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Brain tissue segmentation has demonstrated great utility in quantifying MRI

data by serving as a precursor to further post-processing analysis. However,

manual segmentation is highly labor-intensive, and automated approaches,

including convolutional neural networks (CNNs), have struggled to generalize

well due to properties inherent to MRI acquisition, leaving a great need for an

e�ective segmentation tool. This study introduces a novel CNN-Transformer

hybrid architecture designed to improve brain tissue segmentation by

taking advantage of the increased performance and generality conferred by

Transformers for 3D medical image segmentation tasks. We first demonstrate

the superior performance of our model on various T1wMRI datasets. Then, we

rigorously validate our model’s generality applied across four multi-site T1w

MRI datasets, covering di�erent vendors, field strengths, scan parameters, and

neuropsychiatric conditions. Finally, we highlight the reliability of our model

on test-retest scans taken in di�erent time points. In all situations, our model

achieved the greatest generality and reliability compared to the benchmarks. As

such, our method is inherently robust and can serve as a valuable tool for brain

related T1wMRI studies. The code for the TABS network is available at: https://

github.com/raovish6/TABS.

KEYWORDS

MRI, transformer, deep learning, segmentation, investigation, brain tissue

segmentation

Introduction

Brain tissue segmentation represents an important application of medical image

processing, in which an MRI image of the brain is segmented into three classes:

gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF). Brain tissue

segmentation is a critical step in Voxel Based Morphometry (VBM), a method used

to quantitatively analyze MRI scans. VBM presents the ability to highlight subtle

structural abnormalities by estimating differences in GM and WM brain tissue volume.

As such, VBM has been prevalent for characterizing and monitoring conditions such

as schizophrenia (Wright et al., 1995), Alzheimer’s (Hirata et al., 2005), Huntingon’s
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(Kassubek et al., 2004), and bipolar disorder (Nugent et al.,

2006). VBM has also been used as an integral preprocessing

tool in machine learning and deep learning based disease

classification pipelines (Salvador et al., 2017; Nemoto et al.,

2021). Outside of VBM, brain tissue segmentation is useful for

characterizing tissue volume in particular regions of interest.

It is often used with magnetic resonance spectroscopy to

quantify metabolites by tissue type, and both techniques have

been applied together to investigate morphological differences

associated with various disorders (Auer et al., 2001; Bagory et al.,

2011) as well as correct for metabolite measurements based on

differing tissue fractions (Harris et al., 2015).

Despite the demonstrated utility of brain tissue

segmentation, there is no universally accepted method

capable of segmenting accurately and efficiently across a

wide variety of datasets. Manual segmentation of brain tissue

is extremely labor intensive, often impractical given larger

datasets, and difficult even for experts. Alternatively, automated

segmentation has proven challenging due to properties inherent

to the MRI scans themselves. Changes in vendors or field

strength have both been linked with increased variance in

repeated scan measures (Han et al., 2006), and scans acquired

through different imaging protocols tend to fluctuate more in

terms of volumetric brain measures (Kruggel et al., 2010). Time

of day as well as time between scans have been associated with

variable tissue volume estimation (Karch et al., 2019) while

neuropsychiatric conditions such as schizophrenia have been

linked with subtle brain tissue anatomical changes (Koutsouleris

et al., 2015). Together, these inconsistencies make it difficult

for brain tissue segmentation solutions to be applicable across

datasets of differing vendors, collection parameters, time points,

and neuropsychiatric condition.

Many of the earlier proposed automated solutions have

depended on intensity thresholding (Dora et al., 2017),

population-based atlases (Cabezas et al., 2011), clustering

(Mahmood et al., 2015; Dora et al., 2017), statistical methods

(Zhang and Brady, 2000; Marroquín et al., 2002; Greenspan

et al., 2006; Angelini et al., 2007), and standardmachine learning

algorithms. Thresholding-based approaches often struggle to

segment low contrast input images with overlapping brain

tissue intensity histograms. Alternatively, atlas-based algorithm

performance heavily depends on the quality of the population

derived brain atlas. While machine learning algorithms such

as support vector machine (SVM; Bauer and Nolte, 2011),

random forest (Dadar and Collins, 2021), and neural networks

(Amiri et al., 2013) have demonstrated reasonable segmentation

performance, their accuracy largely relies on the quality

of manually extracted features. In general, many of these

algorithms require a priori information to properly segment

brain tissue, which is often not feasible to acquire for all

new scans segmented. FSL FAST is a popular statistical

brain tissue segmentation toolkit that combines Gaussian

mixture models with hidden Markov random fields to achieve

reliable segmentation performance across a variety of datasets

(Zhang and Brady, 2000). However, segmentation via FAST is

time consuming and therefore not ideal for many real-time

segmentation applications.

Convolutional neural networks (CNNs) have recently

emerged as a superior alternative to standard machine learning

algorithms for classification-based brain segmentation given

their feature-encoding capabilities (Akkus et al., 2017). CNNs

have been found to outperform machine learning algorithms

such as random forest and SVM specifically for brain tissue

segmentation (Zhang et al., 2015). Following their introduction,

many other CNN-based networks have been proposed for

brain tissue segmentation (Moeskops et al., 2016; Khagi and

Kwon, 2018) as well as brain tumor segmentation (Beers et al.,

2017; Mlynarski et al., 2019; Feng et al., 2020a), including

both 2D and 3D approaches. Unet represents one popular

segmentation algorithm (Ronneberger and Fischer, 2015; Çiçek

et al., 2016), which consists of symmetric encoding and decoding

convolutional operations that allows for the preservation of

the initial image resolution following segmentation. Variants

of Unet have been successfully applied to brain tissue

segmentation achieving state of the art performance. For

example, one study achieved a DICE score of 0.988 using

3D Unet, which even outperformed human experts (Kolarík

et al., 2018). More recently, 2D patch-based Unet and Unet-

inspired implementations have gained traction (Lee et al., 2020;

Yamanakkanavar and Lee, 2020) to better preserve and account

for local details; such models have outperformed their non-

patch-based variants.

Despite the impressive performance CNNs have

demonstrated for brain tissue segmentation, they often

struggle to generalize well when presented with new datasets.

Many prior brain tissue segmentation approaches only report

test performance on the same dataset upon which the model

was trained. While such metrics validate the generality of the

proposed model on MRI scans from the same dataset, they

fail to quantify model performance across different datasets

where changes in acquisition parameters can impact MRI

image features and thus decrease the model’s generality. Given

the importance of brain tissue segmentation in VBM and

pre-processing, it is not practical to retrain a CNN model every

time a scan is obtained differently. As such, model generality

is especially imperative to developing a widely applicable

automated brain tissue segmentation solution.

Transformers are an alternative to CNNs that have

recently demonstrated state-of-the-art results in natural

image segmentation. Emerging evidence suggests that

Transformers coupled with CNNs may improve performance

and generalization for medical image segmentation tasks

including brain tissue segmentation (Chen et al., 2021;

Hatamizadeh et al., 2021; Sun et al., 2021; Wang et al., 2021).

In this study, we sought to improve the traditional Unet

architecture using Transformers to not only achieve higher
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FIGURE 1

Overview of experimental pipeline. (A) Model performance test, where each model was trained and tested on individual datasets. (B) Model

generality test, where models pre-trained on 3T DLBS/SALD datasets were tested on one another and on the 1.5T IXI dataset. (C) Model

reliability test, where the best generalizing model to the COBRE dataset was compared to FAST based on similarity in segmentation outputs for

repeated scans.

FIGURE 2

Data demographic and pre-processing visualization. (A–C) Age distribution by gender for train/validation/test groups of DLBS, SALD, and IXI,

respectively. (D) MRI pre-processing pipeline consisting of 1. Bias field correction 2. Brain extraction 3. A�ne correction.

brain tissue segmentation performance, but also generalize

better across different datasets while remaining reliable. Here,

we propose Transformer-based Automated Brain Tissue

Segmentation (TABS), a new 3D CNN-Transformer hybrid

deep learning architecture for brain tissue segmentation. In

doing so, we elucidate the benefits of embedding a Transformer

module within a CNN encoder-decoder architecture specifically

for brain tissue segmentation. Furthermore, after achieving

improved within dataset performance, we are the first to

rigorously demonstrate model generality and reliability across

multiple vendors, field strengths, scan parameters, time points,

and neuropsychiatric condition.

Materials and methods

Study design

We conducted three experiments to evaluate model

performance, generality, and reliability for brain tissue
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TABLE 1 MRI acquisition and demographic parameters for DLBS, SALD, IXI, and COBRE datasets.

Scan parameters DLBS SALD IXI COBRE

Scanner Philips achieva SIEMENS TrioTim Phillips Intera SIEMENS TrioTim

Field strength 3T 3T 1.5T 3T

Sequence MPRAGE MPRAGE MPRAGE MPRAGE

Voxel size (mm) 1.0× 1.0× 1.0 1.0× 1.0× 1.0 1.0× 1.0× 1.0 1.0× 1.0× 1.0

TR/TE (msec) 8.10/3.70 1,900/2.52 9.81/4.60 2,530/1.64

FA (degrees) 12 90 8 7

Number of scans (Train/Validation/Test) 129/43/43 170/56/57 137/45/46 0/0/358 (179 pairs)

Female % 61.9 64.3 56.1 24.0

Age Range (years) 20–89 21–80 21–86 18–66

Age mean± SD 56.4± 18.2 50.6± 13.5 51.1± 14.2 38.3± 12.6

segmentation. The experimental pipeline for these experiments

is visualized in Figure 1. First, we trained and tested all of the

models on three separate datasets (DLBS, SALD, and IXI) of

differing acquisition parameters along with an aggregate total

dataset containing all of the scans combined. We then evaluated

model generality across field strength and vendors; models

trained on 3T datasets were tested on the 1.5T dataset and

models trained on 3T datasets from different vendors were

tested on one another. Finally, we extended our generalization

testing to an alternate dataset (COBRE) containing test-retest

repeated scans of both schizophrenia and healthy patients. We

applied models pre-trained on the 3T SALD dataset to COBRE

to give them the best chance of generalizing well, as SALD and

COBRE were collected using similar acquisition parameters.

Once confirming that TABS generalized the best on this dataset,

we compared the reliability of TABS to that of the ground truth

by evaluating the similarity of outputs on the test-retest repeated

scans. Given that each pair of scans were acquired from the same

subject within a small time frame, we expected a more reliable

tool to output very similar segmentation predictions across

both scans.

We compared TABS to three other benchmark CNNmodels

in our experiments: vanilla Unet, Unet-SE, and ResUnet. We

chose Unet given its prior state of the art performance in

3D brain tissue segmentation (Kolarík et al., 2018), and we

also compared to prior attempts at improving Unet including

squeeze-excitation (SE) blocks (Hu et al., 2018) before each

downsampling operation (Unet-SE) and residual connections

(ResUnet; Zhang et al., 2018). Moreover, given that the model

architecture for TABS is identical to that of ResUnet except

for the Vision Transformer, comparing to ResUnet allowed us

to highlight the specific benefits conferred by the Transformer.

All of the tested models were the same depth and encoded

the same number of features. Finally, we also compared to

FSL FAST, the tool used to generate the ground truths, in our

reliability evaluation.

Study design

We collected MRI scans of healthy participants over a broad

age range from three datasets for our first two experiments:

DLBS (Rodrigue et al., 2012), SALD (Wei et al., 2018), and

IXI (Biomedical Image Analysis Group et al., 2018). While they

all use a MPRAGE sequence, the datasets vary in terms of

their other acquisition parameters. Firstly, they differ by field

strength, where DLBS and SALD contain 3T scans and IXI

contains 1.5T scans. Moreover, all three datasets were acquired

using different scanners, with the SALD dataset acquired

using a Siemens manufactured scanner as opposed to Phillips.

Lastly, the datasets differ in terms of scan parameters such

as repetition/echo time and flip angle. We split each dataset

into 3:1:1 train/validation/test groups while maintaining a broad

age distribution across each subsection. The age distributions

across these splits for each of these datasets are shown in

Figures 2A–C. We also collected paired test-retest scans taken at

different time points of healthy participants and schizophrenia

patients from the COBRE dataset (Bustillo et al., 2017) for our

third experiment. The demographic information and acquisition

parameters for all four datasets are outlined in Table 1.

We followed the initial pre-processing protocol outlined by

Feng et al. (2020b) for all of the datasets, which includes bias field

correction (Sled et al., 1998), brain extraction using FreeSurfer

(Ségonne et al., 2004), and affine registration to the 1 mm3

isotropic MNI152 brain template with trilinear interpolation

using FSL FLIRT (Jenkinson et al., 2002). After these steps, the

DLBS/SALD/IXI MRI images were 182 × 218 × 182, and the

COBRE images were 193× 229× 193. We padded and cropped

the images to reach an input dimension of 192 × 192 × 192,

using a maximum intensity projection across all scans for each

dataset to ensure that we did not remove important anatomical

components. Finally, we normalized the intensities for each scan

to values between −1 and 1. The pre-processing pipeline is

visualized in Figure 2D.
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TABLE 2 Performance results with each model trained and tested on individual datasets.

Project Metrics TABS Unet Unet-SE ResUnet

Gray

matter

White

matter

CSF Gray

matter

White

matter

CSF Gray

matter

White

matter

CSF Gray

matter

White

matter

CSF

DLBS DICE ↑ 0.932 ± 0.024 0.954 ± 0.013 0.964 ± 0.010 0.924± 0.027 0.947± 0.014 0.959± 0.009 0.925± 0.026 0.951± 0.014 0.956± 0.009 0.929± 0.026 0.951± 0.013 0.963± 0.008

Jaccard index ↑ 0.874 ± 0.041 0.913 ± 0.023 0.930 ± 0.018 0.859± 0.046 0.900± 0.025 0.922± 0.016 0.861± 0.045 0.907± 0.025 0.917± 0.017 0.868± 0.044 0.907± 0.023 0.928± 0.015

Pearson ↑ 0.965 ± 0.009 0.980 ± 0.006 0.984 ± 0.002 0.957± 0.012 0.980 ± 0.004 0.978± 0.002 0.961± 0.010 0.978± 0.007 0.979± 0.003 0.963± 0.010 0.979± 0.006 0.982± 0.002

Spearman ↑ 0.930 ± 0.014 0.868± 0.016 0.844 ± 0.013 0.921± 0.017 0.869 ± 0.016 0.825± 0.015 0.922± 0.013 0.868± 0.015 0.839± 0.012 0.928± 0.014 0.866± 0.014 0.838± 0.013

HD ↓ 9.179± 1.625 12.071 ± 2.142 10.795 ± 1.842 7.454 ± 1.184 14.278± 2.508 10.900± 1.841 7.788± 1.260 14.937± 2.444 11.763± 1.743 9.378± 1.547 12.107± 2.138 10.894± 2.077

MSE ↓ 0.012 ± 0.002 0.011 ± 0.003 0.007 ± 0.001 0.018± 0.003 0.027± 0.005 0.011± 0.001 0.018± 0.002 0.015± 0.004 0.016± 0.001 0.013± 0.002 0.013± 0.004 0.009± 0.001

SALD DICE ↑ 0.944 ± 0.017 0.959 ± 0.015 0.955 ± 0.014 0.939± 0.018 0.955± 0.015 0.950± 0.016 0.939± 0.018 0.956± 0.014 0.950± 0.016 0.941± 0.016 0.955± 0.013 0.954± 0.014

Jaccard index ↑ 0.895 ± 0.030 0.922 ± 0.065 0.914 ± 0.026 0.886± 0.031 0.914± 0.026 0.906± 0.029 0.885± 0.031 0.915± 0.026 0.904± 0.028 0.888± 0.028 0.914± 0.024 0.912± 0.026

Pearson ↑ 0.969 ± 0.007 0.983 ± 0.006 0.982 ± 0.004 0.967± 0.007 0.980± 0.007 0.980± 0.005 0.964± 0.006 0.981± 0.007 0.978± 0.005 0.968± 0.007 0.980± 0.007 0.979± 0.005

Spearman ↑ 0.938 ± 0.007 0.864 ± 0.009 0.837 ± 0.015 0.937± 0.007 0.863± 0.009 0.837 ± 0.015 0.924± 0.010 0.864 ± 0.010 0.835± 0.015 0.938 ± 0.007 0.862± 0.009 0.832± 0.016

HD ↓ 7.489± 1.557 11.737± 1.834 11.255± 1.891 7.294 ± 1.553 13.171± 2.919 11.241± 1.866 7.386± 1.509 13.733± 2.685 11.712± 1.678 8.197± 1.568 11.012 ± 2.251 11.092 ± 1.894

MSE ↓ 0.011 ± 0.002 0.008 ± 0.003 0.007 ± 0.001 0.012± 0.002 0.010± 0.003 0.008± 0.001 0.014± 0.002 0.009± 0.003 0.011± 0.001 0.012± 0.002 0.010± 0.003 0.008± 0.001

IXI DICE ↑ 0.942± 0.020 0.958± 0.017 0.962 ± 0.010 0.939± 0.021 0.955± 0.018 0.960± 0.012 0.938± 0.019 0.958± 0.016 0.957± 0.012 0.943 ± 0.021 0.960 ± 0.017 0.962 ± 0.011

Jaccard index ↑ 0.891± 0.034 0.920± 0.030 0.927 ± 0.018 0.885± 0.035 0.914± 0.010 0.924± 0.021 0.885± 0.032 0.919± 0.029 0.918± 0.021 0.892 ± 0.035 0.923 ± 0.029 0.926± 0.020

Pearson ↑ 0.969± 0.012 0.982± 0.009 0.984± 0.003 0.964± 0.012 0.982± 0.007 0.981± 0.002 0.961± 0.010 0.981± 0.009 0.980± 0.003 0.970 ± 0.011 0.984 ± 0.008 0.985 ± 0.003

Spearman ↑ 0.938 ± 0.012 0.848± 0.010 0.854± 0.014 0.937± 0.013 0.850 ± 0.009 0.845± 0.014 0.907± 0.015 0.848± 0.009 0.852± 0.014 0.937± 0.012 0.850 ± 0.009 0.857 ± 0.015

HD ↓ 8.785± 1.910 12.584± 2.361 10.715± 1.744 6.277 ± 1.040 14.159± 3.390 10.537± 1.722 7.479± 1.724 16.770± 3.034 11.426± 1.724 7.626± 2.042 11.993 ± 2.611 10.194 ± 1.729

MSE ↓ 0.011 ± 0.004 0.009± 0.004 0.007 ± 0.001 0.016± 0.003 0.020± 0.004 0.009± 0.001 0.016± 0.003 0.009± 0.004 0.013± 0.002 0.011 ± 0.003 0.008 ± 0.004 0.007 ± 0.001

Total DICE ↑ 0.945 ± 0.020 0.961 ± 0.014 0.963 ± 0.012 0.941± 0.022 0.959± 0.014 0.959± 0.015 0.941± 0.020 0.960± 0.013 0.959± 0.014 0.944± 0.019 0.960± 0.012 0.963 ± 0.013

Jaccard index ↑ 0.896 ± 0.035 0.925 ± 0.026 0.929 ± 0.022 0.889± 0.037 0.921± 0.026 0.922± 0.027 0.889± 0.035 0.923± 0.024 0.921± 0.026 0.895± 0.033 0.924± 0.022 0.929 ± 0.023

Pearson ↑ 0.972 ± 0.009 0.984 ± 0.006 0.987 ± 0.003 0.970± 0.009 0.983± 0.006 0.984± 0.004 0.966± 0.009 0.983± 0.006 0.982± 0.0 04 0.971± 0.007 0.984 ± 0.005 0.985± 0.004

Spearman ↑ 0.938 ± 0.009 0.861± 0.014 0.849 ± 0.018 0.935± 0.011 0.861± 0.014 0.848± 0.019 0.922± 0.012 0.861± 0.014 0.846± 0.017 0.937± 0.010 0.862 ± 0.014 0.848± 0.018

HD ↓ 7.480± 1.824 12.273± 2.123 10.882± 1.7733 7.006 ± 1.506 12.423± 2.662 10.739± 1.816 7.114± 1.505 13.725± 3.041 11.078± 1.771 7.307± 1.800 11.714 ± 2.395 10.337 ± 1.814

MSE ↓ 0.010 ± 0.003 0.007 ± 0.003 0.005 ± 0.001 0.011± 0.002 0.008± 0.003 0.006± 0.001 0.014± 0.002 0.008± 0.003 0.010± 0.001 0.010 ± 0.002 0.007 ± 0.002 0.006± 0.001

Bold text indicates superior mean performance, with equally performing model metrics both bolded. The up arrow indicates that higher numbers correspond to better performance and down arrow indicates that lower numbers correspond to better

performance.
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FIGURE 3

Model architecture for TABS, including a 5-layer encoder/decoder with a Vision Transformer between the encoder and decoder.

Model architecture and implementation

The architecture of our proposed model is shown in

Figure 3. TABS is a ResUnet (Zhang et al., 2018) inspired model

that consists of a 5-layered 3D CNN encoder and decoder.

TABS takes an input dimension of 192 × 192 × 192, and

the five encoder layers downsample the original image to

f x12 × 12 × 12, where f represents the number of encoded

features. For this specific implementation, we chose a f value

of 128. We followed the same “linear projection and learned

positional embedding” operations introduced in Wang et al.

(2021) to convert the encoded feature tensor into 512 tokenized

vectors that are sequentially fed into the Transformer module

in the order determined by the learned positional embeddings.

Our Transformer encoder consists of 4 layers and 8 heads

following the implementation initially described by Vaswani

et al. (2017). The output of the Transformer is 512 × 1,728,

which we then reshape to 512 × 12 × 12 × 12 and reduce

the feature dimensionality to f via convolution. The decoder

portion of the network reconstructs the image to the original

input dimension, and a final convolution operation is applied to

generate a 3-channel output with each channel corresponding to

an individual tissue type. We used a Softmax activation function

to ensure that the probabilities for each voxel across the three

channels add up to 1.

Training protocol

All four models were trained using the same parameters

described below. We trained for 350 epochs with early stopping

based on validation loss. We selected pre-trained models based

on the best validation performance. We used FAST to generate

ground truth probability maps for each brain tissue type and

stacked and cropped them to generate a three-channel image

matching the output shape of ourmodels (3× 192× 192× 192).

The models were trained on three 24 GB NVIDIA Quadro 6000

graphical processing units using mean-squared-error (MSE)

loss with a batch size of 3. We used group normalization as

opposed to batch normalization due to group normalization’s

increased stability for smaller batch sizes (Wu andHe, 2018).We

trained using Adam (Kingma and Ba, 2014) as the optimization

algorithm with a learning rate of 1E-5 and weight decay set

to 1E-6.

Evaluation metrics

All evaluation metrics were only taken for the portion of

the outputs containing the brain, meaning that the background

voxels outside of the segmentation field were not considered.

Additionally, all metrics were calculated individually for each

brain tissue type. Segmentation similarity using continuous

probability estimates was quantified using Pearson correlation,

Spearman correlation, and MSE. Segmentation maps for each

tissue type were then generated from the probability estimations

by taking the argmax along the channel axis. We generated

binary maps for each tissue type based on the numerical value

assigned to each voxel of the argmax output. Segmentation

similarity between these binary maps was quantified using DICE

Score, Jaccard Index, and Haussdorf Distance (HD; Beauchemin

et al., 1998).
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FIGURE 4

Box plots visualizing model performance with Wilcoxon pairwise comparisons. Each * indicates order of significance.

FIGURE 5

Visualization of model performance for DLBS, SALD, and IXI. Segmentation maps for the ground truth, TABS, and the three benchmark models

are shown from left to right following the T1w scan. Zoom in regions are included below each image.
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TABLE 3 Generalization results across vendor, field strength, and scanning parameters.

Project Metrics TABS Unet Unet-SE ResUnet

Gray

matter

White

matter

CSF Gray

matter

White

matter

CSF Gray

matter

White

matter

CSF Gray

matter

White

matter

CSF

DLBS → IXI DICE ↑ 0.947 ± 0.021 0.964± 0.014 0.964 ± 0.010 0.943± 0.019 0.966 ± 0.011 0.953± 0.012 0.940± 0.020 0.964± 0.012 0.952± 0.013 0.938± 0.022 0.961± 0.011 0.955± 0.013

Jaccard index ↑ 0.899 ± 0.036 0.931± 0.044 0.930 ± 0018 0.892± 0.033 0.935 ± 0.020 0.911± 0.023 0.887± 0.034 0.931± 0.022 0.908± 0.024 0.884± 0.038 0.925± 0.020 0.914± 0.023

Pearson ↑ 0.953 ± 0.018 0.978 ± 0.009 0.974 ± 0.007 0.937± 0.016 0.968± 0.007 0.958± 0.009 0.938± 0.020 0.978 ± 0.007 0.967± 0.008 0.937± 0.021 0.974± 0.008 0.965± 0.008

Spearman ↑ 0.923 ± 0.015 0.849 ± 0.010 0.825 ± 0.020 0.916± 0.011 0.849 ± 0.011 0.751± 0.033 0.901± 0.019 0.849 ± 0.010 0.817± 0.020 0.913± 0016 0.849 ± 0.010 0.780± 0.026

HD ↓ 8.416± 2.096 11.911± 2.384 11.437 ± 1.775 7.049 ± 1.455 13.218± 2.866 12.717± 1.786 7.484± 1.534 15.387± 2.957 13.099± 1.724 8.278± 1.866 11.334 ± 2.035 12.452± 1.721

MSE ↓ 0.016 ± 0.005 0.011 ± 0.004 0.011 ± 0.003 0.024± 0.004 0.025± 0.003 0.017± 0.003 0.025± 0.005 0.014± 0.003 0.019± 0.003 0.022± 0.006 0.014± 0.003 0.015± 0.003

SALD → IXI DICE ↑ 0.953 ± 0.019 0.970 ± 0.013 0.966± 0.010 0.950± 0.018 0.964± 0.015 0.968 ± 0.008 0.950± 0.018 0.967± 0.014 0.964± 0.008 0.949± 0.017 0.964± 0.013 0.967± 0.008

Jaccard index ↑ 0.910 ± 0.033 0.941 ± 0.033 0.935± 0.019 0.905± 0.031 0.932± 0.026 0.937 ± 0.015 0.905± 0.031 0.937± 0.025 0.930± 0.015 0.903± 0.029 0.931± 0.023 0.935± 0.015

Pearson ↑ 0.958± 0.015 0.982± 0.007 0.978± 0.006 0.964 ± 0.010 0.982± 0.006 0.981 ± 0.004 0.957± 0.013 0.983 ± 0.007 0.978± 0.004 0.962± 0.011 0.982± 0.006 0.978± 0.005

Spearman ↑ 0.926± 0.014 0.851 ± 0.010 0.846± 0.012 0.931 ± 0.011 0.850± 0.010 0.851 ± 0.013 0.903± 0.019 0.851 ± 0.010 0.849± 0.012 0.931 ± 0.012 0.850± 0.010 0.843± 0.012

HD ↓ 9.152± 1.958 11.607± 2.205 11.074± 1.685 6.850± 1.536 17.200± 3.451 10.596 ± 1.726 6.540 ± 1.307 17.429± 3.215 11.341± 1.744 9.591± 1.667 11.549 ± 2.151 10.952± 1.650

MSE ↓ 0.014± 0.004 0.008 ± 0.003 0.009± 0.003 0.013 ± 0.003 0.009± 0.003 0.008 ± 0.002 0.016± 0.003 0.008 ± 0.003 0.012± 0.003 0.013 ± 0.003 0.009± 0.003 0.009± 0.003

DLBS → SALD DICE ↑ 0.931± 0.019 0.947± 0.015 0.944± 0.020 0.942 ± 0.014 0.958 ± 0.012 0.947 ± 0.012 0.937± 0.014 0.955± 0.011 0.944± 0.012 0.936± 0.015 0.956± 0.010 0.945± 0.014

Jaccard index ↑ 0.871± 0.032 0.900± 0.067 0.894± 0.035 0.891 ± 0.024 0.920 ± 0.022 0.900 ± 0.022 0.882± 0.024 0.915± 0.020 0.894± 0.022 0.880± 0.026 0.915± 0.018 0.897± 0.025

Pearson ↑ 0.960 ± 0.012 0.976± 0.009 0.977 ± 0.007 0.951± 0.013 0.974± 0.006 0.959± 0.010 0.952± 0.013 0.978 ± 0.006 0.968± 0.008 0.949± 0.016 0.975± 0.007 0.966± 0.009

Spearman ↑ 0.933 ± 0.010 0.858± 0.008 0.828 ± 0.017 0.926± 0.010 0.861 ± 0.010 0.754± 0.036 0.920± 0.014 0.861 ± 0.009 0.813± 0.018 0.924± 0.012 0.860± 0.009 0.784± 0.027

HD ↓ 8.028± 1.603 12.200± 2.139 11.307 ± 1.897 7.817 ± 1.620 11.421± 2.367 13.463± 2.068 8.208± 1.516 13.226± 2.234 13.909± 1.939 8.631± 1.664 11.348 ± 1.946 13.158± 1.998

MSE ↓ 0.015 ± 0.004 0.024± 0.004 0.009 ± 0.002 0.021± 0.003 0.026± 0.003 0.015± 0.003 0.022± 0.003 0.014 ± 0.003 0.018± 0.002 0.019± 0.005 0.014 ± 0.003 0.013± 0.003

SALD → DLBS DICE ↑ 0.927 ± 0.040 0.953 ± 0.026 0.957 ± 0.013 0.905± 0.053 0.931± 0.038 0.950± 0.015 0.912± 0.047 0.937± 0.033 0.951± 0.016 0.921± 0.013 0.946± 0.026 0.957 ± 0.013

Jaccard index ↑ 0.866 ± 0.064 0.912 ± 0.045 0.919 ± 0.023 0.830± 0.081 0.874± 0.064 0.905± 0.027 0.841± 0.073 0.883± 0.056 0.907± 0.028 0.855± 0.064 0.899± 0.045 0.917± 0.023

Pearson ↑ 0.952 ± 0.023 0.975 ± 0.015 0.976± 0.005 0.950± 0.037 0.967± 0.024 0.979 ± 0.004 0.951± 0.029 0.969± 0.022 0.976± 0.005 0.952 ± 0.023 0.973± 0.016 0.976± 0.004

Spearman ↑ 0.919± 0.020 0.861 ± 0.013 0.843± 0.014 0.920 ± 0.030 0.854± 0.014 0.848 ± 0.016 0.911± 0.021 0.856± 0.013 0.847± 0.005 0.919± 0.021 0.859± 0.014 0.840± 0.013

HD ↓ 10.330± 1.288 12.812± 1.892 11.174± 1.825 8.026± 1.293 15.906± 2.058 10.349 ± 1.920 7.781 ± 1.351 15.881± 2.167 10.498± 1.351 10.279± 1.232 12.142 ± 2.158 10.895± 1.671

MSE ↓ 0.017 ± 0.007 0.011 ± 0.007 0.010± 0.003 0.017 ± 0.010 0.015± 0.011 0.009 ± 0.002 0.018± 0.007 0.014± 0.010 0.013± 0.002 0.017 ± 0.007 0.013± 0.008 0.010± 0.002

Models pre-trained on DLBS/SALD were applied to SALD/DLBS and IXI. Bold text indicates greater mean performance, with equally performing model metrics both. The up arrow indicates that higher numbers correspond to better performance and

down arrow indicates that lower numbers correspond to better performance.
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FIGURE 6

Box plots visualizing model generality with Wilcoxon pairwise comparisons. Each * indicates order of significance. (A) Model generality across

field strengths. (B) Model generality across vendor.

Model performance across each metric was compared using

paired non-parametric Wilcoxon tests. Specifically, for each

tissue type, TABS’s performance was compared pairwise with

each of the benchmark models tested against. We used an α

value of 0.05. Significant differences are shown in box plots, with

each the number of ∗ indicating order of significance (ns, not

significant, ∗p< 0.05, ∗∗p< 0.01, ∗∗∗p< 0.001, ∗∗∗∗p< 0.0001).

Results

Model generality

The performance results for each model trained and

tested on DLBS, IXI, SALD, and Total datasets individually

are reported in Table 2 and visualized in Figure 4. TABS

outperformed ResUnet, Unet-SE, and Unet on all the datasets

for most metrics except for the 1.5T IXI dataset, where TABS

outperformed Unet-SE and Unet while only performing slightly

worse than ResUnet. TABS consistently achieves higher of

DICE/Jaccard metrics across all tissue types along with higher

correlation and lower MSE on most tissue types. In general,

all models performed better on WM and CSF as opposed to

GM. Figure 5 plots representative segmentation outputs for

performance testing for each of the datasets.

Model generality—DLBS, IXI, and SALD

The generality results for all models trained on DLBS/SALD

and applied to IXI as well as trained on DLBS/SALD and

applied to SALD/DLBS are shown in Table 3 and visualized

in Figure 6. TABS generalized better across datasets on most

metrics for the DLBS→ IXI and SALD→ DLBS tests, with

higher DICE/Jaccard and correlation metrics for at least two

tissue types. Additionally, for the SALD→ IXI generalization

test, TABS reached higher DICE/Jaccard metrics for both GM

andWM.We observed that models trained on SALD performed

better when applied to IXI than models trained on IXI itself.

TABS also exhibited a similar increase in performance when pre-

trained on DLBS and applied to IXI compared to TABS trained

on IXI. Representative segmentation outputs for all models for

each test scenario is shown in Figure 7.

Model generality—COBRE

We extended our generalization testing to the COBRE

dataset, consisting of healthy and schizophrenia test-retest

repeated scans. The generalization performance for all models is

reported in Table 4 and visualized in Figure 8. TABS generalized

better for GM and WM across the control, schizophrenia,

and aggregate total dataset compared to the benchmark

models for most metrics. Moreover, TABS also achieved higher

DICE/Jaccard metrics for CSF for schizophrenia patients.

COBRE test-retest

TABS showcased better reliability compared to FAST, the

tool used to generate the ground truths. Similarity metrics
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FIGURE 7

Visualization of model generality across vendors, field strength, and scanning parameters. Segmentation maps for the ground truth, TABS, and

the three benchmark models are shown from left to right following the T1w scan. Zoom in regions are included below each image.

between test-retest repeated images for both TABS and FAST

are shown in Table 5 for the control, schizophrenia, and total

aggregate datasets and visualized in Figure 8. TABS proved

consistently more reliable across almost all metrics for GM

and CSF. Moreover, TABS reached a higher Pearson correlation

and lower MSE over all tissue types, and only performed

slightly worse than FAST on WM DICE/Jaccard. Representative

segmentation outputs for paired repeated scans from both

control and schizophrenia datasets are visualized in Figure 9.

Discussion

In this study, we present TABS, a new Transformer-

CNN hybrid deep learning architecture designed for brain

tissue segmentation. TABS showcased superior performance

compared to prior state-of-the-art CNN implementations

while also generalizing exceptionally well across datasets and

remaining reliable between paired test-retest scans. These

traits are critical to developing a useful and more widely

applicable brain tissue segmentation toolkit. Through TABS,

we also demonstrate the methodological utility using a Vision

Transformer to improve the Unet architecture for brain

tissue segmentation.

Our experimental protocol was designed to elucidate

the real-world applicability of TABS compared to various

benchmark models. The datasets included in this study

were chosen with the goal of emulating the extreme

differences in MRI input a brain tissue segmentation

algorithm would receive in real-world applications;

the DLBS, SALD, and IXI datasets varied in terms of

manufacturer, field strengths, and scanner parameters.
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TABLE 4 Generalization results for each model pre-trained on SALD and applied to COBRE.

Test Metrics TABS Unet Unet-SE ResUnet

Gray

matter

White

matter

CSF Gray

matter

White

matter

CSF Gray

matter

White

matter

CSF Gray

matter

White

matter

CSF

Control DICE ↑ 0.872 ± 0.032 0.910 ± 0.024 0.902± 0.040 0.858± 0.016 0.894± 0.010 0.900± 0.025 0.846± 0.015 0.870± 0.012 0.909 ± 0.024 0.832± 0.016 0.853± 0.017 0.904± 0.024

Jaccard index ↑ 0.774 ± 0.050 0.835 ± 0.042 0.824± 0.065 0.752± 0.025 0.809± 0.016 0.818± 0.041 0.733± 0.040 0.771± 0.018 0.833 ± 0.040 0.712± 0.023 0.744± 0.026 0.826± 0.040

Pearson ↑ 0.923 ± 0.025 0.952 ± 0.014 0.975 ± 0.006 0.918± 0.013 0.945± 0.007 0.975 ± 0.004 0.904± 0.016 0.923± 0.010 0.974± 0.005 0.882± 0.020 0.914± 0.014 0.973± 0.005

Spearman ↑ 0.902 ± 0.019 0.898± 0.010 0.754± 0.019 0.901± 0.011 0.901 ± 0.003 0.757± 0.020 0.888± 0.014 0.886± 0.007 0.759 ± 0.020 0.869± 0.018 0.855± 0.015 0.757± 0.020

HD ↓ 9.025± 1.559 9.672 ± 1.274 12.994± 2.524 8.488 ± 1.342 9.739± 1.209 13.619± 2.236 8.954± 1.430 10.400± 1.113 13.293± 2.378 11.023± 1.251 10.890± 1.087 12.797 ± 2.601

MSE ↓ 0.026 ± 0.008 0.025 ± 0.008 0.007 ± 0.002 0.028± 0.004 0.031± 0.004 0.008± 0.009 0.032± 0.005 0.040± 0.005 0.011± 0.001 0.042± 0.007 0.049± 0.008 0.009± 0.001

Schiz DICE ↑ 0.879 ± 0.033 0.919 ± 0.027 0.912 ± 0.040 0.850± 0.031 0.890± 0.012 0.903± 0.031 0.835± 0.018 0.865± 0.015 0.909± 0.029 0.820± 0.019 0.845± 0.019 0.907± 0.030

Jaccard index ↑ 0.786 ± 0.053 0.851 ± 0.045 0.841 ± 0.065 0.739± 0.027 0.802± 0.019 0.824± 0.051 0.718± 0.026 0.762± 0.023 0.835± 0.048 0.695± 0.027 0.731± 0.028 0.831± 0.050

Pearson ↑ 0.929 ± 0.026 0.956 ± 0.016 0.974± 0.007 0.914± 0.016 0.942± 0.008 0.975 ± 0.005 0.896± 0.020 0.918± 0.013 0.974± 0.005 0.873± 0.024 0.907± 0.016 0.973± 0.005

Spearman ↑ 0.904 ± 0.019 0.902 ± 0.011 0.756± 0.022 0.896± 0.012 0.900± 0.004 0.763± 0.025 0.882± 0.017 0.883± 0.009 0.765 ± 0.026 0.861± 0.021 0.849± 0.016 0.763± 0.026

HD ↓ 8.809± 1.718 9.715 ± 1.386 13.013± 2.686 8.654 ± 1.520 10.074± 1.290 13.384± 2.497 9.051± 1.701 10.597± 1.202 13.079± 2.477 11.204± 1.285 11.334± 1.070 12.425 ± 2.807

MSE ↓ 0.024 ± 0.008 0.023 ± 0.008 0.008 ± 0.002 0.030± 0.005 0.033± 0.005 0.008 ± 0.001 0.035± 0.006 0.043± 0.007 0.011± 0.001 0.046± 0.008 0.054± 0.008 0.009± 0.001

Total DICE ↑ 0.875 ± 0.040 0.914 ± 0.026 0.907± 0.040 0.854± 0.018 0.892± 0.011 0.901± 0.028 0.841± 0.017 0.868± 0.013 0.909 ± 0.027 0.826± 0.018 0.849± 0.019 0.906± 0.027

Jaccard index ↑ 0.780 ± 0.052 0.843 ± 0.044 0.832± 0.066 0.746± 0.027 0.806± 0.018 0.821± 0.046 0.725± 0.026 0.766± 0.021 0.834 ± 0.045 0.703± 0.027 0.738± 0.028 0.829± 0.045

Pearson ↑ 0.926 ± 0.025 0.954 ± 0.015 0.974± 0.007 0.916± 0.015 0.943± 0.008 0.975 ± 0.004 0.900± 0.019 0.920± 0.012 0.974± 0.005 0.878± 0.023 0.910± 0.015 0.973± 0.005

Spearman ↑ 0.903 ± 0.019 0.900± 0.011 0.755 ± 0.020 0.899± 0.023 0.901 ± 0.003 0.760± 0.023 0.885± 0.016 0.885± 0.008 0.762 ± 0.023 0.865± 0.020 0.852± 0.016 0.760± 0.023

HD ↓ 8.917± 1.642 9.694 ± 1.330 13.003± 2.603 8.571 ± 1.435 9.907± 1.260 13.501± 2.370 9.003± 1.571 10.499± 1.162 13.185± 2.427 11.114± 1.270 11.114± 1.100 12.610 ± 2.709

MSE ↓ 0.025 ± 0.008 0.024 ± 0.008 0.008 ± 0.002 0.029± 0.005 0.032± 0.005 0.008 ± 0.001 0.033± 0.006 0.042± 0.006 0.011± 0.001 0.044± 0.008 0.051± 0.009 0.009± 0.001

Bold text indicates superior model performance, with equally performing model metrics both bolded. The up arrow indicates that higher numbers correspond to better performance and down arrow indicates that lower numbers correspond to better

performance.
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FIGURE 8

Box plots visualizing model generality and test-retest reliability on the COBRE dataset with Wilcoxon pairwise comparisons. Each * indicates

order of significance.

Moreover, our test-retest dataset consisted of repeated

scans from schizophrenia and healthy patients taken at

different time points, presenting an even more challenging

segmentation task. Due to these factors, we believe our

evaluation methodology accurately captures the versatility

of TABS.

We first found that TABS was the best performing model

when trained and tested on the same dataset. While TABS

achieved significantly higher performance than both Unet

and Unet-SE, we observed marginal performance benefits

over ResUnet. We hypothesize that the residual connections

are responsible for the bulk of the performance gain over

the traditional Unet models, with the Transformer module

providing a small but consistent performance increase

within datasets.

Throughout our generality testing, TABS performed the

best on most datasets compared to the benchmark Unet

models. The most significant generalization differences we

observed were between TABS and ResUnet. Given that their

model architectures are identical except for the Transformer,

we believe that the addition of the Transformer significantly

improves model generality. CNNs are not well-suited to

capture long-range dependencies in the input image due

to the local receptive fields of convolutional kernels. We

believe that this property could make Transformer-based

networks agnostic to dataset-specific variations and thus

more generalizable. The addition of the Transformer

allows TABS to preserve and even improve the within

dataset performance conferred by residual connections

while also generalizing better than the vanilla Unet, where

ResUnet struggled.

We also noticed that all of the models tested improved

in performance when trained on SALD and applied to

IXI as opposed to training on IXI itself. This disparity

could be due to the difference in field strength: the higher

quality 3T MRI images from SALD may provide more

globally relevant features than the 1.5T MRI images from

IXI. However, for TABS specifically, we observed this

same effect when pre-trained on 3T DLBS scans. These

results indicate that TABS can potentially take better
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TABLE 5 Test-retest reliability results across time-points and neuropsychiatric condition for TABS compared to FAST (ground truth) for control,

schizophrenia, and aggregate total datasets from COBRE.

Test Metrics TABS FAST

Gray matter White matter CSF Gray matter White matter CSF

Control DICE ↑ 0.959 ± 0.015 0.977 ± 0.008 0.954 ± 0.012 0.951± 0.015 0.977 ± 0.006 0.948± 0.012

Jaccard index ↑ 0.922 ± 0.026 0.954± 0.016 0.912 ± 0.022 0.908± 0.026 0.955 ± 0.012 0.901± 0.021

Pearson ↑ 0.981 ± 0.010 0.994 ± 0.004 0.983 ± 0.007 0.968± 0.011 0.988± 0.005 0.867± 0.019

Spearman ↑ 0.980 ± 0.009 0.982± 0.009 0.973 ± 0.017 0.967± 0.011 0.985 ± 0.005 0.886± 0.018

HD ↓ 7.445 ± 1.513 8.066± 1.759 9.126 ± 1.942 7.489± 1.640 7.968 ± 1.507 10.624± 2.308

MSE ↓ 0.005 ± 0.003 0.002 ± 0.001 0.003 ± 0.002 0.011± 0.004 0.005± 0.002 0.030± 0.005

Schiz DICE ↑ 0.949 ± 0.020 0.972± 0.012 0.947 ± 0.016 0.941± 0.022 0.974 ± 0.009 0.942± 0.015

Jaccard index ↑ 0.904 ± 0.036 0.946± 0.021 0.899 ± 0.028 0.890± 0.038 0.949 ± 0.017 0.891± 0.026

Pearson ↑ 0.974 ± 0.016 0.992 ± 0.007 0.978 ± 0.010 0.961± 0.018 0.985± 0.008 0.856± 0.024

Spearman ↑ 0.973 ± 0.014 0.978± 0.013 0.962 ± 0.028 0.959± 0.017 0.982 ± 0.008 0.875± 0.023

HD ↓ 7.779± 1.453 8.078± 1.674 10.068 ± 2.551 7.552 ± 1.531 7.990 ± 1.542 10.424± 2.445

MSE ↓ 0.007 ± 0.005 0.003 ± 0.002 0.004 ± 0.002 0.013± 0.006 0.006± 0.003 0.033± 0.007

Total DICE ↑ 0.954 ± 0.018 0.974± 0.010 0.950 ± 0.015 0.946± 0.019 0.975 ± 0.008 0.945± 0.014

Jaccard index ↑ 0.913 ± 0.033 0.950± 0.019 0.906 ± 0.026 0.899± 0.034 0.952± 0.015 0.896± 0.024

Pearson ↑ 0.978 ± 0.014 0.993 ± 0.006 0.981 ± 0.009 0.964± 0.016 0.986± 0.007 0.861± 0.022

Spearman ↑ 0.976 ± 0.013 0.980± 0.011 0.967 ± 0.024 0.963± 0.015 0.983 ± 0.007 0.880± 0.022

HD ↓ 7.613± 1.488 8.072± 1.712 9.600 ± 2.311 7.506 ± 1.582 7.979 ± 1.521 10.524± 2.374

MSE ↓ 0.006 ± 0.004 0.002 ± 0.002 0.004 ± 0.002 0.012± 0.005 0.006± 0.003 0.032± 0.007

Bold text indicates superior model performance, with equally performing model metrics both bolded. The up arrow indicates that higher numbers correspond to better performance and

down arrow indicates that lower numbers correspond to better performance.

FIGURE 9

Visualization of test-retest reliability results across time-points and neuropsychiatric condition. Segmentation maps for TABS and FAST following

the T1w scan are shown for each pair of repeated scans for control and schizophrenia groups. Zoom in regions are included below each image.

advantage of higher quality training data compared to the

benchmark models.

Furthermore, we found that TABS generalized the best

on an alternate COBRE dataset consisting of both healthy
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and schizophrenia scans. Schizophrenia patients often reflect

subtle anatomical differences compared to healthy subjects,

such as alterations in GM volume (Koutsouleris et al., 2015).

These changes make generalizing to the schizophrenia dataset

an especially difficult task. Additionally, the mean age of the

COBRE dataset was slightly lower than the datasets TABS was

originally trained on, making generalizing to COBRE potentially

even more challenging. TABS generalized the best compared

to the benchmark models on the overall COBRE dataset,

with even more pronounced differences for the schizophrenia

portion. Therefore, we believe that TABS may excel in more

difficult segmentation cases where standard Unet models

yield errors.

Finally, our test-retest experiment highlights the reliability

of TABS, the best generalizing model on the COBRE dataset,

compared with the FAST, the algorithm used to generate the

ground truths. The test-retest repeated scans used in this

study were taken from the same patient within a short time

frame, meaning that we expected minimal differences in the

segmentation output. Through this test, we find that TABS not

only generalizes well on the COBRE dataset, but also maintains

this performance more reliably than FAST.

In general, while traditional approaches such as FAST

have demonstrated compelling brain tissue segmentation

performance, there are several advantages to deep learning-

based alternatives such as TABS. First and foremost, the

production times for segmented scans using FAST are

significantly higher than that of TABS. For example, in

our testing on the same machine, TABS could generate the

segmentations for an aggregate set of 146 T1w MRI scans 57x

faster, with an average time of 6.2 s per scan. In contrast, FAST

required 353.7 s per scan. Deep learning algorithms also provide

more capacities for customization, as loaded models can be fine-

tuned and altered for particular tasks as well as directly built into

post-processing pipelines.

Despite the demonstrated advantages of TABS, there

are certain limitations in our work that can be addressed

in subsequent studies. 3D CNN models often require a

large amount of computational power to efficiently train.

While we were able to use full resolution MRI inputs for

our model, we were limited to a batch size of 3 due to

memory constraints. Using a larger batch size may have

resulted in better performance. Additionally, even though

we trained TABS on three large datasets, our model could

be further improved by increasing our sample size. An

increase in sample size could account for variations in MRI

image characteristics not captured in the four datasets we

investigated. In fact, Fletcher et al. (2021) required 8,000 train

images from 11 cohorts to develop and validate a sufficiently

generalized skull stripping model. Lastly, recent findings

suggest that patch-based 2D CNN approaches perform better

than non-patch-based variants for brain tissue segmentation

(Lee et al., 2020; Yamanakkanavar and Lee, 2020). As

such, we believe that we could extend TABS to a patch

based 3D model in future studies to better capture local

information that may be lost by processing the entire image

at once.
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