreement and
disagreement in reaction to morally congruent and incongruent
words presented a challenge. The obtained ERP patterns partly
confirmed successful elicitation of the investigated mental states
and aligned with some of the previous neuroscientific findings.
Going forward, we plan to investigate mental state classification
in more realistic, chatbot-like scenarios. Taken together, our
results hint toward the possibility of accessing human implicit
feedback through passive BCIs, which could complement current
AI training methods. Moreover, more human nuance and a better
understanding of human values could be provided during chatbot
interactions if this implicit channel of communication becomes
available. With our work, we uncover a potential novel path toward
better alignment of LLMs and AI models in general through the use
of passively decoded implicit human feedback.
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