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A functional MRI pre-processing
and quality control protocol
based on statistical parametric
mapping (SPM) and MATLAB

Xin Di* and Bharat B. Biswal*

Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ,

United States

Functional MRI (fMRI) has become a popular technique to study brain functions

and their alterations in psychiatric and neurological conditions. The sample

sizes for fMRI studies have been increasing steadily, and growing studies

are sourced from open-access brain imaging repositories. Quality control

becomes critical to ensure successful data processing and valid statistical

results. Here, we outline a simple protocol for fMRI data pre-processing and

quality control based on statistical parametricmapping (SPM) andMATLAB. The

focus of this protocol is not only to identify and remove data with artifacts and

anomalies, but also to ensure the processing has been performed properly. We

apply this protocol to the data from fMRIOpen quality control (QC) Project, and

illustrate how each quality control step can help to identify potential issues. We

also show that simple steps such as skull stripping can improve coregistration

between the functional and anatomical images.
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1. Background

Functional MRI (fMRI), especially blood-oxygen-level dependent (BOLD) fMRI

(Ogawa et al., 1992), has become a popular technique to study brain functions underlying

cognitive and affective processes, and to investigate brain alterations in psychiatric and

neurological disorders. The sample sizes of fMRI studies have been steadily increasing

over the years (Poldrack et al., 2017; Yeung et al., 2020), and many researchers have

taken advantages of large open-access datasets, such as 1,000 Functional Connectomes

Project (Biswal et al., 2010), autism brain imaging data exchange (ABIDE) (Di Martino

et al., 2014), Alzheimer’s Disease Neuroimaging Initiative (ADNI) (Jack et al., 2015),

and OpenNeuro (Markiewicz et al., 2021). The wide availability and the heterogeneity

in acquisition protocols and data quality make it challenging for data processing

and statistical analysis. Quality control on the data processing has become a critical

component in research but has not been fully charted.
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The quality assurance for an fMRI study span from data

acquisition to data processing and statistical analysis (See

Lu et al., 2019 for an overview). Here we assume that the

data have already been collected or obtained from an online

repository. Then the quality assurance starts with checking

the quality of the images, and mainly involves the data

processing steps. There are automated quality control measures

for specific steps, e.g., assessing the quality of MRI images

(Esteban et al., 2017) and brain registration (Benhajali et al.,

2020). But published studies on quality control usually do

not cover the entire processing pipeline. In this paper, we

outline a processing pipeline for fMRI data that has been

used in our lab, and detail the quality control procedure

after each of the pre-processing steps. The pre-processing

pipeline is suitable for all resting-state, task state, and movie

watching conditions (Di and Biswal, 2019, 2020, 2022; Di

et al., 2020, 2022a,b). The protocol is based on Statistical

ParametricMapping (SPM) (https://www.fil.ion.ucl.ac.uk/spm/)

under MATLAB environment. The quality control issues may

be similar when using other major software, e.g., Analysis of

Functional NeuroImages (AFNI) (Cox, 1996) and the FMRIB

Software Library (FSL) (Jenkinson et al., 2012). But the

implementations of quality control in other software are outside

the scopes of this paper.

Quality control is mainly 2 fold. The first is to identify

artifacts and issues in the images. This includes spatial domain

issues, such as ghost artifacts, lesions, and brain coverage, as

well as temporal domain issues, such as head motion and

other physiological noises. The second is to ensure that the

data processing steps can run properly. Practically, many data

processing steps rely on iterations, which are sensitive to

initial conditions. Quality control is critical to ensure that

these processing steps can run properly but are not stuck

in local minima. In addition, given the complexity of the

fMRI data, there might always be unexpected issues in the

images or different processing steps. Visualizations of different

aspects of the images will always be helpful to spot the

unexpected issues.

Here, we first describe the pre-processing and quality

control protocol in detail, including visualizations, exclusion

criteria, and the steps needed for processing assurance. The

protocol mainly relies on SPM and MATLAB functions.

Some visualizations are inspired by previous works, such

as TSDiffana (http://imaging.mrc-cbu.cam.ac.uk/imaging/

DataDiagnostics) and Power et al. (2014). And secondly,

we apply the protocol to the data of the Open QC Project

(https://osf.io/qaesm/). We illustrate how quality issues can

be identified, and what steps are needed to ensure proper

data processing. One particular step is the usage of skull-

stripped anatomical images for functional-anatomical images

coregistration (Fischmeister et al., 2013). By using the OpenQC

dataset, we examine how skull stripping can potentially

improve the coregistration compared with using the raw

anatomical images.

2. Pre-processing and quality
control protocol

2.1. Software

SPM12: v7771 under MATLAB R2021a environment.

2.2. Procedure

The outline of the pre-processing and quality control steps is

shown in Figure 1. The codes are available at https://github.com/

Brain-Connectivity-Lab/Preprocessing_and_QC.

2.2.1. Q1. Data initial check

The purposes of the initial check include checking the

consistency of imaging parameters across participants, and

checking the image quality, coverage, and orientations of the

functional and anatomical images.

First, check the key parameters that may affect pre-

processing, including the number of volumes, repetition time

(TR), and voxel sizes. Plot the parameters across participants

(e.g., Supplementary Figure 1) or the histograms may be helpful.

If a few participants have different parameters, e.g., fewer

volumes, they may be removed from further analyses. If many

participants have various numbers of volumes, onemay consider

keeping the same number of volumes across all the participants.

Otherwise, one may also consider including covariates in group

level models to account for the parameter variations.

Second, check the anatomical images using SPM Check

Registration functionality. The first image is the anatomical

image of a participant in native space, and the second is

the single subject T1 weighted template image in MNI space

(Figure 2A). The contour of the first image can be overlayed

onto the second image. Focus on, (1) whether the anatomical

image has the same orientation and similar initial position to the

template, (2) any artifacts, e.g., ghosting, and brain lesion. If any

anomaly is noted, then the image needs to be further checked for

the whole brain volume. If the anatomical image is located far

from the MNI template, or rotated into a different orientation,

then manually reorient the image to the template direction and

reset the origin to the anterior commissure.

Thirdly, check the first functional image using SPM Check

Registration functionality. This is the same as the previous

step, except that the first image is a functional image. Focus

on (1) whether the functional image has the same orientation

and similar initial position to the MNI space template, (2) any

artifacts, e.g., ghosting, and (3) the spatial coverage.

2.2.2. P1. Anatomical image segmentation

The purpose of this step is to segment the anatomical image

of a participant into gray matter (GM), white matter (WM),
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FIGURE 1

Pre-processing (P) and quality control (Q) steps.

cerebrospinal fluid (CSF), and other tissues, and obtain the

parameters (deformation fields) for the spatial normalizations

of the functional images. A bias corrected anatomical image

is also generated, which will be used for functional-anatomical

image registration.

Use SPM Segment functionality. The input volume is the

subject’s anatomical image. Additional non-default setting: (1)

“Save Bias Corrected” -> “Save Bias Corrected”; (2) “Warped

Tissue” for the first three tissue types (GM, WM, and CSF) ->

“Unmodulated”; and 3) “Deformation Fields” -> “Forward.”

DARTEL (a fast diffeomorphic registration algorithm)

may be used to generate a sample specific template for

spatial normalization (Ashburner, 2007). It can improve cross-

individual registrations, especially for a homogeneous sample

from a specific population, e.g., children or old adults. But for a

large sample size with diverse demographics, DARTEL may not

be necessary and is computationally expensive.

2.2.3. Q2. Anatomical image segmentation
check

The purpose of this step is to check the quality

of segmentation.

Use SPM Check Registration functionality. The first image

is the segmented gray matter density image in MNI space

(wc1xxx), and the second image is the single subject T1 weighted

image in MNI space (Figure 2B). The contour of the first image

can be overlayed onto the second image. Next, overlay the

segmented images of GM, WM, and CSF (wc1xxx, wc2xxx, and

wc3xxx) to the first image.

If misclassification of any tissues is noted, then double check

the original anatomical image. If the misclassification could be

caused by the position/orientation of the raw anatomical image,

try to manually reorient the anatomical image. If brain lesions

or image quality issues are noticed, this participant’s data should

be excluded.

2.2.4. P2. Functional images realign

The purpose of this step is to align all the functional images

of a run to the first image. Rigid body head motion parameters

(rp files) are also obtained.

Use SPM Realign: Estimate & Reslice functionality. For

“Data:Session”: input all the functional images. Non-default

setting: “Resliced images”: “Mean Image Only.”

2.2.5. Q3. Head motion check

The purpose of this step is to check the distributions of head

motion in the sample, and remove participants with excessive

head motions from further analyses.

Calculate framewise displacement (FD) in translation and

rotation based on the rigid body transformation results from the
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FIGURE 2

Example visualizations of each quality control step. (A) Image initial check (Q1). (B) Segmentation check (Q2). (C) Head motion check (Q3). (D)

Coregister check (Q4). (E) Normalization check (Q5). (F) Time series check (Q6).

P2 step (Di and Biswal, 2015). The formula for FD at time t are

as follows,

FDtranslation,t

=

√

(hpx,t − hpx,t−1)
2
+ (hpy,t − hpy,t−1)

2
+ (hpz,t − hpz,t−1)

2

FDrotation,t

=

√

(hpα,t − hpα,t−1)
2
+ (hpβ ,t − hpβ ,t−1)

2
+ (hpγ ,t − hpγ ,t−1)

2

Where hp represents the head position parameters estimated

relative to the first image. x, y, and z represent the

three translation directions, and α, β , and γ represent the

three rotation directions. Plot the distributions of maximum

framewise displacement across all the participants (Figure 2C).

A pre-specified threshold of maximum framewise displacements

>1.5mm or 1.5◦ (approximately half of the voxel sizes)

can be used to exclude participants. However, the threshold

may depend on the sample characteristics. See below for

more discussions.

2.2.6. P3. Functional-anatomical images
coregister

The purpose of this step is to coregister the functional images

to the anatomical image of the same individual.

First, generate a skull-stripped bias-corrected anatomical

image using SPM Image Calculator (ImCalc) functionality.

Input Images: (1) the bias-corrected anatomical image, (2)

through (4) c1xxx, c2xxx, and c3xxx segmented tissue images,

respectively. Expression: i1.∗ ((i2+ i3+i4) > 0.5).

Second, use SPM Coregister:Estimate functionality.

“Reference Image”: the skull-stripped bias-corrected anatomical

image; “Source Image”: the mean functional image generated

in the realign step; “Other Images,” all the functional images of

the run.

2.2.7. Q4. Coregistration check

The goal of this step is to check the quality of coregistration

between the functional and anatomical images.

Use SPMCheck Registration functionality. The first image is

a functional image of a participant in native space, and second
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image is the skull stripped anatomical image in native space

(Figure 2D). The contour of the first image can be overlayed onto

the second image.

Check whether the contour of the functional image aligns

with the anatomical image. If the two images are not alignedwell,

then manual reorientation of the images may be needed.

2.2.8. P4. Spatial normalization

The purpose of this step is to spatially normalize all

the functional images into the common MNI space.

The normalization parameters are obtained from the

segmentation step.

Use SPM Normalize:Write functionality.

“Data:Subject:Deformation Field”: y_xxx file from the

anatomical image folder; “Images to Write”: all the functional

images of a run. Non-default setting, “Voxel sizes”: 3 3 3. The

resampling voxel size should be similar to the original voxel

size. For the fMRI QC data, we used a common voxel size of 3×

3 × 3 mm3. This may be modified according to the actual voxel

size. The resampled voxel size also affects the estimates of spatial

smoothness, which may in turn affect voxel-wise statistical

results (Mueller et al., 2017).

2.2.9. Q5. Normalization check

The purpose of this step is to check the spatial registrations

of the fMRI images to an MNI space template.

Use SPMCheck Registration functionality. The first image is

the normalized functional image of a participant in MNI space,

and the second image is the single subject anatomical image in

MNI space. The contour of the first image can be overlayed onto

the second image (Figure 2E).

2.2.10. P5. Voxel-wise general linear model

For resting-state data, this step is used to regress out

variations of no-interest, such as low-frequency drift, head

motion, and WM/CSF signals. The residual images will be

further used to calculate functional connectivity or resting-state

parameters, such as amplitude of low-frequency fluctuations

(ALFF) (Yang et al., 2007), regional homogeneity (ReHo) (Zang

et al., 2004), and physiophysiological interaction (PPI) (Di and

Biswal, 2013). For task fMRI, the purpose of this step is mainly

to derive task related activations.

For resting-state data, firstly, define WM and CSF masks

by thresholding and resampling the subject’s segmented tissue

images using SPM Image Calculator (ImCalc) functionality.

“Input Images”: (1) the first functional image (to define the voxel

dimension), and (2) wc2xxx or wc3xxx normalized tissue density

image. “Expression”: i2 > 0.99. The threshold is used to ensure

only WM or CSF voxels are included in the masks.

Secondly, extract the first principal component of the signals

in the WM and CSF masks, respectively.

Thirdly, use General Linear Model (GLM) functionality

in SPM to perform the regression. The regressors include 24

Friston’s head motion model (Friston et al., 1996), the first PC

of theWM and CSF, respectively, and a constant term. Note that

an implicit high pass filter is also included in the GLM with a

cut-off of 1/128Hz. This GLM step essentially performs artifact

removal and filtering together, which can prevent introduced

artifacts when doing these two steps separately (Lindquist et al.,

2019).

Fourthly, estimate the GLM using SPM Model estimation

functionality. Non-default setting, “Write residuals”: Yes.

For task fMRI data, also use the GLM functionality in SPM to

perform the regression. Define task regressors using the design

timing parameters. Additional regressors include 24 Friston’s

head motion model (Friston et al., 1996) and a constant term.

Note that an implicit high pass filter is also included in the

GLM with a cut-off of 1/128Hz. Next, estimate the GLM using

SPMModel estimation functionality. The residual images can be

saved to check model fitness, but usually they are not needed for

further analyses.

2.2.11. Q6. Time series check

For resting-state data, the purpose of this step is to check

the time series of global signals, and their relations to head

motion and physiological noises. Mean global signals and

pairwise variance [similar to DVARS, temporal derivative of

variance (Power et al., 2014)] are commonly used to quality

control fMRI time series. Outliers of the variance time series are

usually caused by head motion. Therefore, plotting head motion

parameters together with the variance and global signals can

help to illustrate the relationships. A further question is whether

the linear regression step can effectively minimize the noises in

the global signals.

Plot time series as Figure 2F. Top row, first, the global mean

intensity for the raw fMRI images; second, six rigid body head

motion parameters in mm or degree; third, the first PC of

the signals in the WM and CSF; and fourth, the global mean

intensity for the pre-processed fMRI images within a brain

mask. The correlations among all these time series are shown

in the last column. Bottom row, first, pairwise variance between

consecutive images for the raw fMRI images; second, framewise

displacement in translation and rotation; third, derivative

(difference) of the first PCs inWMandCSF; and fourth, pairwise

variance between consecutive images from the pre-processed

fMRI images within a brain mask. The correlations among all

these time series are shown in the last column.

The pairwise variance time series is a simple way to spot

extreme values. One can use three standard deviations as a

criterion to identify the extreme values. Similar spikes can

usually be seen in the framewise displacement time series, and
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TABLE 1 Key imaging parameters in the eight sites of the fMRI Open QC project.

Site n Number of functional volumes TR (s) Functional image voxel size Anatomical image voxel size

x y z x y z

Task 30 242 2 3 3 4 1 1 1

Rest 1 20 128 or 156 2.5 2.67 or 2.29 2.67 or 2.29 3 1 1 1

Rest 2 20 150 2 3 3 3.84 1 1 or 0.93 1 or 0.93

Rest 3 16 162 2.5 1.56 1.56 3.1 0.98 1.2 0.98

Rest 4 23 123 2.5 2.67 2.67 3 1 1 1

Rest 5 20 144 2 3 or 1.85 3 or 1.85 4 1 1 1

Rest 6 20 130–724 2.5 4 4 4 1 1 1

Rest 7 20 198 2.5 3 3 3.51 1 1 1

Shaded cells indicate the presence of different parameters within the site. TR, repetition time.

sometimes are also visible in the derivatives of the WM/CSF

signals. This will result in high correlations among the pairwise

variance, framewise displacement, and WM/CSF derivatives.

Also focus on the pairwise variance time series from the pre-

processed images to check whether they are no longer correlated

with the framewise displacement or WM/CSF derivatives. A

threshold, e.g., r > 0.3, can be used to identify large correlations.

For task data, the effects of interest are usually the brain

activity related to the task design. Then the focus of this step

is to check whether the global signals and head motions are

correlated with the task design. Therefore, in addition to the

time series of global signals and head motion, also plot the task

design time series and their derivatives. If the global signals or

head motion parameters are correlated with the task design, or

the pair wise variance or framewise displacement are correlated

with the derivatives of the task design, then one may consider

controlling these factors in the first level GLMs.

2.3. Other processing steps

Spatial smoothing is not included in this protocol. It is

only necessary when voxel-wise statistical analysis is used. If

the analysis is ROI based connectivity analysis, then smoothing

is not necessary. Moreover, when calculating ReHo, which is

a commonly used resting-state measure, the data should also

be un-smoothed.

3. Materials and methods

3.1. Datasets

The data were obtained from the fMRI Open QC Project

(https://osf.io/qaesm/). There are anatomical and functional

MRI data of 169 participants from eight sites. Seven sites

are resting-state fMRI, and the remaining one is task-based

TABLE 2 FMRI quality control criteria.

FMRI quality control criteria Exclude a subject if:

A. Imaging parameters Deviating from other participants

B. Anatomical image quality and coverage Visual assessment

C. Functional image quality and coverage Visual assessment

D. Segmentation failure Visual assessment

E. Maximum framewise displacement >Than 1.5mm or 1.5◦

fMRI. The data were aggregated from different online resources,

including 1,000 Functional Connectomes Project (Biswal et al.,

2010), ABIDE (Di Martino et al., 2014), and OpenNeuro

(Markiewicz et al., 2021).

TheMRI images were acquired using differentMRI scanners

and imaging protocols. All the MRI scanners were 3T. Table 1

lists some key parameters useful for data analyses. Note that

some parameters vary within a site. More imaging parameters

for all the participants are shown in Supplementary Figure 1.

3.2. Pre-processing and quality control

We followed the protocol outlined in Section 2. For each

quality control step, an image was saved for each subject. The

output images were visually inspected across all the participants.

The quality control and exclusion criteria are summarized in

Table 2.

3.3. Data analysis

In the functional-anatomical images coregister step,

the current protocol uses the bias-corrected skull-stripped

anatomical image as the reference. Because the signals
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in the skull in the EPI images are weak, in theory it is

preferable to coregister the functional images to the skull-

stripped anatomical images. However, this is not the default

recommendation in SPM. A study has suggested that using

the skull-stripped image may improve group-level statistical

results (Fischmeister et al., 2013). However, no formal

comparison has been performed. We hypothesize that in

most cases using the non-skull stripped images will perform

the same as the skull stripped images. However, in a small

number of cases, using the raw anatomical image may fail.

By using the fMRI QC dataset, we estimate the number of

cases that would fail when using the raw anatomical image as

the reference.

Specifically, we also performed the coregister step by

using the raw anatomical image as the reference. We

calculated the spatial distance between the functional

images to the different reference images. The Euclidean

distances were calculated in translation and rotation,

separately. We used a threshold of 9mm or 9◦ (∼3

voxels) to identify cases with excessive differences.

We then overlaid the two functional images with

the anatomical images to identify potential causes of

the discrepancy.

4. Results

4.1. Q1. Data initial check

Supplementary Table 1 shows some key imaging parameters

of the functional and anatomical images for every participant.

In resting-state site 1, two participants had fewer fMRI volumes

than the rest of the group, which should be removed from

analysis. In resting-state site 6, the numbers of fMRI volumes

varied between 130 and 724. We kept the first 130 volumes

from all the participants for further analysis. The voxel sizes

of fMRI images in resting-state site 1 and site 5 varied across

participants. Given that only a few participants had different

voxel sizes from the majority participants of a site, these

participants should be removed from further analysis. The voxel

sizes of the anatomical images in resting-state site 2 also varied

across the participants. However, it may have minimum impact

on the functional images and were therefore were kept for

further analysis.

The anatomical images were visually inspected for their

quality, coverage, and relative positions to the MNI template.

All the images were close to the MNI template, indicating

that no manual origin setting was needed. One participant’s

image (sub-509) showed enlarged ventricles (Figure 3A),

which should be removed from further analysis. Another

participant’s image (sub-203, not shown) had mildly enlarged

ventricle, which extended to the right lingual territory. We

classified this participant as uncertain. This participant may

FIGURE 3

Example anatomical and functional MRI images with quality

issues. (A) The anatomical image has enlarged ventricle. (B) The

functional image appears upside down relative to the template

image in Montreal Neurological Institute (MNI) space.

be included if the visual areas were not the main regions

of interest.

The quality and coverage of the first fMRI images

seemed acceptable for all the participants. However, two

participants’ images (sub-518, sub-519) appeared upside down

(e.g., Figure 3B). The images were manually reoriented to the

template orientation.

4.2. Q2. Anatomical image segmentation
check

The segmentation procedure seriously failed in two

participants (sub-509 and sub-511). For sub-509, most gray

matter regions were identified as CSF (Figure 4A). And for sub-

511, part of the visual gray matter was missing, and no CSF was

identified (Figure 4B).

Five other participants (sub-108, sub-405, sub-420, sub-512,

and sub-514) also have minor segmentation issues, particularly

in the CSF (e.g., Figure 4C). Since fMRI analysis usually focuses

on gray matter, the misclassifications of CSF may not affect

the normalizations of gray matter. These participants may be

included in the following analysis. We labeled them uncertain

because they may not be included in other types of analysis, such

as voxel-based morphometry (Ashburner and Friston, 2000).

4.3. Q3. Head motion and variance check

When using the pre-specified threshold of maximum

framewise displacement > 1.5mm or 1.5◦, 12 participants were

removed from further analysis. Figure 5 shows the distributions
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FIGURE 4

Example anatomical images with segmentation issues. Top row shows segmented tissue images of gray matter (red), white matter (green), and

cerebrospinal fluid (blue) in Montreal Neurological Institute (MNI) space. Bottom row shows the single subject T1 image in MNI space with the

segmented gray matter contours. (A) Shows the participant where most of the gray matter was misclassified as CSF. (B) Shows missing classified

gray matter in the visual cortex and no classifications of CSF. (C) Shows that many soft tissues and bones outside the cortex were miss-classified

as CSF.

FIGURE 5

Distributions of maximum framewise displacement (FD) in

translation and rotation. The red lines indicate the 1.5mm and

degree thresholds used for excluding participants.

of maximum framewise displacement across all the participants.

It appears that the 1.5mm and 1.5◦ threshold only remove a

few participants with excessive head motions. This is desirable

because the removal is supposed to only apply to outliers.

4.4. Q4. Functional-anatomical images
coregister

For all the participants, the functional images were

properly coregistered to their respective anatomical images.

This was achieved with the previous quality assurance

steps. For example, if the upside-down functional images

(sub-518 and sub-519) were not manually reoriented,

the coregistration step would fail. Figure 6A shows

an example of a functional image registered upside-

down with the anatomical image, which was stuck at a

local minimum.

Moreover, if the raw anatomical image was used as

a reference, the functional images may mis-aligned with

the anatomical image in many participants. Figures 6B, C

shows two examples. In Figure 6C, the top edge of the fMRI

image was aligned to the skull when registered to the raw

anatomical image. This is a typical scenario of misalignment.

In Figure 6B, the functional image has a signal dropout in the

prefrontal region. The distorted prefrontal edge was aligned

with un-distorted prefrontal edge in the anatomical image,

which resulted in a misalignment. This can be prevented

by using the skull-stripped image as the reference. For each

participant, we calculated spatial distance in translation

and rotation between the functional images coregistered

using the two reference images (Supplementary Figure 2).

Four participants (2.4%) had spatial distance larger

than 9 mm.

4.5. Q6. Normalization

All participants’ data were successfully normalized into the

MNI space.
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FIGURE 6

(A) Example coregister failure when the functional image was not reoriented correctly. Top row shows the coregistered functional image, and

bottom row shows the anatomical image with the contour of the top image. (B, C) Example coregister failures when coregistered to the raw

anatomical image compared with to the skull-stripped bias-corrected anatomical image. The red brains show the functional images

coregistered to the skull-stripped anatomical image, while the blue brain show the functional images coregitered to the raw anatomical image.

Top row, the underlay images are the functional images coregistered using the other methods to highlight their di�erences. Bottom row, the

underlay images are the skull-stripped and the raw anatomical images.

4.6. Q7. Time series check

Figure 7 shows an example participant with large head

motions. Both the global mean signals (Figure 7A) and

pairwise variance (Figure 7F) showed a spike at around the

50th image. The rigid body motion parameters (Figure 7B)

and framewise displacement (Figure 7G) showed similar

spikes. However, the shapes of the spikes in the rigid body

motion parameters appeared different from the global signals

(Figure 7A), indicating that simply regressing out the rigid

body parameters cannot fully remove motion related noises. In

contrast, framewise displacement (Figure 7G) showed strikingly

similar patterns as the pairwise variance (Figure 7F). Similarly,

the rigid bodymovement related changes can be seen in theWM

signals (Figure 7C), but only the derivatives (Figure 7H) showed

similar spike patterns as the pairwise variance (Figure 7F). Next,

we check whether the GLM step has successfully minimized

the motion related components in the fMRI signals. The global

mean signals of the pre-processed images (Figure 7D) no longer

contained the spike, and so did the pairwise variance time

series (Figure 7I). This is supported by the fact that the pairwise

variance from the pre-processed data was not correlated with

framewise displacement, which contrasted with the pairwise

variance from the raw data (Figure 7J). This suggests that the

GLM process can effectively minimize head motion effects in

this participant, even though this participant was excluded with

our pre-specified threshold.

Figure 8 shows an example participant with large head

motions from the task data. The head motion effects were not

clearly present in the global mean signals (Figure 8A), but can

be clearly seen in the pairwise variance time series (Figure 8E),

which can be confirmed in the rigid body motion parameters

(Figure 8B) and framewise displacement time series (Figure 8F).

For the task-based fMRI, it is critical to verify whether head

motion is related to the task design. In Figures 8C, G, we plotted

the time series of task design and their derivatives. It seems that

head motions were not correlated with the task design, which

can be further confirmed in Figures 8D, H.

4.7. Summary of quality control results

In total, two participants were discarded due to missing time

points; five were discarded due to different fMRI voxel sizes; one

was discarded due to poor anatomical image quality; one was

discarded due to segmentation failure; and 11 were discarded

due to large head motions. Another 5 participants’ data had

mild issues in the anatomical images or tissue segmentations,

which were marked as uncertain. A list of all the excluded

or uncertain participants and their reasons is summarized in

Supplementary Table 1.

5. Discussion

In this paper, we outlined a protocol for fMRI pre-processing

and quality control based on SPM and MATLAB. We applied

the protocol to the fMRI Open QC dataset, and identified
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FIGURE 7

(A) Global mean intensity for the raw fMRI images. (B) Six rigid-body head motion parameters in mm or degree. (C) The first principal

component (PC) of the signals in the white matter (WM) and cerebrospinal fluid (CSF). (D) Global mean intensity for the pre-processed fMRI

images within a brain mask. (E) Correlations among (A) through (D). (F) Variance between consecutive images from the raw data. (G) Framewise

displacement (FD) in translation and rotation. (H) Derivatives of the first PCs in WM and CSF. (I) Variance between consecutive images from the

pre-processed fMRI images within a brain mask. (J) Correlations among (F) through (I).

FIGURE 8

(A) Global mean intensity for the raw fMRI images. (B) Six rigid-body head motion parameters in mm or degree. (C) The task design regressors of

the Task and Control conditions. (D) Correlations among (A) through (C). (E) Variance between consecutive images from the raw data. (F)

Framewise displacement in translation and rotation. (G) Derivatives of the task design regressors. (H) Correlations among (E) through (G).

quality issues after each step of pre-processing. We also

demonstrated that quality control can ensure proper processing.

And specifically, using the skull-stripped anatomical image can

help to effectively prevent mis-registrations between functional

and anatomical images.

Using a skull-stripped anatomical image as a reference in the

coregister step is not the default setting in SPM, but the SPM

manual does recommend that if the step is unsuccessful then

the skull-stripped images should be used. The current analysis

showed that only a small portion of participants have failed this

step. However, because they are rare, they are easily overlooked.

And in some cases, e.g., Figure 6B, it is not easy to spot the

failure visually unless the two functional images are overlayed

directly over each other. On the other hand, making the skull-

stripped image only takes one simple step with minimal time

and computation efforts. Therefore, we recommended that the

skull strip should always be performed.

Head motion is a major factor that affect fMRI signals

(Friston et al., 1996) and functional connectivity measures

(Power et al., 2012; Van Dijk et al., 2012). Different methods

have been developed to detect and minimize head motion

related artifacts (Friston et al., 1996; Muschelli et al., 2014;

Power et al., 2014, 2019). The Friston’s 24 model has been

shown to be an effective way to reduce motion related artifacts
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(Yan et al., 2013), which is adopted in the current protocol.

In addition to correcting motion related artifacts from the

fMRI data, identifying and excluding participants with excessive

head motion are also critical. In the current protocol, we set

a threshold of 1.5mm and 1.5◦ to remove participants with

excessive head motions. We note that the threshold is arbitrary.

More critically, the distributions of head motion in a sample

should always be checked. If the overall headmotions are large in

the sample, then a more lenient threshold may be considered. If

there aremultiple groups, e.g., case and control, the distributions

of head motion should be compared between groups. Any

group differences may need to be controlled in the group-level

statistical models. But one needs to keep in mind that excluding

participants with large head motion may introduce sampling

bias (Kong et al., 2014; Nebel et al., 2022).

Lastly, we note that the quality and formats of fMRI

data varied greatly from different sources. We have only

demonstrated a handful of quality issues that are present in

the fMRI QC project. There are always unexpected issues when

processing new data, especially when data are derived from

online repositories. Making visualizations of different aspects of

the data (e.g., images and time series) is always helpful to ensure

proper data processing and to spot unexpected issues.
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