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Aim: Resting-state fMRI (rs-fMRI) is often used to infer regional brain

interactions from the degree of temporal correlation between spontaneous

low-frequency fluctuations, thought to reflect local changes in the BOLD

signal due to neuronal activity. One complication in the analysis and

interpretation of rs-fMRI data is the existence of non-neuronal low frequency

physiological noise (systemic low frequency oscillations; sLFOs) which occurs

within the same low frequency band as the signal used to compute functional

connectivity. Here, we demonstrate the use of a time lagmapping technique to

estimate and mitigate the e�ects of the sLFO signal on resting state functional

connectivity of awake squirrel monkeys.

Methods: Twelve squirrel monkeys (6 male/6 female) were acclimated to

awake scanning procedures; whole-brain fMRI images were acquired with a

9.4 Tesla scanner. Rs-fMRI data was preprocessed using an in-house pipeline

and sLFOs were detected using a seed regressor generated by averaging BOLD

signal across all voxels in the brain, which was then refined recursively within a

time window of−16–12 s. The refined regressor was then used to estimate the

voxel-wise sLFOs; these regressors were subsequently included in the general

linear model to remove these moving hemodynamic components from the

rs-fMRI data using general linear model filtering. Group level independent

component analysis (ICA) with dual regression was used to detect resting-state

networks and compare networks before and after sLFO denoising.

Results: Results show sLFOs constitute∼64% of the low frequency fMRI signal

in squirrel monkey gray matter; they arrive earlier in regions in proximity to

the middle cerebral arteries (e.g., somatosensory cortex) and later in regions

close to draining vessels (e.g., cerebellum). Dual regression results showed that
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the physiological noise was significantly reduced after removing sLFOs and

the extent of reduction was determined by the brain region contained in the

resting-state network.

Conclusion: These results highlight the need to estimate and remove sLFOs

from fMRI data before further analysis.

KEYWORDS

resting state networks, BOLD fMRI, functional connectivity analysis, systemic low

frequency oscillations, physiological noise removal

1. Introduction

Blood Oxygen Level Dependent (BOLD) resting

state functional magnetic resonance imaging (rs-fMRI),

which measures spontaneous low-frequency hemodynamic

fluctuations in the brain during rest, is widely used to investigate

functional organization of the brain. Because neuronal activity

causes local changes in BOLD fMRI signal intensity, the

temporal correlation of rs-fMRI signal fluctuations between

brain regions is used to infer functional connectivity, i.e.,

neuronal communication between different regions, which can

provide insight into large-scale functional dynamics of the brain

(Friston, 1994; Biswal et al., 1995; Biswal, 2012). Two common

approaches to determine functional connectivity are seed-based

correlation mapping and independent component analysis

(ICA; see Cole et al., 2010; Smitha et al., 2017). Through these

methods, several distinct patterns of hemodynamic temporal

coherence within different regions across the brain have been

identified as resting-state networks (RSNs) (Biswal et al., 1995;

Beckmann et al., 2005) and are thought to indicate synchronized

neuronal activities within specific networks. These patterns

have been extensively examined to understand the functional

connectivity of each network, its relation to various behavioral,

sensory, and cognitive processes, and how it may be altered

during the progression of various disease states or in response

to various stimuli.

One complication in the analysis and interpretation of rs-

fMRI data is the existence of non-neuronal low frequency

physiological noise. Previous studies have provided compelling

evidence that systemic low frequency oscillations (sLFOs)

constitute a significant fraction of the rs-fMRI signal in humans

(i.e, 30–50% of the low frequency variance in gray matter

(Tong and Frederick, 2010; Tong et al., 2015; Erdogan et al.,

2016). Many attempts have been made to detect and limit

the impact of low frequency physiological components on

rs-fMRI data. For example, Birn et al. modeled respiration-

induced low frequency oscillations (LFOs) from respiratory belt

recordings and demonstrated their contribution to the default

mode network (Birn et al., 2006, 2008). More recently, Tong

et al. measured sLFOs in the periphery using near infrared

spectroscopy (NIRS) and showed high correlation between

sLFOs and several RSNs (Tong et al., 2013). Moreover, these

results demonstrated good correspondence between the sLFO

signal and rs-fMRI data throughout the brain, with a pattern

of time delays suggesting that the sLFO signal was related to

vascular anatomy (Tong and Frederick, 2010; Tong et al., 2011,

2016; Erdogan et al., 2016). This idea is further strengthened

by the observation that such sLFO signals propagate within

both the cerebral vasculature and throughout the body and have

spatiotemporal patterns that reflect dynamic blood flow in the

brain (Tong and Frederick, 2010; Erdogan et al., 2016; Tong

et al., 2016).

The sLFO signal poses a problem for the interpretation of

rs-fMRI data, as it occurs within the same low frequency band as

the signal used to compute functional connectivity (i.e., 0.01–

0.15Hz). To address this problem, we have employed a time

lag mapping methodology (Erdogan et al., 2016) by which the

sLFO component of the brain’s BOLD signal can be tracked in

the absence of systemic recordings. Such a procedure provides

a means to estimate the sLFO signal from the BOLD data

itself, determine the voxel-specific time delay of the sLFO signal,

quantify its contribution to the rs-fMRI signal, and remove it,

mitigating its effect on the evaluation of RSNs. Further, since

sLFOs travel with blood, the time when sLFOs reach each

voxel can be interpreted as relative blood arrival time, yielding

significant insight into cerebral hemodynamics (Tong et al.,

2017, 2019).

The present study sought to demonstrate the

implementation of this technique to estimate and mitigate

the effects of the sLFO signal on the resting state networks

of awake squirrel monkeys at ultra-high field (9.4 Tesla).

Recently, Aso et al. reported a pattern of sLFOs in rs-fMRI

data from rhesus monkeys that was similar to that shown in

humans (Aso et al., 2020) suggesting that such procedures

may help to decrease contamination of RSNs by non-neuronal

sources across various species. The present study extends these

findings in two important ways. First, we demonstrate that

the contamination of resting state neuronal activation data

by moving sLFO signals is seen even in small primates (this

is the first study of this type in squirrel monkeys). Second,
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and perhaps more importantly, we demonstrate that unlike in

human data, the sLFO signal is by far the largest source of low

frequency variance in the fMRI data (over 60% in much of the

gray matter, as much as double the contribution from neuronal

activation). Therefore, though performing low frequency signal

regression (either global signal regression or our time delayed

method) is still a matter of debate and considered “optional”

in human data; here we establish that it is essential in squirrel

monkeys and, possibly, other animal species. Our findings are of

clear translational value as many of the core RSNs that have been

identified in humans (Smith et al., 2009, 2013) also have been

identified in laboratory animal species including non-human

primates (NHPs; Hutchison et al., 2011; Belcher et al., 2013;

Yacoub et al., 2020; Liu et al., 2021) and rodents (Jonckers et al.,

2011; Lu et al., 2012).

2. Methods

2.1. Subjects

Twelve experimentally naïve adolescent (∼2.5 years of

age) male and female squirrel monkeys (6 male; 6 female)

(Saimiri sciureus) served as subjects. Subjects were housed

in a temperature- and humidity-controlled vivarium with a

12-h light/dark cycle (0700–1900). Monkeys had unlimited

access to water in the home cage and were maintained at

approximate free-feeding weights with a nutritionally balanced

diet of high protein chow (Purina Monkey Chow, St. Louis,

MO). Fresh fruit and vitamins were provided as part of our

environmental enrichment plan. The experimental protocol was

approved by the Institutional Animal Care and Use Committee

at McLean Hospital in a facility licensed by the US Department

of Agriculture in accordance with guidelines provided by the

Committee on Care and Use of Laboratory Animals of the

Institute of Laboratory Animals Resources, Commission on

Life Sciences.

2.2. Awake MRI training and acclimation

Extensive behavioral training was used to acclimate subjects

to the MR procedures. Acclimation sessions, in which operant

shaping techniques involving milk reinforcement were used to

train subjects to move from the home-cage into a custom-

designed MR-compatible chair, were typically conducted 5 days

per week. Initially, subjects were trained to sit on their haunches

in the prone position within the chair enclosure for brief, 5–

10min, sessions. This duration was gradually increased over

several sessions to 30min, after which, a helmet was introduced.

The helmet was designed based on squirrel monkey anatomic

images collected on our 9.4 Tesla Agilent/Varian MR system, 3-

D printed (Silva et al., 2011), and lined with padding to limit

motion and increase comfort for the subjects. The helmet, which

also included a platform to position a transmit/receive surface

coil, was mounted to the chair body with plastic screws. Once

subjects were acclimated to the helmet, the session duration

was further increased to 60min. The final phase of acclimation

involved moving subjects into a mock MRI bore housed within

the laboratory. During mock scan sessions, recorded sounds

from the scanner were played at decibels similar to those

within the actual scanner (∼90–100 dB). Vital signs (e.g., heart

rate and oxygen saturation (SPO2); Nonin Model 7500FO,

Plymouth, MN) were tracked and recorded at 5-min intervals

throughout both training and actual MR sessions and subjects

were continuously monitored through live video-feeds by a

trained research assistant (VID-CAM-MONO-1 with SOF-842;

Med-Associates, St. Albans, VT) (12M camera; MRC systems

GmbH, Heidelberg, Germany).

2.3. Magnetic resonance imaging (MRI)

MRI scans were acquired using a 9.4 Tesla horizontal bore

magnet system (Varian Direct Drive, Varian Inc, Palo Alto,

CA, USA) running VnmrJ software (version 3.2A). An 11.6 cm

inner diameter gradient was used for the present studies with

maximum gradient strength of 40 G/cm and a transmit/receive

surface coil was used for data collection. Following image

localization and manual shimming, whole-brain gradient-echo

EPI data were acquired at an isotropic resolution of 1.0mmwith

a repetition rate of 1.5 s and echo time of 15ms over a 30min

session. The fMRI sequence was run for 5min without data

capture prior to the acquisition to allow the gradients to come

to thermal equilibrium and minimize artifactual drift.

2.4. MRI data processing

fMRI preprocessing was conducted with the FSL software

library (FMRIB, Oxford University, UK) (Smith et al., 2004;

Woolrich et al., 2009; Jenkinson et al., 2012; Kohut et al., 2020).

The first 100 volumes and last 200 volumes of the datasets were

removed to minimize motion effects, leaving 900 volumes for

analysis. Intensity spiking was detected and mitigated using an

open-source program (https://github.com/bbfrederick/spikefix)

with a percentage threshold of 2 and a voxel threshold of 129

(defined as 3 median average deviates greater than the median

number of voxels exceeding the percentage threshold). The de-

spiked images were then motion corrected and high pass filtered

with a 100 s cutoff. For registration to standard space, functional

volumes were aligned to the VALiDATe (Gao et al., 2014:

Schilling et al., 2017) T2w template through a 12 DOF affine

transformation followed by adjustment of nonlinear distortion

fields using the jip analysis toolkit (www.nitrc.org/projects/jip).

The VALiDATe brainmask was subsequently applied to perform

final skull stripping. For quality assurance, scan metrics were
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assessed using MRIQC (Esteban et al., 2017), and group mean

motion statistics were computed for the dataset.

2.5. sLFO characterization and removal

Systemic low frequency oscillation was characterized using

rapidtide, an open-source package implementing the Regressor

Interpolation at Progressive Time Delays (RIPTiDe) method

(Frederick, 2016). Details of the RIPTiDe procedure have been

described previously (Erdogan et al., 2016; Tong et al., 2019).

Briefly, the default Rapidtide parameters were used with the

exception of some modifications noted below. First, the resting

state fMRI data was filtered to the low frequency band (0.01–

0.15Hz) and a Gaussian spatial filter with a 0.75mm kernel

width was applied to smooth the data, reflecting the smaller

brain size of the squirrel monkey. A seed regressor was generated

by averaging BOLD signal across all voxels in the brain, and

recursively refined in three passes by calculating the relative

arrival time of the regressor in each voxel by fitting the peak

of the cross-correlation function within a time window of −16

to 12 s relative to the mode of the delay times (NB: the time

window used is larger than the expected delay range to allow

for better fitting of the relatively broad correlation peaks. The

search range parameter is an operational tuning parameter of

the Rapidtide program and does not determine the range of

delays obtained. The search range used here was empirically

determined from multiple runs), time-shifting each voxel’s time

course to align with the regressor, and then using principal

component analysis to extract a signal representing 80% of the

variance of all shifted BOLD voxels. The refined regressor was

cross-correlated with the time course in each voxel, and the

peak of the cross-correlation was fit with a Gaussian function to

calculate the maximum correlation coefficient and the relative

arrival time of sLFO in each voxel. If no peak could be uniquely

determined, the delay and maximum correlation value were set

to zero; however, the SNR was sufficiently high after spatial

filtering that there were very few voxels without fittable peaks.

In contrast to humans, the blood arrival time distribution was

found to be bimodal. Therefore, the initial moving regressor

was calculated and refined using only gray matter voxels, as

the blood signal is stronger and has more uniform delays in

gray matter in squirrel monkeys, and the “pickleft” flag was

used to restrict refinement to voxels in the earlier delay time

peak. The relative arrival time was defined as the time when

maximum cross-correlation was reached. It is important to note

that since we do not have an absolute reference for zero arrival

time, zero is set arbitrarily to the peak of the arrival time

distribution histogram, i.e., the mode. The refined regressor was

then time-shifted by this relative arrival time to generate voxel-

wise regressors to remove themoving hemodynamic component

from the functional data by means of general linear model.

The VALiDATe gray matter mask was supplied to restrict the

calculation to gray matter only.

2.6. Pseudoperiodicity

While using a frequency range up to 0.15Hz (∼6.67 s cycle

time) does lead to the possibility that the moving regressor

will be pseudoperiodic, this is unavoidable, as this is the

range in which neuronally driven hemodynamic fluctuations

are found. Pseudoperiodicity in the sLFO waveform is always

a concern in performing rapidtide analysis when unambiguous

delay estimation is the goal. Fortunately, this is not as large

a problem as it may seem, particularly in this instance. First,

because the sLFO signal is essentially random, usually with a

fairly flat frequency spectrum, it is usually not pseudoperiodic,

and as long as any “dominant” frequency is below ∼0.06Hz,

correlation sidelobes will not occur within the peak search range.

Second, rapidtide checks the regressor for pseudoperiodicity,

and implements a number of mitigation strategies, including

voxelwise peak shifting by the pseudoperiod to remove spatial

discontinuities in the delay map, and notch filtering out the

dominant periodic frequency during delay estimation. Finally,

in the case of denoising, as we are doing here, if there are

multiple indistinguishable peaks in the cross-correlation, then

which one we use is not important, as we will remove essentially

the same noise signal in each case (this is not the case when we

are estimating delay for its own sake).

2.7. Independent component analysis
and dual regression

Group level time concatenated independent component

analysis (ICA) and dual regression were conducted within FSL

to evaluate the performance of the noise reduction method.

Initially, a series of group ICAs were computed with the non-

denoised dataset, with varied dimensionality (20, 25, 30, 35,

40, 45, 50), to determine the optimal number of independent

components (ICs). The optimal number of ICs was chosen based

on sufficient separation from noise and reasonable merging of

the same resting state networks and is consistent with previously

published reports in animal subjects (e.g., Hutchison et al., 2011;

Jonckers et al., 2011; Belcher et al., 2013). The group IC maps

estimated from group ICA with the dimensionality of 25 were

then used as template in the following dual regression. The 25

component ICA was repeated on the rapidtide-denoised dataset,

and the components in the denoised ICA were matched to their

non-denoised equivalents using PICAchooser (Frederick, 2020).

The dual regression was carried out in two steps. The

group spatial IC template was first regressed into both the

non-denoised dataset and the denoised dataset to compute

subject-specific timecourses. Subject-specific spatial ICs were
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FIGURE 1

Maximum correlation coe�cient map. The top panel shows the average map across all 12 subjects, while the maps at the bottom represent

subject-specific maximum correlation coe�cient maps. The percentage of variance explained by the time shifted LFO regressor in each voxel is

100 * (correlation coe�cient)2. Cross-correlation between each individual map and the average map was performed, and the correlation

coe�cient is indicated above each individual map; note that correlation values are strong across all subjects (>0.9).

then identified by regressing subject-specific timecourses against

each subject’s own fMRI data. Next, permutation-based non-

parametric testing was implemented to quantify the difference

in ICs before and after noise reduction; 5,000 permutations

were used in the analysis and the resulting statistical maps were

thresholded at p ≤ 0.05 (threshold-free cluster enhancement

(TFCE) corrected). To visualize the distribution of sLFO relative

arrival time within each IC, a probability density map was

plotted for each IC.

3. Results

3.1. sLFO signal estimation with RIPTiDe

The top panel of Figure 1 shows the average maximum

correlation coefficient map of all 12 subjects. High correlation

values were observed, primarily within gray matter, suggesting

that sLFO constitute a significant portion of the fMRI signal

within the low frequency range. The individual maximum

correlation coefficient maps for each subject in the lower panels

show that the pattern is consistent across individual subjects.

Figure 2 displays the sLFO relative arrival time maps (group

average in the top panel, individual maps below). The regions

of early arrival are shown in cool colors (blue, light blue and

green), while regions of late arrival are shown in warm colors

(red and yellow). The map clearly depicts a consistent pattern of

blood circulation in squirrel monkey brain; sLFOs arrive early in

bilateral motor and somatosensory cortex where middle cerebral

arteries reside, while those regions with later arrival of sLFO

appearedmainly in regions close to the vascular drainage system,

i.e., ventricles and cerebellum. White matter also has generally

later arrival times than graymatter. The sLFO circulation pattern

is consistent across subjects, with varied sLFO arrival time,
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FIGURE 2

sLFO arrival time maps. The mean arrival time map for the group is shown at the top, followed by subject-specific individual arrival time maps.

Delays are in seconds relative to the peak of the voxelwise delay histogram. Cross-correlation between each individual map and the average

map was performed, and the correlation coe�cient is indicated above each individual map. The majority of the correlations (8 of 12 subjects)

were moderate (0.5–0.7) to strong (≥0.7).

with differences most likely due to individual variation in the

vascular anatomy. Overall, these results support the contention

that the sLFO signal is embedded in the underlying physiological

circulation and is consistent with blood flowmapping in humans

using sLFO delays (Erdogan et al., 2016), which have been cross

validated with dynamic susceptibility mapping (Erdogan et al.,

2016).

3.2. Group level independent component
analysis and dual regression

After visual inspection of a series of group IC maps with

different dimensionality, 25 spatial IC maps computed by

group ICA of the original data were used as the template for

dual regression and subsequent statistical analysis to compare

the networks before and after the application of rapidtide

denoising. Figure 3 shows the comparison results for two of the

representative resting state networks; lateral visual network and

cerebellar network. For referencing purposes, the IC templates

(original resting state network) are shown in the first row of

Figure 3. The second row represents group average of spatial

ICs of non-denoised dataset, and the third row displays group

mean spatial ICs for the denoised dataset. Group comparison

results through permutation testing are presented in row 4. The

lateral visual network exhibits a wide distribution of significant

noise reduction; in contrast, the cerebellar network exhibits

very localized noise reduction. Based on their sLFO arrival

time distribution (row 5), the voxels within the lateral visual

network have similar range of sLFO relative arrival times as

the voxels within the whole brain (the arrival time distribution

largely overlaps with that of the whole brain sLFO), hence

rapidtide denoising affects multiple voxels across the whole

brain. The voxels within the cerebellar network, however, have

Frontiers inNeuroimaging 06 frontiersin.org

https://doi.org/10.3389/fnimg.2022.1031991
https://www.frontiersin.org/journals/neuroimaging
https://www.frontiersin.org


Cao et al. 10.3389/fnimg.2022.1031991

FIGURE 3

Results from IC1, the lateral visual (left) and IC14, the cerebellar network (right). Top row: IC computed from original data; second row:

averaged spatial ICs of non-denoised dataset; third row: averaged spatial ICs of denoised dataset; fourth row: statistical map representing

significant reduction in IC after sLFO removal (TFCE-corrected), the number of significant voxels is also calculated and indicated above the

statistical map; fifth row: probability density map showing number of voxels within IC at di�erent sLFO arrival time.

relatively later sLFO arrival time (the peak occurs several

seconds after the peak of whole brain distribution); thus,

noise reduction only exists in voxels with later sLFO arrival

time. This relationship holds for most of the networks; the

number of significantly changed voxels tends to increase as

the center of mass (COM) of the delay distribution within the

IC moves farther from the overall COM of delays throughout

the brain. In fact, 16 of the 25 ICs showed >25% of voxels

and 8 of 25 ICs showed >50% of voxels in the brain change

significantly after denoising (see Supplementary Figures 1A–G,
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Supplementary Table 1). It’s important to recognize that ICs are

thresholded for display to show only voxels that meet a level of

significance, but the IC contains continuous spatial patterns that

extend throughout the brain and exist both within, and outside,

of the thresholded z-maps. This is described in greater detail

in the Supplementary material, along with depictions of all the

significant networks before and after denoising.

4. Discussion

The present study demonstrates that time lag mapping

can be successfully applied to non-human primate fMRI data

for visualizing spatiotemporal patterns of sLFOs. This finding

is consistent with previous reports in human subjects (Tong

et al., 2017). Furthermore, the delay map clearly resembles the

patterns of cerebral blood circulation, implying a hemodynamic,

rather than neuronal, origin. The sLFO relative arrival time

patterns, while generally similar, vary across individuals since

they have different vascular anatomy. This yields new insight

into the circulatory architecture of non-human primates, as well

as information on individual differences which may be of use to

assess neurovascular health.

Perhaps of more interest to those interested in neuronal

connectivity, however, is the magnitude of this signal

component. The correlation maps indicate that up to 64%

of the voxel-wise BOLD signal variance (100 × the square of

the correlation coefficient) was explained by sLFOs. In contrast,

gray matter sLFO variance in humans is predominantly <50%

(Erdogan et al., 2016). Therefore, it is even more important

to remove this heterogeneous signal of non-neuronal origin

in squirrel monkeys. In an attempt to better illustrate the

effect of sLFO contamination on resting state networks, we

performed an ICA analysis to extract resting-state networks

using the same rs-fMRI data with and without denoising.

Although we tuned the number of components to maximize

the separation of noise while still maintaining the networks of

interest, each component still contains significant low frequency

physiological noise. This will negatively affect subsequent

statistical analysis and interpretation. Since up to ∼2/3 of the

gray matter signal variance in the low frequency band used to

estimate neuronal connectivity carries no relevant information

about neuronal activity, if these signals are not removed, they

will bias connectivity measures toward hemodynamic factors

(i.e., areas where blood coincidentally arrives at similar times

will appear to be functionally connected). In pharmacological

challenges, which can have profound effects on both neuronal

and hemodynamic function, the inability to separate these

effects will significantly limit the validity of connectivity changes

as a tool for assessing neuronal effects. In the current study, the

RSNs computed from denoised data and the dual regression

results comparing RSNs before and after denoising showed that

the physiological noise was significantly reduced after removing

sLFOs, and the extent of reduction is related to the brain region

contained in the IC. More specifically, if ICs contain brain

regions that have a similar sLFO arrival time as the majority of

brain regions, they will have broad reductions after denoising.

Contrarily, if ICs contain voxels with sLFO relative arrival times

that differ significantly with the majority of the voxels within

the whole brain, more localized reductions could be observed.

These results have further demonstrated the need to remove

sLFOs before analyzing rs-fMRI data.

This analysis demonstrates the rapidtide package (Frederick,

2016), provides a simple set of open-source turnkey tools to

perform this retrospective denoising in non-human primate

data. It is easily applied retrospectively to existing datasets,

as it can extract sLFO regressors directly from the fMRI

data itself without the need of external recordings, and it

removes significant hemodynamic noise contamination from

resting state data without the pitfalls of global signal regression

(Erdogan et al., 2016). Therefore, we suggest incorporating

rapidtide denoising in non-human primate fMRI data as a

standard step in the preprocessing pipeline.
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