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Registration is a crucial step in the design of automatic change detection

methods dedicated to longitudinal brain MRI. Even small registration

inaccuracies can significantly deteriorate the detection performance by

introducing numerous spurious detections. Rigid or a�ne registration are

usually considered to align baseline and follow-up scans, as a pre-processing

step before applying a change detection method. In the context of multiple

sclerosis, using deformable registration can be required to capture the complex

deformations due to brain atrophy. However, non-rigid registration can alter

the shape of appearing and evolving lesions while minimizing the dissimilarity

between the two images. To overcome this issue, we consider registration

and change detection as intertwined problems that should be solved jointly.

To this end, we formulate these two separate tasks as a single optimization

problem involving a unique energy that models their coupling. We focus on

intensity-based change detection and registration, but the approach is versatile

and could be extended to other modeling choices. We show experimentally

on synthetic and real data that the proposed joint approach overcomes the

limitations of the sequential scheme.

KEYWORDS

deformable 3D registration, change detection, longitudinal analysis, multiple

sclerosis, joint minimization, alternating direction method of multipliers (ADMM)

1. Introduction

Multiple sclerosis (MS) is an auto-immune neurodegenerative disease characterized

by the inflammation of the myelin coating that surrounds the nerves. As a consequence,

the transmission of nervous impulses is impaired, causing motor, cognitive and sensorial

disabilities. The evolution of MS is characterized by the apparition of focal lesions in

the brain and in the spinal cord, and by a progressive atrophy of brain tissues. Both
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phenomena can be monitored thanks to Magnetic Resonance

Imaging (MRI) (Kaunzner and Gauthier, 2017). In the clinical

routine, the evolution of the lesion load and of the brain

atrophy is generally assessed qualitatively. However, the precise

quantification of lesion changes over time may be of great

interest to finely characterize the course of the pathology and

to evaluate at the early stage the effect of a therapeutic strategy

(McNamara et al., 2017). Since the manual delineation of lesion

changes in MRI is a tedious and time consuming task, which

is prone to both intra- and inter-observer variability, there is a

great need for efficient and reliable automated tools (Altay et al.,

2013).

Most change detection methods dedicated to lesion

monitoring rely on a sequential scheme that first consists in

removing all changes that are not of interest in order to detect

in a second step only the evolution of lesions (Radke et al.,

2005). To correct for global intensity changes induced by the

difference of MRI acquisition setups, algorithms for bias field

inhomogeneity correction (Song et al., 2017) and histogram-

based intensity normalization procedure (Shinohara et al.,

2014) are generally considered. Then, geometrical discrepancies

due to variation in patient positioning, acquisition-related

geometrical distortion and brain atrophy are corrected thanks

to registration algorithms involving either rigid, affine or

deformable transformations. Finally, the remaining changes

corresponding to the evolution of lesions are detected. This

final step generally consists in thresholding an intensity-based

(Bosc et al., 2003) or deformation-based (Rey et al., 2002) feature

map. The threshold can be chosen according to some statistical

modeling in order to control the expected number of false

positive detections (Rousseau et al., 2007).

Themain flaw of the sequential procedure is that it implicitly

assumes that each correction step can be performed while not

being influenced by the changes that remain to be corrected

in the next steps. As a consequence, the sequence order of the

correction procedures should be carefully chosen. Moreover, for

each correction step, a trade-off should be found between its

performance (i.e., the ability of the method to accurately and

specifically correct a given kind of change) and its robustness

(i.e., the ability not to be biased by another kind of remaining

changes). This observation advocates for a unified formulation

of the change detection problem allowing to estimate all the

different kinds of changes jointly.

In this paper, we address more specifically the interplay

between deformable image registration and focal intensity

change detection. When deformable registration is performed in

the presence of appearing lesions, the estimated transformation

tends to make these new lesions disappear in order to minimize

the dissimilarity between the two images. This is the reason

why the most common practice is to consider only rigid or

affine registration in order not to alter lesion shape. However,

such linear transforms can only compensate for difference in

patient positioning but are not able to capture the complex

deformations induced by brain atrophy, which typically occurs

in MS. These remaining deformations may yield to spurious

detections in atrophied areas, especially in the cortex and around

the ventricles.

We propose to account for the intertwining of deformable

registration and focal intensity change detection by estimating

them jointly. To this end, we show that these two separate

tasks can be formulated as a single optimization problem

involving a unique energy that models their coupling. Basically,

areas corresponding to detected changes are ignored in the

registration similarity criterion, which prevents the lesion

elimination effect described above. Solving this issue allows

us to use of deformable registration, which in turn prevents

from detecting spurious changes in atrophied areas. We propose

an efficient alternating optimization scheme to solve this

unified optimization problem. We focus on demonstrating the

benefits of this joint formulation in the particular case of a

standard intensity-based data similarity criterion. Nevertheless,

the proposed approach is versatile and could easily be extended

to more elaborated modeling choices. Experimental analysis

is performed on the BrainWeb synthetic dataset and on two

annotated real datasets. We first demonstrate in each case the

benefits of considering a deformable registration as compared to

an affine registration only in order to reduce the number of false

detections. Then, we highlight the benefit of the proposed joint

formulation as compared to the standard sequential scheme

in terms of change detection accuracy. A preliminary version

of this work has been published as a conference paper in

Dufresne et al. (2020). In this paper, we provide a more extensive

experimental analysis, which helps to better characterize the

behavior of the proposed method and better understand why it

outperforms the sequential approach.

The paper is organized as follows. In Section 2, the sequential

approach, which will be considered as the reference baseline

method of this work, is described and its limitations are

discussed. In Section 3, we introduce the proposed joint model

and the optmization strategies that has been set up estimate

both change detection map and deformation field. In Section 4,

we give implementation details. Finally, we present and discuss

experimental results in Section 5.2.

2. The sequential approach

The conventional sequential approach consists of three

main steps. First, the images are corrected for global intensity

variations, then they are spatially registered, and finally the

focal intensity changes due to the evolution of lesions are

detected. In this section, we give a brief overview of the common

practices in the registration and change detection steps. Our

goal is not to cover a comprehensive scope of the field but to

formulate the general principles underlying existing methods. In

the remainder of this article, we will denote I1, I2 :� → R the
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baseline and follow-up MRI images, where � ⊂ R
3 is the image

domain.

2.1. Registration

The registration problem can be formulated as:

ŵ = argmin
w

∑

x∈�

ρ(I1, I2, w, x)+ λ19(w), (1)

where w :� → R
3 represents the transformation, ρ(·) is a data

similarity term, and 9(·) is a regularizer weighted by a scalar

λ1 > 0. An overview of deformable registration methods in

medical imaging can be found in Sotiras et al. (2013).

Several transformation models can be considered relying

either on a parametric representation (e.g., rigid, affine,

polynomial, or Bspline-based) or on a non-parametric

deformable mapping (i.e., a displacement vector is estimated for

each voxel).

The role of the data term is to penalize dissimilarity between

I1 and I2 warped with the estimated transformation. For

monomodal registration, it is common to use intensity-based

measures such as the sum of squared intensity differences or the

cross correlation. In the multimodal case, mutual information

is one of the most widely used similarity metric (Kaunzner and

Gauthier, 2017).

In the context of deformable registration, considering the

data term only can lead to an ill-posed problem. To overcome

this issue, the data term has to be balanced with an additional

regularization term 9(w) that enforces some constraints on the

deformation field. For instance, penalizing the ℓ2 or ℓ1 norm of

the gradient of w helps to promote smooth solutions.

2.2. Change detection

The change detection step generally consists in thresholding

a map of feature differences between registered baseline and

follow-up images (see the survey Lladó et al., 2012). These

maps can be calculated directly from either intensity-based

(Sweeney et al., 2013; Ganiler et al., 2014; Cabezas et al., 2016),

or deformation-based (Rey et al., 2002; Cabezas et al., 2016;

Salem et al., 2018) features, and sometimes integrate other kind

of information (Elliott et al., 2013; Sweeney et al., 2013) .

In the perspective of integrating both registration and

change detection in a single joint optimization problem, we

advocate that they should both rely on the same data similarity.

Consequently, we model the binary change map c :� → {0, 1}

defined at each voxel x as follow:

c(x) =




0 if ρ(I1, I2, w, x) ≤ λ2

1 otherwise,
(2)

λ2 ∈ R
+∗ being the detection threshold. The thresholding

scheme (Equation 2) can be reformulated as the following

optimization problem:

ĉ(x) = argmin
c :�→{0,1}

∑

x∈�

(1− c(x)) ρ(I1, I2, w, x)+ λ2c(x). (3)

Since simple thresholding can yield noisy results, most MS

lesion change detection methods also integrate a denoising step

in post-processing to obtain the final changemap. The denoising

can be realized jointly with the change detection by integrating a

regularization term 8(·) in Equation (3):

ĉ(x) = argmin
c :�→{0,1}

∑

x∈�

(1− c(x)) ρ(I1, I2, w, x)+ λ2c(x)+ λ38(c),

(4)

Where λ3 weights the regularization term.

2.3. Limitation of the sequential approach

The main limitation of the sequential approach is illustrated

in Figure 1 involving the baseline (Figure 1) and follow-up

(Figure 1) MRI acquisitions of a patient suffering fromMS. One

can observe in the follow-up scan the apparition of a new lesion

and a slight enlargement of the ventricle reflecting the brain

atrophy process. In the case of affine registration (Figures 1),

we can see on the subtraction image that the lesion is well

detected, but that spurious detection occur around the ventricles

and in the cortical regions due to brain tissue atrophy. Using

a deformable registration (Figures 1) helps to remove these

spurious detection by compensating the ventricles enlargement

and the cortical atrophy. However, it also tends to make the

new lesion disappear (Figure 1), thus altering the shape of the

corresponding detection (Figure 1). The goal of the proposed

joint approach (Figures 1) is to perform an accurate atrophy

correction while preserving the shape of appearing and evolving

lesions, even when the lesion-to-tissue contrast is quite low.

3. Joint approach

3.1. General formulation

To overcome the limitations of the sequential approach,

we advocate a joint modeling of registration and change

detection. The two steps are fundamentally intertwined, since

registration aims at finding correspondences between images,

while change detection determines regions that does not admit

correspondences. Therefore, both tasks should be defined with

the same objective function to work in synergy. We formulate
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FIGURE 1

Warped follow-up images and subtraction images obtained with the sequential a�ne and deformable registration pipelines and the proposed

joint deformable approach, on an example of the dataset described in COM (2021).

the following joint minimization problem that achieves this goal

by unifying the principles described previously:

ŵ, ĉ = argmin
w,c

∑

x∈�

[
(1− c(x)) ρ(I1, I2, w, x)+ λ2c(x)

]

+λ19(w)+ λ38(c).

(5)

With this model, the data term is cancelled in change regions

(where c(x) = 1), so that the estimation of the transformation

is only driven by the regularization term, thus producing

smoothed deformation field in these areas. By this way, it

prevents the lesion disappearing effect observed in Figure 1.

3.2. Modeling choices

The formulation (Equation 5) is versatile and could be

instantiated with a variety of data and regularization terms. In

this paper, the goal is to demonstrate the superiority of the

joint formulation over the sequential approach under standard

modeling choices, which are detailed in the sequel.

First, we assume that, thanks to the intensity normalization

step done as a preprocessing, intensities of both images are

comparable, thus allowing us to consider a data term based on

intensity difference. Consequently, we consider the following

standard similarity measure:

ρ(I1, I2, w, x) =
1

σ 2 ‖I2(x− w(x))− I1(x)‖
2
2, (6)

Where σ is a normalization constant defined by the median

absolute deviation of the intensity differences between I1 and

I2. This data term has been used for motion estimation

(Bruhn et al., 2005) and is representative of intensity-based

features commonly used in change detection methods (Sweeney

et al., 2013; Ganiler et al., 2014).

Secondly, we assume that the deformations induced by

brain tissue atrophy are complex but still locally smooth. This

is why we consider a non-parametric representation of the

transformation field w while introducing a first order Tikhonov

regularization term:

9(w) =
∑

x∈�

‖∇w(x)‖22, (7)

Where ∇· is the gradient operator.

Finally, we assume that the detected changes should

be spatially coherent. Consequently, the change map c is

regularized with a standard binary Potts model:

8(c) =
∑

x∈�

∑

y∈N (x)

(1− δ
(
c(x), c(y)

)
), (8)

Where δ is the Kronecker function equal to 1 if its argument

is true andN (x) is the 6-neighborhood of x.

3.3. Optimization

To solve the optimization problem (Equation 5), we rely

on an alternating minimization strategy: at each iteration,

we successively minimize with respect to (w.r.t.) each

variable, while keeping the other fixed. We detail in this

section the optimization strategies dedicated to each of the

two subproblems.

Notice that, since the problem is nonconvex, convergence

toward the global minimum cannot unfortunately be
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guaranteed. However, the results presented in Section 5.2

on several datasets suggest that the optimization process

converges in practice toward a satisfying solution.

Minimization w.r.t. w To make the problem tractable, we

consider the linearized version of the data term (Equation 6)

obtained by replacing I2(y − w(x)) with its Taylor expansion

around y:

ρl(I1, I2, w, x) =
1

σ 2 ‖∇⊤I2(x) w(x)+ It(x)‖
2
2, (9)

Where It(y) = I2(y) − I1(y) is the temporal derivative.

Since the Taylor expansion is valid only for small deformations,

we embed the estimation in a coarse-to-fine scheme, which is

a common practice in registration and motion estimation (Hill

et al., 2001).

After Taylor development of I2(y−w(x)), the new data term

ρl in Equation (9) is the composition of a quadratic function

with a linear function of w, which yields a convex term. Since

the regularization term (Equation 7) is also convex, the whole

optimization problem is convex. By substituting ρ by ρl in

Equation (5), the optimisation problem can be addressed with

a variety of efficient optimization methods.

We chose to consider the alternated direction method of

multipliers (ADMM) framework (Boyd et al., 2011). To this end,

we introduce a splitting variable z that decouples the two terms

of Equation (5) that depend on w, and we formulate the problem

in the constrained form:

min
w

∑

x∈�

(1− c(x)) ρl(I1, I2, w, x)+ λ19(z) s.t w = z (10)

The ADMM algorithm is based on the minimization of the

augmented Lagrangian associated with Equation (10) w.r.t. w

and z, and a gradient ascent on the dual variable (Boyd et al.,

2011). It leads to the following iterative updates of w and z (see

Fortun et al., 2018 for a similar derivation with different data and

regularization terms):

wk+1 = prox∑
x(1−c(x))ρl(I1,I2,·,x)

(
zk −

α
k

µ

)
(11)

zk+1 = proxλ19

(
wk+1 +

α
k

µ

)
(12)

α
k+1 = α

k + µ(wk+1 − zk+1) (13)

Where proxf (x) = argmin
y

1
2‖x − y‖22 + f (y) denotes the

proximity operator of a function f . The subproblem (Equation

11) is voxel-wise and quadratic, and it admits a simple closed

form solution. The subproblem (Equation 12) is equivalent to

a denoising operation with the regularizer 9(·), and it also has

a closed form linear solution that can be computed efficiently

in the Fourier domain. µ is the parameter associated with

the quadratic penalty in the Augmented Lagrangian associated

with Equation (10). The ADMM algorithm is derived from this

Augmented Lagrangian and the update (Equations 11, 12) are its

minimization w.r.t. w and z. Intuitively, µ controls how fast the

constraint w = z is imposed through the optimization process.

Thus, even if it is not strictly speaking a step size, it has a similar

impact on the convergence speed.

Notice that the ADMM framework is flexible enough to

cope with different data and regularization terms with low

computational cost. The requirement is to be able to design a

splitting of the cost function such that the proximity operators

of each iteration have computationally efficient solutions.

Examples of admissible models comprise data terms based on

the ℓ1 penalty function or cross-correlation (Vogel et al., 2013),

and regularizations by total variation or Nuclear norm of the

Jacobian (Bostan et al., 2014).

Minimization w.r.t. c When w is fixed, the estimation

of c amounts to a binary segmentation problem with Potts

regularization:

ĉ = argmin
c

∑

x∈�

[
λ2 − ρ(I1, I2, w, x)

]
c(x)+ λ38(c). (14)

We solve it with a graph-cut method (Boykov et al.,

2001), which is able to find an exact solution with very low

computational cost.

4. Implementation details

4.1. Pre-processing

Before applying the change detection framework, the input

images require to be pre-processed as follows. First, images are

corrected for bias field inhomogeneity using the N4 algorithm

(Tustison et al., 2010). Then, a global scaling of the intensity is

performed in order to enforce the median value of the intensities

inside the brainmask to be equal to 100. Images are then

resampled to 1 mm isotropic resolution. These two steps aim

at harmonizing all input images in terms of intensity range and

spatial resolution. The follow-up scan is then rigidly registered

on the baseline image using ANTs library (Avants et al.,

2011)1 with default parameters and mutual information metric.

Differential bias field inhomogeneity is corrected thanks to the

method described in Lewis and Fox (2004), while considering a

21× 21× 21 median filter size.

4.2. Post-processing

The detection maps are post-processed by discarding the

connected components smaller than 3mm3 and the detections

1 https://github.com/ANTsX/ANTs
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outside brain parenchyma (i.e., the union of gray and white

matter). Notice that the binary change detection map can also

be computed to reflect either positive or negative intensity

changes only.

Brain parenchyma masks are computed from T1-weighted

images using the FAST method provided in the FSL library

(Zhang et al., 2001) or alternatively from FLAIR images using

SAMSEG2 brain parcellation tool (Cerri et al., 2021), in the case

where no T1-weighted image is available.

4.3. Hyperparameter setting

Three hyperparameters have to be set in the proposed

joint formulation (Equation 5): λ1, controlling the spatial

regularization of the deformation field, λ2 acting as a threshold

for the map of intensity differences, and λ3, controlling the

spatial regularization of the change map. Here, we suggest

strategies to find out relevant parameters settings.

The value of λ1 should be chosen to optimally estimate

longitudinal brain atrophy, since it is the main source of

brain deformation in MS. Thus, we consider a subset of 21

images from the dataset OASIS-3 (LaMontagne et al., 2019) that

contains longitudinal Alzheimer and normal aging MRI data

that exhibit various pattern of longitudinal brain atrophy. We

determine the optimal value of λ1 by selecting the one that leads

to the best registration performance on this subset of OASIS-

3. To this end, we derive a registration quality metric from

the provided segmentation maps of brain structures obtained

with Freesurfer. Concretely, the Dice score is computed for each

structure between the segmentation maps of the baseline image

and of the registered follow-up image. The global registration

quality metric is then computed as the sum over all the regions of

the median Dice score observed for each region. This procedure

leads us to find λ1 = 70 as an optimal value.

The values of λ2 and λ3 have to be set to find the best

compromise regarding: (i) The expected intensity difference,

(ii) the noise level that corrupts the images, and (iii) the

spatial extent of the changes. Here, we suggest an approach

to find out optimized setting for each of the two considered

databases (see Sections 5.1.2, 3.2). In practice, λ2 and λ3 have

been fixed to maximize the overall performance of the affine

sequential approach (see Section 5.1.5) in terms of local Dice

Similarity Coefficient (local DSC, see Section 5.1.4) for each

dataset. Considering the localDSC ensures to focus on the ability

of the detection scheme (Equation 14) to recover the detected

changes while not being influenced by false positive detections

that can occur in other parts of the brain. Considering the affine

transformation model ensures that the registration step does not

to alter the geometry of evolving regions. This procedure leads

2 https://surfer.nmr.mgh.harvard.edu/fswiki/Samseg

us to find λ2 = 16 and λ3 = 5 as optimal setting for LesjakDB

dataset and λ2 = 25 and λ3 = 3 for MSSEG-2 dataset.

4.4. Convergence and stopping criteria

The iterations of the alternated minimization of Equation

(5) and of the ADMM algorithm (Equations 11–13) are stopped

when a stopping criterion is verified or when a maximum

number of iterations is reached. The stopping criterion is a

threshold on the norm of the relative changes between two

consecutive iterations, and is set to 10−3 for the alternated

minimization and 2.10−3 for ADMM. The maximum number

of iterations is set to 5 for the alternated minimization and 300

for ADMM.

5. Experimental evaluation

5.1. Evaluation framework

In this section, we report results obtained on one synthetic

dataset and two publicly available real patients datasets. The

synthetic dataset offer the advantage to have an unambiguously

defined ground truth change detection map, while controlling

the amount of noise, bias field inhomogeneity and brain atrophy

that corrupt the images. The real datasets are used to evaluate the

proposed approach in conditions that are closer to the clinical

routine, while considering different acquisition conditions and

various pathological evolution. The first real patients dataset,

denoted in the sequel as LesjakDB (Lesjak et al., 2016), is

dedicated to assess the ability of methods to detect every

kinds of MS lesion evolutions (shrinkage, growth, new and

disappearing), whereas the second dataset, denoted in the sequel

asMSSEG-2 (COM, 2021), only focus on the ability to detect new

appearing lesions.

5.1.1. Synthetic dataset

We evaluate the proposed method on T2-weighted synthetic

volumes generated with the Brainweb simulator (Cocosco

et al., 1997), while considering the normal anatomical model

(i.e., without lesion) and two multiple sclerosis anatomical

models with moderate and severe lesion load. The images

are simulated at a 1 mm3 isotropic resolution (image size:

181 x 217 x 181) with bias field inhomogeneity (20%).

To simulate realistic brain atrophy for the follow-up image,

we applied a deformation field that has been estimated

using a deformable registration (Avants et al., 2008) from

two T1-weighted MRI scans acquired 4 years apart of a

patient suffering from MS that exhibits a significant brain

atrophy evolution (in-house dataset). It should be noted

that these real data images were first affinely registered

onto the brainweb image to ensure the estimated deformable
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TABLE 1 Simulated longitudinal acquisitions.

Scenario Baseline image Follow-up image Simulated atrophy

Lesion appearance without atrophy Normal Moderate No

Lesion growth without atrophy Moderate Severe No

Lesion appearance with atrophy Normal Moderate Yes

Lesion growth with atrophy Moderate Severe Yes

FIGURE 2

Qualitative comparison of the binary change detection maps obtained with the three methods on the synthetic dataset (lesion appearance with

atrophy scenario).

registration to be consistent with the underlying anatomy.

The visual inspection confirms that the simulated image

exhibits a realistic atrophy pattern. Gaussian additive noise

was added with a standard deviation fixed at 5% of the

mean intensity in the brightest tissue (cerebrospinal fluid in

the T2-weighted simulation). We consider several scenarios

of simulated longitudinal acquisition that are summarized

in Table 1.

5.1.2. Real dataset LesjakDB: All kinds of lesion
evolution

LesjakDB dataset (Lesjak et al., 2016) is composed of

20 longitudinal MRI acquisitions of MS patients with two

timepoints. The median time between the baseline and follow-

up studies was 311 days, ranging from 81 to 723 days. Each

MRI acquisition consists in a 2D T1-weighted, a 2D T2-

weighted and 2D-FLAIR sequences. Change detection was

conducted on the FLAIR images only. The FLAIR image size

is 256 × 256 × 49 with an anisotropic spatial resolution of

0.9 × 0.9 × 3 mm. Ground truth change detection maps are

also provided, which were obtained from manual annotations

done by two expert raters. We adjusted some of the ground

truth annotations that did not match the real lesion changes.

The annotated changes include appearing, growing, shrinking

and disappearing lesions. Ground-truth detection maps are

compared to binary detection maps that include both positive

and negative intensity changes.

5.1.3. Real dataset MSSEG-2: Only appearing
lesions

MSSEG-2 dataset (COM, 2021) is composed of 100 pairs

of FLAIR MRI scans from MS patients acquired on various

MR scanners. The provided ground-truth is limited to new

appearing lesions, and was build from the consensus of manual

annotations delineated by four experts. The dataset is separated

into training (40 patients) and testing (60 patients) sets. Since

the proposed approach does not require any training step, we

consider the whole dataset for testing. However, we distinguish

two subgroups of data, namelyMSSEG-2-Change corresponding

the 61 subjects that exhibit at least one new appearing lesion and

MSSEG-2-NoChange corresponding the 39 subjects that do not

exhibit any new appearing lesion. Since the provided ground-

truth is limited to new appearing lesions, they are compared

only to the positive binary change detection maps obtained

with the different methods. Notice, that the proposed method

framework does not discriminate appearing from evolving

lesion. Consequently, lesion evolutions, which are not labeled in

the ground truth detection maps, are erroneously considered as

false positive detection, thus introducing a bias in some of the

evaluation metrics.

5.1.4. Metrics

We report four metrics to evaluate the performance of

the methods to detect changes, namely the Dice Similarity

Coefficient (DSC), the Positive Predictive Value (PPV), the True

Positive Ratio (TPR) and the local DSC. Let TP, TN, FP, and FN

be the number of voxels from estimated change detection map

Frontiers inNeuroimaging 07 frontiersin.org

https://doi.org/10.3389/fnimg.2022.1008128
https://www.frontiersin.org/journals/neuroimaging
https://www.frontiersin.org


Dufresne et al. 10.3389/fnimg.2022.1008128

TABLE 2 Results computed on the synthetic dataset.

Scenario Method DSC PPV TPR Local DSC

Lesion appearance
no atrophy

affine 0.830 0.782 0.885 0.830

sequential 0.684 0.921 0.544 0.684

joint 0.814 0.887 0.751 0.814

Lesion growth
no atrophy

affine 0.766 0.635 0.964 0.770

sequential 0.685 0.734 0.641 0.688

joint 0.806 0.726 0.902 0.808

Lesion appearance
simulated atrophy

affine 0.460 0.329 0.767 0.810

sequential 0.626 0.960 0.465 0.627

joint 0.743 0.925 0.621 0.744

Lesion growth
simulated atrophy

affine 0.652 0.505 0.919 0.827

sequential 0.753 0.869 0.664 0.754

joint 0.847 0.833 0.861 0.848

The bold values indicate the highest scores among the four methods.

that correspond to True Positive, True Negative, False Positive

and False Negative, respectively.

The DSC is defined as:

DSC = 2TP/(2TP + FP + FN)

and reflects the overall good overlap between the detection map

and the ground truth.

The PPV is defined as:

PPV = TP/(TP + FP)

and reflects the proportion of relevant detections among all the

detected changes.

The TPR is defined as:

TPR = TP/(TP + FN)

and reflects the proportion of the ground-truth changes that

have been detected.

The localDSC correspond the DSC computed on a restricted

area defined as the dilation with a 4-voxel radius spherical

structuring element to the ground truth. This metric enables

us to focus the evaluation on the local spatial accuracy of the

detection method

In addition to the voxel-wise metrics, we also report

lesion-wise metrics, namely the Lesion True Positive Ratio

(L-TPR) and the Lesion Positive Predictive Value (L-

PPV). These metrics have been evaluated thanks to the

animaSegPerfAnalyzer validation tool while considering

the same hyperparameters as in Commowick et al.

(2018).

Since all these metrics are not relevant for data that do

not exhibit any changes, we consider in that specific case

FIGURE 3

Evolution of DSC across iterations of the alternating

optimization scheme of the joint approach on the synthetic

dataset (blue: Lesion appearance, simulated atrophy, orange:

Lesion growth, simulated atrophy).

the number of detected connected components as well as the

volume of detected changes to characterize the false positive

detections.

5.1.5. Variants used for comparison

To demonstrate the benefits of the proposed joint modeling,

we consider three variants of the change detection framework:

• joint: the proposed joint change detection and registration

method described in Section 3.

• sequential: The sequential counterpart of the proposed

method, which successively performs deformable
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FIGURE 4

Qualitative comparison of the binary change detection maps obtained with the three methods and of the jacobian of the deformation field

estimated with the sequential and joint approaches on one selected subject from the MSSEG-2 dataset. Hyperparameters: λ1 = 70 (for sequential

and joint methods), λ2 = 25, λ3 = 3. I1: Baseline, I2: Follow-up, sequential, joint, Ground-truth, and a�ne.

TABLE 3 Results computed on LesjakDB and MSSEG-2-Change datasets.

DataSet Method Local DSC DSC PPV TPR L-PPV L-TPR

affine 0.539± 0.174 0.152± 0.087 0.086± 0.060 0.603± 0.223 0.022± 0.022 0.576± 0.195

LesjakDB sequential 0.424± 0.139 0.317± 0.117 0.293± 0.152 0.323± 0.125 0.088± 0.051 0.577± 0.197

joint 0.501± 0.179 0.353± 0.144 0.323± 0.148 0.447± 0.207 0.103± 0.061 0.574± 0.208

affine 0.626± 0.224 0.142± 0.165 0.081± 0.139 0.633± 0.269 0.015± 0.042 0.840± 0.271

MSSEG-2-Change sequential 0.520± 0.196 0.310± 0.178 0.298± 0.264 0.379± 0.176 0.095± 0.150 0.872± 0.307

joint 0.579± 0.219 0.356± 0.208 0.336± 0.254 0.474± 0.222 0.111± 0.155 0.872± 0.304

MSSEG-2-Change
inverse

affine 0.626± 0.224 0.142± 0.165 0.081± 0.139 0.633± 0.269 0.015± 0.042 0.840± 0.271

sequential 0.625± 0.217 0.348± 0.216 0.290± 0.244 0.550± 0.243 0.094± 0.151 0.977± 0.292

joint 0.655± 0.237 0.378± 0.233 0.312± 0.250 0.619± 0.266 0.091± 0.164 0.947± 0.304

The median± the median absolute deviation (MAD) computed over all subjects are reported for each metric. The MSSEG-2-Change inverse experiment consist in swapping the baseline

and follow-up images to evaluate the ability of the methods to detect disappearing lesions. The bold values indicate the highest scores among the three methods.

registration and change detection. For the two steps,

we use the same model and optimization algorithms

as in substeps of the joint approach described

in Section 3.3.

• affine: The sequential approach where the deformable

registration has been replaced by affine registration,

which corresponds to the most common case. The

affine registration was estimated using ANTs library

(Avants et al., 2011) 3 with default parameters and

mutual information metric. Then, the thresholding and

3 https://github.com/ANTsX/ANTs

smoothing of the change map routine follows model

(Equation 14).

5.2. Results

5.2.1. Synthetic dataset

First, a qualitative visual comparison of the three methods

is provided in Figure 2 for the lesion appearance with

atrophy scenario. The affine method succeeds to detect

almost all the lesion areas, but it suffers from false positive

detection around the ventricles due to brain atrophy. Both

the sequential and the joint methods compensated for

brain atrophy deformation since none of them exhibit false
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FIGURE 5

Boxplots corresponding to the results summarized in Table 3 for LesjakDB (NSubject = 20). Statistical significancy is evaluated thanks to the

Wilcoxon signed-rank test between each pair of methods while applying Benjamini/Hochberg FDR correction.

FIGURE 6

Metrics reporting the performance of the three methods for each subject of LesjakDB.

detections around the ventricles. However, the sequential

method failed to detect the whole lesion areas due to the over-

compensation of lesion changes. This limitation is overcome

by the joint approach that succeeds to detect the entire

lesion areas.

A quantitative comparison of the three methods under

four scenarios is provided in Table 2. First, we consider the

appearance of lesion without atrophy. Unsurprisingly, this

scenario is the most favorable for the affinemethod since there is

no geometric difference to compensate. The sequential approach
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FIGURE 7

Correlation between the performance of the three methods and the ground-truth evolving lesion load (cm3) of the subjects of LesjakDB.

yields to significantly lower values of DSC and local DSC. This

is due to the lesion over-compensation effect, as supported by

the observed low TPR value (i.e., lack of sensitivity) and high

PPV value (i.e., high specificity). Finally, the joint approach

overcomes the shortcoming of the sequential approach and have

performances similar to the affinemethod, with a slight tendency

to underestimate the detected area. Similar observations can

be made about the second scenario involving lesion growth

without atrophy.

The conclusions are drastically different for the two

scenarios involving simulated atrophy. The performance of

the affine method is significantly hampered by the numerous

false detections due to the atrophy. This is illustrated by the

significant decrease of the DSC and PPV values compared to the

cases without atrophy, while the TPR and local DSC values are

less modified. The sequential approach succeeds to compensate

for the simulated brain atrophy, as highlighted by the high PPV

value, but still underestimates the changes to detect, as indicated

by the low TPR value. The joint approach clearly outperforms

the two previous approaches in terms of detection accuracy, as

objectified by the significantly higher DSC value.

The behavior of the joint approach can be monitored

through the iterations of the alternating optimization scheme

(see Figure 3). We can see that the DSC increases across the

iterations, and the convergence is reached in a few iterations.

Concerning the computational burden of the joint approach, it

is about 24min on one single core (Intel(R) Xeon(R) Gold 6130

CPU @ 2.10GHz) for an experiment on the synthetic dataset

(image size: 181 x 217 x 181).

FIGURE 8

Qualitative comparison of the binary change detection maps

obtained with the sequential (purple) and joint (green) approaches

as compared to the ground truth (underlying transparent red) on

one selected subject from the MSSEG-2 dataset.

5.2.2. LesjakDB

First, a qualitative visual comparison of the three methods

is provided in Figure 4. We can draw similar conclusions as
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FIGURE 9

Boxplots corresponding to the results summarized in Table 3 for both MSSEG-2-Change and MSSEG-2-Change inverse (NSubject = 61). Statistical

significancy is evaluated thanks to the Wilcoxon signed-rank test between each pair of methods while applying Benjamini/Hochberg FDR

correction.

for the synthetic dataset (see Figure 2). The affine method

demonstrates a high sensitivity (i.e., the lesion evolution is

well detected) but a lack of specificity (i.e., numerous false

positive detections are detected around the ventricles and in

the posterior part of the cortex). Conversely, the sequential

method has high specificity but lacks sensibility. The joint

approach provides the best visual results, thus illustrating its

ability to achieve both high sensitivity and high specificity.
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FIGURE 10

Number of connected components (left) and volume in cm3 (right) of the detected changes computed for the 39 subjects of

MSSEG-2-NoChange datasets (i.e., subjects without new appearing lesion). Statistical significancy is evaluated thanks to the Wilcoxon

signed-rank test between each pair of methods while appling Benjamini/Hochberg FDR correction.

Figures 4 show the Jacobian of the deformation fields obtained

by the sequential and joint methods, respectively. The specific

pattern characterized by the alternance of both high and

low values of the jacobian (see areas highlighted by the

red squares in Figure 4) reflects the high local contraction

and dilation induced by the deformation field to make the

lesion disappear, thus explaining the lack of sensitivity of the

detection results.

The quantitative evaluation shown in Table 3 (first row)

and in Figure 5 confirms the conclusions of the visual analysis.

The high sensitivity of the affine method is objectified at the

voxel level by a statistically significantly higher TPR than the

two other methods. At the lesion level, all the three methods

exhibit similar L-TPR values, thus emphasizing their ability to

detect the same amount of changing areas. Both the sequential

and joint methods yield significantly higher PPV and L-PPV

compared to the affine method, which illustrates their ability

to reduce the number of false detections induced by brain

atrophy at both voxel and lesion levels. This result highlights

the benefit of using deformable registration in the context of

MS lesion monitoring. The significantly lower TPR achieved

by the sequential method compared to the joint method is the

consequence of the lesion over-compensation effect. Finally,

the joint approach significantly outperforms the two other

approaches in term of voxel-wise global accuracy (see DSC).

Figure 6 highlights the variability of the performance of the

methods across the subjects. It is interesting to notice that,

although the performance of the detection methods greatly

varies from one subject to the other, the ranking among the three

methods appears to be highly consistent across the subjects.

When investigating for the factors that may explain the observed

variability, it appears that the volume of the ground-truth seems

to play a prominent role: the larger is the volume to detect, the

better is the performance of the change detection algorithm (see

Figure 7).

5.2.3. MSSEG-2

Similarly as for the synthetic and LesjakDB datasets, the

qualitative visual comparison of the two approaches based on

deformable registration highlights the lack of sensitivity of the

sequential method due the lesion over-compensation effect (see

Figure 8). The resulting change detection map (purple) is too

small compared to the ground-truth (underlying transparent

red) due to the deformable registration that significantly shrinks

the lesion. With the joint approach, the shape of the lesion

is almost preserved in the warped follow-up image and the

change detection map (green) matches almost perfectly the

ground-truth.

The quantitative evaluation on the subset MSSEG-2-Change

is reported in the second row of Table 3 and in the upper part of

Figure 9.

The fact that both the sequential and joint approaches

lead to significantly higher PPV values as compared to the

affine approach advocates the use of deformable registration

to reduce the number of false detections. The benefit of

considering the joint over the sequential approach to overcome

the lesion overcompensation effect is clearly demonstrated by

the significantly higher TPR and local DSC values obtained with

jointmethod.

It is also interesting to notice that the lesion over-

compensation effect does not affect the special case of

disappearing lesion. Indeed, when registering an image without

lesion on a image with a lesion, the dissimilarity in the area of

the disappearing lesion cannot be corrected by the transport

of intensity of the registration (this is in fact only the case for
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non symmetric image registration method, see Noblet et al.

(2004) for further explanations). To illustrate this phenomenon,

we consider the MSSEG-2-Change inverse experiment (see the

third row of both Table 3 and the bottom part of Figure 9) that

consist in swapping the baseline and the follow-up image, so

that the ground-truth now correspond to disappearing lesions.

The same conclusion can be drawn from the DSC, PPV, and

TPR as compared to the MSSEG-2-Change experiment. The

most interesting point concern the local DSC that focuses

the evaluation on the disappearing lesion. In that case, there

is no significant difference any more between sequential and

joint approaches contrary to the MSSEG-2-Change experiment,

showing the absence of lesion over-compensation effect in the

specific scenario of detecting disappearing lesions.

Note that all the results presented above in this section are

evaluated on the 61 subjects of MSSEG-2-Change (i.e., subject

presenting at least one new appearing lesion). Indeed, the

presented metrics cannot be computed anymore for the 39

subjects of MSSEG-2-NoChange since the ground-truth change

detection map is empty. This is why we only report the volume

of detected changes for this subset of MSSEG-2 (see Figure 10).

We can notice that both sequential and joint approaches lead

to significantly lower volume of detected changes as compared

to the affine, which appears in line with previous findings

that support the use of deformable registration to reduce the

number of false detections. Also note that the jointmethod yields

consistently to slightly higher volume of detected changes as

compared to the sequentialmethod. This is also the consequence

of the lesion over-compensation effect that affects the sequential

appproach.

6. Conclusion and perspectives

We have presented a method that unifies registration and

change detection for the analysis of longitudinal brain MRI.

It is based on the joint modeling of these two tasks as the

minimization of a single objective function, for which we have

developed an efficient alternating optimization method. The

proposed approach has been evaluated in the context of the

follow-up of multiple sclerosis lesion, which requires deformable

registration to capture characteristic brain atrophy, but also

with the potential caveat to shrink appearing lesions. In this

context, the conventional sequential detection pipeline leads to

large detection inaccuracies around new appearing lesions. We

have demonstrated on simulated and real data that the proposed

joint approach is able to combine the ability of deformable

registration to correct brain atrophy, and a good preservation

of the lesions shape to ensure accurate change detection.

The implementation presented in this paper of the proposed

joint model relies in fact on quite simple modeling assumptions.

The versatility of the optimization approach opens the way

for more sophisticated models that could be handled in the

same framework. Alternative data fidelity terms such as cross

correlation or mutual information, and regularizers such as

total variation could be considered to potentially improve the

performance of the method. Another perspective is to improve

the convergence of the alternating optimization strategy to

ensure a better robustness to local minima. To this end we could

consider a fuzzy change detection map to turn its estimation

into a continuous optimization problem. This would allow us

to use more robust optimization approaches such as Proximal

Alternating Linearized Minimization (Bolte et al., 2014). Finally,

while we have addressed in this paper the registration problem,

the unification principle could be extended to other steps

of the change detection pipeline. In particular, the intensity

normalization and the bias field inhomogeneity correction of

the MRI acquisitions are crucial pre-processing tasks that are

impacted by the presence of evolving lesions. Therefore, the

integration of these two tasks in a single unified model would

be a natural extension of the proposed framework.
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