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Background: Survivors of pediatric posterior fossa brain tumors are susceptible

to the adverse e�ects of treatment as they grow into adulthood. While the

exact neurobiological mechanisms of these outcomes are not yet understood,

the e�ects of treatment on white matter (WM) tracts in the brain can be

visualized using di�usion tensor (DT) imaging. We investigated these WM

microstructural di�erences using the statistical method tract-specific analysis

(TSA). We applied TSA to the DT images of 25 children with a history of

posterior fossa tumor (15 treated with surgery, 10 treated with surgery and

chemotherapy) along with 21 healthy controls. Between these 3 groups, we

examined di�erences in the most used DTI metric, fractional anisotropy (FA),

in 11 major brain WM tracts.

Results: Lower FA was found in the splenium of the corpus callosum (CC), the

bilateral corticospinal tract (CST), the right inferior frontal occipital fasciculus

(IFOF) and the left uncinate fasciculus (UF) in children with brain tumors

as compared to healthy controls. Lower FA, an indicator of microstructural

damage to WM, was observed in 4 of the 11 WM tracts examined in both

groups of children with a history of posterior fossa tumor, with an additional

tract unique to children who received surgery and chemotherapy (left UF).

Conclusions: Our findings indicate that a history of tumor in the posterior fossa

and surgical resection may have e�ects on the WM in other parts of the brain.

KEYWORDS

posterior fossa tumors, di�usion tensor (DT) MRI, white matter (WM), long term

adverse e�ects, tract specific analysis

Introduction

Central nervous system (CNS) tumors are second in frequency only to leukemia

among cancers affecting children, but are still the most common cause of cancer death

(Udaka, 2018) in children ages 0–14 years in the United States, with an incidence rate

of approximately 5.83 per 100,000 person-years (Ostrom et al., 2017). Of these tumors

in children, over half are in the posterior fossa, making it the most common location
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for CNS tumors. Treatment for these tumors can include a

combination of surgical resection, chemotherapy, and cranial or

craniospinal irradiation. New developments in these therapies,

earlier detection (Duc et al., 2020), and improved post-treatment

monitoring have increased the survival rates for pediatric

patients. However, children are most susceptible to the adverse

effects of treatment during this period of significant brain

development (Macartney et al., 2014). Thus, the urgency to

examine the long-term adverse outcomes of these treatments has

also increased.

The exact neurobiological mechanisms leading to adverse

outcomes from these therapies are not yet understood. However,

the effects on brain anatomy may be visualized, quantified,

and analyzed through magnetic resonance imaging (MRI) (Kim

et al., 2008; Ikonomidou, 2018; Jacob et al., 2018; Duc, 2020). For

example, global reductions in both gray and white matter (WM)

volumes have been observed and correlated with neurocognitive

decline after treatment (Ailion et al., 2017).

WM is important in mediating the functional connectivity

for many neurobehavioral operations (Filley and Fields, 2016)

and is susceptible to damage from radiation and chemotherapy.

Thus, particular attention has been given toWM tract alterations

with diffusion-weighted imaging (DWI). DWI is an MRI

method which captures the diffusion of water molecules through

brain tissues and is particularly useful in analyzing WM tracts.

Healthy WM typically consists of bundles of myelinated axons

organized into tracts, which connect different parts of the

brain. The restricted diffusion of water molecules through these

bundles can be characterized through different metrics, the

most popular of which is called fractional anisotropy (FA).

FA describes the degree of deviation from purely isotropic

Brownian motion of water molecules in the brain, where higher

FA values indicate highly anisotropic random motion (Basser

et al., 1994).

Several studies have demonstrated lower FA in the WM

tracts of children with brain tumors after receiving variable

combinations of the three common treatments, surgery,

chemotherapy, and radiation, compared to healthy controls,

which may indicate WM damage due to treatment. These lower

FA values have been theorized to indicate less restricted diffusion

of water molecules and furthermore theorized to represent a

loss of microstructural integrity, reduced bundle organization or

axonal damage (Scholz et al., 2014). Before either chemotherapy

or radiation, surgical resection of posterior fossa tumors alone

impacts the supratentorial brain, as evidenced by lower FA

and decreases to WM volume in structures such as the corpus

callosum and corona radiata (Reddick et al., 2005; Rueckriegel

et al., 2010; Glass et al., 2017). The combination of surgery,

chemotherapy and radiation has been shown to be detrimental,

with many studies documenting reduced FA in several brain

structures, including the corpus callosum and frontal WM

(Fouladi et al., 2004; Reddick et al., 2005; Monje et al., 2007;

Jacola et al., 2014). Although literature solely focused on

chemotherapy’s effects on children with brain tumors is sparse,

our recent paper in Baron Nelson et al. (2021) found patterns

of FA differences in gray and white matter structures associated

with the effects of surgery and chemotherapy compared to

surgery alone through a whole brain voxel-wise analysis. Thus,

examining differences in FA values is important in determining

WM damage in relation to different treatments.

Many approaches have been developed to identify the FA

values in WM tracts. Manually drawn regions of interest (ROIs)

ensure anatomical accuracy. However, manual methods like this

have been replaced by the development of automated methods

of WM identification as the number of subjects in studies

has increased. To address the increasing workload and time

required to analyze larger datasets, tract-based spatial statistics

(TBSS) (Smith et al., 2006) became the standard automated

method in the study of WM tracts. TBSS accomplishes this

by first non-linearly registering the FA maps from individual

scans. The normalized FA maps are averaged and eroded to

produce a WM skeleton which represents the core of all the

WM tracts common to the initial scans. With the method’s rise

in popularity, researchers have become increasingly aware of

its limitations. For example, TBSS’s projection onto an entire

WM skeleton does not allow a researcher to distinguish between

distinct but adjacent WM tracts (Bach et al., 2014).

Tract specific analysis (TSA) was designed to remedy these

problems by segmenting individual WM tracts onto population

specific templates (Yushkevich et al., 2009; Zhang et al., 2010).

Tensors are then projected onto a medial sheet which both

defines the skeleton and informs the boundary of a WM tract.

The maximum or mean tensor values can be calculated along

a spoke extending perpendicularly from a point on the medial

sheet to the tract boundary. From these values, DTI metrics such

as FA can be calculated. Thus, TSA can provide FA values for

specific WM tracts while reducing noise from adjacent tracts.

A previous study from this lab comparing TBSS and TSA has

shown that in a comparison between a congenital blind group

and healthy sighted controls, TSA shows greater sensitivity

compared to TBSS in detecting subtle differences in WM (Lao

et al., 2015).

In this study, we investigate WMmicrostructure differences

between three groups: (1) pediatric brain tumor survivors who

underwent surgery only, (2) those who underwent surgery and

received chemotherapy, and (3) healthy controls, by utilizing

TSA to compare FA values across 11 major WM tracts. We seek

to further delineate neuroimaging findings from our previous

study on the same cohort, which identified clusters of lower FA

in children treated with both surgery and chemotherapy than in

those treated with surgery in the superior longitudinal fasciculus

(SLF) bilaterally and in the left uncinate fasciculus (UF) using

whole supratentorial brain voxel-wise analysis of FA (Baron

Nelson et al., 2021). In that study, we demonstrated clusters

wherein the Z-score in the difference between the two groups

being measured was greater than 2 standard deviations. These
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TABLE 1 Patient demographics by treatment group compared to controls.

Variable Treatment group p-value

Surgery (n = 15) Surgery+Chemo(n = 10) HC (n = 21)

Age – mean (SD) 10.60 (4.12) 12.50 (3.54) 10.52 (2.27) 0.26a

Age at diagnosis – mean (SD) 5.55 (3.08) 3.77 (3.36) NA 0.19a

Sex Male 4 (27%) 6 (60%) 13 (62%) 0.09b

Female 11 (73%) 4 (40%) 8 (38%)

Patient Race/ethnicity White Non-Hispanic Hispanic/Latino 13 (87%) 9 (90%) 18 (86%) Race – 0.84b Ethnicity – 0.23b

6 (46%) 3 (33%) 10 (56%)

7 (54%) 6 (67%) 8 (44%)

Black/African American 1 (7%) 0 (0%) 0 (0%)

Asian 1 (7%) 1 (10%) 3 (14%)

Diagnosis Medulloblastoma 0 (0%) 6 (60%) NA 0.0005b

Ependymoma 0 (0%) 1 (10%)

Astrocytoma 2 (14%) 0 (0%)

Pilocytic Astrocytoma 12 (80%) 2 (20%)

Other 1 (6%) 1 (10%)

Time off treatment (years) – mean (SD) 4.67 (3.29) 8.18 (4.97) NA 0.04a

Bold font indicates significant p-value (p ≤ 0.05).
atwo-sided t-test performed in STATA.
bchi-square test performed in STATA.

contiguous clusters may span several known white matter tracts

and gray matter structures. The current study zooms into 11

specific white matter structures and gray matter structures. This

allows us to localize clusters more precisely on particular tracts,

including white matter tracts which were correlated with the

location of significant clusters found in the previous study. Based

on our previous study and the findings of others, we hypothesize

that TSA will indicate a pattern of injury to the corpus callosum,

SLF, and UF in children with brain tumors compared to healthy

controls, and that those children treated with chemotherapy in

addition to surgery will have a pattern of injury that is more

widespread than children treated with surgery alone.

Materials and methods

Participants

Participant demographics and recruitment are the same

as a prior study (Baron Nelson et al., 2021). All included

participants were between 6 and 17 years old, inclusive, and

were also required to speak and read either English or Spanish.

All included patient participants had: (1) tumor location in the

posterior fossa – cerebellum or fourth ventricle, (2) complete

tumor resection with no evidence of metastasis more than 1

year after treatment, and (3) at least 1 year since the patient’s

last treatment for brain tumor. All included control participants

had no prior history of traumatic brain injury or neurological

disease. Potential participants were excluded if they met the

following criteria: (1) metal in the body, (2) preterm birth,

(3) neurodevelopmental disability, (4) traumatic brain injury,

or (5) turning 18 years old during study duration. Potential

patient participants were excluded if they had a recurrent tumor,

residual disease outside of the posterior fossa or a history

of posterior fossa syndrome. Potential control participants

were also excluded if they needed sedation for an MRI

scan. Patient demographics such as age, gender, race/ethnicity,

tumor diagnosis site and time off treatment can be found in

Table 1.

The Institutional Review Board at Children’s Hospital Los

Angeles approved this study. The Neuro-oncology database and

clinic lists were used to identify potential subjects. Recruitment

of subject families took place in clinic or by mail or phone.

Eight of 10 children (80%) in the chemotherapy

group received intensive marrow-ablative chemotherapy

followed by autologous hematopoietic stem cell transplant

(AuHSCT) with some combination of thiotepa, etoposide or

carboplatin as the conditioning regimen. Most children in the

chemotherapy group also received cisplatin, cyclophosphomide,

and vincristine.

Two subject participants from the surgery group were

excluded after pre-processing but before analysis due to

inadequate registration of the subject MRI data.

Neuroimaging

T1-weighted images were obtained on a 3.0 T Philips

Achieva scanner with voxel size 1.0 x 1.0 x 1.0 mm3 with
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parameters: TR 9.9ms; TE 4.6ms; 240 x 231 matrix; FOV

24 cm.

Diffusion Weighted Images (DWI) were acquired

using a DWI sequence totaling 11min, with parameters:

70 axial slices (2mm thick), FOV = 256mm x 256mm

x 140mm, TR/TE 8,657/86ms, no gap, with a 128x126

acquisition matrix, 28 gradient images collected with b-value =

1,500 s/mm2.

Registration and sampling

T1 and DWI data were visually inspected for major artifacts

and signal drop off. T1 images were bias field corrected using

ANTs (Avants et al., 2009), N4 BFC (Tustison et al., 2010) tool,

and manually skull-stripped in Brainsuite16 (Shattuck et al.,

2001). DW images were first visually inspected for motion

artifact, and noisy volumes were excluded. DW images were

processed through FSL’s eddy (Andersson and Sotiropoulos,

2016) for eddy current correction and subject motion correction.

DW images were skull-stripped using DSI Studio followed

by tensor estimation using FSL’s DTIFIT. Tensors were then

formatted for use with TSA with DTI-TK’s toolbox. The

generation of a dataset-specific template to create the medial

representations of white matter tracts created inconsistent

registration results, and thus we opted to use the adult template

publicly available on the DTI-TK site as the registration

target. We sequentially registered all subjects through a rigid,

affine, then non-linear registration process through the DTI-

TK toolbox to align subjects into the atlas space (Zhang

et al., 2007). The unique registration protocol within the TSA

approach first registers the 6 tensors from each subject’s full

DTI data to the 6 tensors of the template atlas space. Then,

the inverse transform is applied to the previously annotated

atlas to then transform the delineated WM tracts back into the

patient space. Each resulting registration was manually reviewed

for misregistration, especially along the outer boundaries of

WM tracts. We used the same toolbox to generate fractional

anisotropy (FA) values from the registered subject DT images.

Mean diffusivity (MD) values were also calculated and analyzed,

but no significant results were found. The FA values within

the boundaries of a WM tract were then projected onto a

thinner, sheet-like representation of the tract, which snakes

through the tract’s mid-plane. Each point on that medially

located surface held the average value of the FA values projected

onto it.

Eleven major white matter tracts available

in the standard release of the software were

tested: the corpus callosum (CC), and bilateral

cortico-spinal tracts (CST), inferior fronto-occipital

fasciculi (IFOF), inferior longitudinal fasciculi (ILF),

superior longitudinal fasciculi (SLF), and uncinate

fasciculi (UF).

Analysis

A supra-threshold statistical model was used to assess

differences in FA between patient groups and healthy controls

(Yushkevich et al., 2009). At each point on the medial surface

of the tract, a two-sample t-test was computed. An arbitrary

value t0 was used to extract clusters on the medial surface

for which their t values are less than t0. The size of the

cluster (in terms of number of points of the surface) was

then collected into a histogram. This process was repeated

10,000 times, but for each instance, the labels of the subjects

were randomly permuted. Thus, a non-parametric permutation-

based cluster analysis method (Nichols and Holmes, 2002)

was used to correct for the family-wise error rate (FWER),

considering the number of WM tracts. The threshold p-value

was set to 0.01 and the number of permutations to 10,000.

We included age at study in the general linear model in

the TSA pipeline to control for relevant confounding factors.

For quality assurance, all corrected clusters were overlaid

across each subject’s individual FA map. If the cluster aligned

outside of or along the edge of the white matter skeleton

for the majority of patients, then the cluster would be

omitted as we could not determine if the results were due to

inadequate registration.

Visualizations of the statistically significant clusters as

determined after multiple comparisons correction were created

in ParaView (Ahrens et al., 2005), an open-source data analysis

and visualization application.

Results

Demographics for the three comparison groups are shown

in Table 1. The majority of children in the surgery group

had a diagnosis of pilocytic astrocytoma, while those in the

surgery and chemotherapy group were younger at diagnosis,

were most often diagnosed with medulloblastoma, and had been

off treatment longer.

Tract specific analysis

Between the two treatment groups of children with brain

tumors (surgery vs. surgery and chemotherapy), there were

no significant FA differences in any of the 11 tracts after

correcting for multiple comparisons using the permutation-

based cluster analysis. However, we found statistically significant

group differences in four tracts (the CC, left and right CST, and

right IFOF) between the surgery group and healthy controls

(Figure 1) and in five tracts (the CC, left and right CST, right

IFOF, and left UF) between the surgery and chemotherapy group

and controls (Figure 2). In each group comparison, the red

clusters indicate areas of lower FA in the patient population in
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FIGURE 1

WM Tract Results in the Surgery vs. Healthy Control comparison.

All results displayed on a transparent glass brain. The

background tract is in blue while the clusters after multiple

comparisons correction are displayed in red. The three images,

left to right, display results in a leftward facing sagittal view,

inferior facing axial view, and rightward facing sagittal view in the

(A) Corpus callosum (CC); (B) Bilateral corticospinal tract (CST);

and (C) Right inferior frontal occipital fasciculus (right IFOF).

comparison to healthy controls. There were no clusters which

indicated higher FA in the patient population compared to

healthy controls. Extra figures which provide zoomed in images

of the largest clusters along with t-statistic color maps are

available as Supplementary material online.

Surgery vs. healthy controls

In the CC, Figure 1A, we see a large cluster in the splenium

of the CC, indicating lower FA in the surgery group compared to

healthy controls. This region contains fibers from the superior

temporal, inferior temporal and occipital areas of the brain

(Schmahmann et al., 2007). In the bilateral CST, Figure 1B, there

are small clusters toward the posterior part of the tract. The

corticospinal tract connects the motor cortex to the spinal cord

through the brainstem and thus is responsible for voluntary

movements of the limbs and trunk (Davidoff, 1990). In the right

IFOF, Figure 1C, we see clusters in the surgery group in the

posterior part of the tract. The IFOF connects all lobes of the

brain and is thought to play a key role in non-verbal semantic

cognition (Herbet et al., 2017), language and attention (Altieri

et al., 2019).

There were also small clusters found in the right inferior

longitudinal fasciculus (ILF), left IFOF, and bilateral superior

longitudinal fasciculus (SLF). However, these were omitted from

visualization and the discussion as the cluster aligned outside of

FIGURE 2

WM Tract Results in the Surgery and Chemotherapy vs. Healthy

Controls comparison. All results displayed on a transparent glass

brain. The background tract is in blue while the clusters after

multiple comparisons correction are displayed in red. The three

columns, left to right, display results in a leftward facing sagittal

view, inferior facing axial view, and rightward facing sagittal view

in the (A) Corpus callosum (CC); (B) Bilateral corticospinal tract

(CST); (C) Right inferior frontal occipital fasciculus (right IFOF);

and (D) left uncinate fasciculus (left UF).

or along the edge of the white matter skeleton for the majority

of patients, thus we could not determine if the results were due

to misregistration. No clusters were found in the left ILF or

bilateral UF.

Surgery and chemotherapy vs. healthy
controls

With visual comparison between Figures 1, 2, there are

similar findings between each of the two patient treatment

groups and healthy controls in the CC, bilateral CST and R

IFOF. Interestingly, there are results in the L UF that exist in the

surgery and chemotherapy comparison and not in the surgery

comparison. The uncinate fasciculus is a limbic fiber tract which

connects the orbitofrontal cortex to the anterior temporal lobes

and may affect memory retrieval mechanisms (Olson et al.,

2015).

As for the other four tracts, visual inspection between the

two comparisons does provide some observable differences in

cluster appearance. In the CC, both comparisons have many

clusters close to the splenium, but the results in the surgery
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vs. healthy controls comparison contain a single prominent

cluster. In the bilateral CST, both comparisons have clusters

in the posterior parts of the bilateral CST. However, the

clusters in the surgery and chemotherapy comparison appear

larger. In the R IFOF, both comparisons have clusters closer

to the posterior parts of the R IFOF, with the surgery and

chemotherapy comparison seeming to have larger clusters

compared to the surgery comparison. Despite these visual

differences between the two patient group comparisons to

healthy controls, the direct statistical tests between the surgery

and surgery and chemotherapy groups did not contain any

clusters.

There were also small clusters found in the bilateral ILF,

left IFOF, and bilateral SLF. However, these were omitted from

visualization and the discussion as the cluster aligned outside of

or along the edge of the white matter skeleton for the majority of

patients, thus we could not determine if the results were due to

misregistration. No clusters were found in the right UF.

Discussion

We examined the differences in Fractional Anisotropy (FA)

in 11majorWM tracts between two groups of pediatric posterior

fossa brain tumor survivors who had received treatment with

either surgery alone or surgery + chemotherapy as well as a

third group of healthy controls. FA provides some indication

of axonal density, organization, and degree of myelination,

which in turn may provide information about damage to white

matter structures caused by treatment (Rueckriegel et al., 2010).

Our results were calculated using a medial representation of

several tracts and a deformable shape analysis technique, Tract

Specific Analysis (TSA), which projects areas of significant WM

differences between groups onto surfaces.

There were several clusters found in the comparisons

between the children treated with surgery and healthy

controls, and between the children treated with surgery and

chemotherapy and healthy controls, even after regressing out

the age covariate. Both sets of comparisons demonstrate

significantly lower FA in patients in the corpus callosum,

bilateral CST, and right IFOF, than in healthy controls.

Comparing the surgery and chemotherapy group to controls

demonstrated an additional cluster of lower FA in the left UF.

Our findings of lower FA in children with posterior fossa

brain tumors in the CC andCST support those found in previous

studies of pediatric brain tumor survivors. In a longitudinal

study of pediatric brain tumor patients from baseline after

surgery through treatment to 36 months later, Glass et al. (2017)

utilized TBSS and reported reduced FA values in the CC andCST

of patients. However, this investigation studied children treated

with a combination of surgery, chemotherapy, and radiation

therapy. Our study shows similar findings of lower FA in these

tracts in both patient groups, indicating that WM damage to

these tracts may be attributed to the presence of a posterior

fossa mass, resulting in increased intracranial pressure and

hydrocephalus, in combination with surgical resection rather

than to cranial irradiation. Forty percent of children in the

surgery and chemotherapy group had moderate hydrocephalus

noted on MRI or CT by neuroradiologists at diagnosis as did

27% of children in the surgery treatment group. Expanded

ventricular size causes stretching and compression of white

matter tracts, resulting in axonal and blood vessel injury (Del

Bigio, 2001). Acute hydrocephalus was shown to decrease FA in

the corpus callosum, a finding that did not return to normal

values after insertion of a shunt and relieving the pressure

(Assaf et al., 2006). A study of children with posterior fossa

tumors treated with surgery found reduced FA in the cerebellum,

callosal body, corona radiata and frontal cortex (Rueckriegel

et al., 2010). Since lower FA was present in both patient groups,

we are unable to ascribe such changes to either surgery or to

chemotherapy, or even to the effects of the tumor alone.

Notably, a study of children with bone and soft tissue

tumors outside the CNS who received chemotherapy with

various agents, some of the same used in our patients (most

often cisplatin and cyclophosphamide), also reports lower FA

in the CC and CST after treatment (Sleurs et al., 2018). The

chemotherapy agents used to treat patients in this study have

neurotoxic effects, the cellular basis for which is difficult to

specify in humans. For example, in vitro, cisplatin is more

toxic to oligodendrocytes than to rapidly dividing cancer cells

(Dietrich et al., 2006). In an animal model, cisplatin, thiotepa,

and cyclophosphamide had a dose-dependent neurotoxic effect

that included dendritic swelling in the thalamus, dentate

gyrus, caudate nucleus and cortex (Rzeski et al., 2004). Such

effects at the cellular level could at least partially explain the

microstructural brain tissue changes occurring after treatment

in many pediatric brain tumor studies.

White matter loss or damage can have lasting effects on

learning and cognition. The CC plays a critical role in processing

motor, sensory, and cognitive signals from both hemispheres.

Palmer et al. (2012) and Aukema et al. (2009) found FA in

the CC to be positively associated with processing speed in

survivors of pediatric brain tumors who had been treated

with surgery, chemotherapy, and radiation. Although research

linking reduced FA in the CST to motor deficits in pediatric

brain tumor populations is sparse, studies have found an initial

decline in FA in the CST in 3 children after brain tumor

treatment (Hua et al., 2012), and in children after proton beam

irradiation (Uh et al., 2015) that recovered over time. The

IFOF is an association fiber system which connects the occipital

cortex, temporo-basal areas and superior parietal lobe to the

frontal lobe and may play a role in reading, attention, and

visual processing (Wu et al., 2016). In studies of pediatric brain

tumor survivors who received varying levels of treatment with

surgery, chemotherapy, and radiation, Aleksonis et al. (2021)

and Aukema et al. (2009) reported lower mean FA in the right
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IFOF with Aukema et al. finding a positive correlation between

mean FA and processing speed. In another study of pediatric

survivors of brain tumors treated with all three treatment

modalities, lower mean FA was reported in the bilateral UF as

well (Riggs et al., 2014).

To explore the laterality of findings with reduced FA in the

left UF in the surgery and chemotherapy group and in the right

IFOF in both patient groups, we first looked at tumor location

as a possible factor. However, half of children in the surgery

and chemotherapy group had midline tumors arising from the

fourth ventricle, while 30% were located in the right cerebellum

and 20% in the left. When combining patient groups, location

was evenly distributed, with 40% of children having tumors

arising from the fourth ventricle or cerebellar vermis, 36% in

the right cerebellum, and 24% in the left cerebellum. The lack

of a significant number of children with lateral tumor location

diminishes the likelihood of location as a factor. The area of

reduced FA in the right IFOF shown in Figure 2C is in the

most posterior region of the fasciculus and could have been very

close to the site of tumor resection. Surgical approach data were

not collected as part of this study, and it remains unclear why

damage to that tract would be unilateral.

Resection of a posterior fossa tumor results in reduced FA

in supratentorial WM tracts of the cerebello-thalamo-cortical

pathway, parts of which are quite distant from the tumor

site (Gomes et al., 2021). Law et al. (2015) studied children

with medulloblastoma treated with surgery, chemotherapy and

cranial irradiation where over 90% of tumors were located in

the midline. They also concluded that the cerebrocerebellar

pathways showed evidence of injury, more so on the left

than the right, and theorized that a right-to-left gradient of

brain maturation could explain greater vulnerability of the left

hemisphere (Kucyi et al., 2012; Law et al., 2015). This, along with

the fact that our patients treated with surgery and chemotherapy

were significantly younger at diagnosis than those treated with

surgery, may support the finding of reduced FA in the left UF in

the group of children who had a neurotoxic insult earlier in life.

The critical difference between most studies reporting on

WM microstructure in this population and our study is that

we stratified our population according to treatment type to

understand the effect that different treatments have on the

recovering and developing pediatric brain. While the studies

cited above examined the effects of all treatments and found

lower FA in the CC, CST, and IFOF, our study examined

children treated with surgery only and found similar results

in all three WM structures. These results may indicate lasting

effects on the supratentorial brain by infratentorial tumors or

resection that may be exacerbated by or at least persist through

adjuvant treatment as evidenced by our similar findings in

this study’s surgery and chemotherapy group and from other

studies on patient groups who had also been treated with cranial

irradiation. Supratentorial WM structures with projections to

the cerebellum, such as the CST, may suffer axonal degeneration

if the tumor or surgical resection damages these cerebellar

extensions. Our lack of findings in the direct comparison

between the two patient groups makes it difficult to parse out the

additive effect of chemotherapy to surgical resection. However,

our findings in the UF in the surgery and chemotherapy vs.

healthy control comparison may indicate a relationship between

chemotherapeutic agents and damage to the UF because there

are no similar significant findings in the comparison of children

treated with surgery to controls.

To reduce the regions of interest to 11 specific white matter

tracts, the continuous medial representations of the WM tracts

do not capture more distal neuronal extensions. Thus, TSA

is unable to reveal full WM connections, especially in deeper

WM structures. Additionally, the diffusion tensor model is

inherently unable to accurately describe voxels which contain

WM fibers that may cross, fan, bend, or branch and may

generate underestimated FA values in those regions (Seunarine

and Alexander, 2014). One recognized limitation of FA is the

inability to account for multiple fiber populations which thus

limits our ability to relate differences in observed diffusion

to WM characteristics such as myelination and fiber density

(Beaulieu, 2002). Thus, our future research will utilize methods

which can distinguish multiple fibers (Garyfallidis et al., 2014).

Due to our usage of the adult template during the registration

process, it is possible that some individual subject registration

results may be skewed as the distance from subject space

to template space is developmentally larger. However, each

resulting registration wasmanually reviewed formisregistration,

especially along the outer boundaries of WM tracts. Clusters

which fell along areas which were more prone to misregistration

were not included in the analysis. Additionally, the smaller

N may relate to our lack of findings between the surgery

and surgery and chemotherapy group as it is possible that FA

differences between the two may be so subtle as to require

a larger number of subjects for statistical significance. Our

findings in the UF in the surgery and chemotherapy group vs the

healthy controls but not in any other comparison may indicate

a similar subtlety between surgery and healthy controls and

between surgery and surgery and chemotherapy that was not

seen in this analysis. To control for the effects of development,

we covaried our analysis with age at time of scan. Due to

the limitation in the number of patients, we were unable to

also control for age at treatment. Finally, patients were not

matched to controls by gender, age, language, or handedness,

although 48% of controls were siblings of the participants.

These limitations as well as the small sample size of this

study make conclusive interpretations of the results difficult to

produce.

Conclusion

In conclusion, our study is the first to investigate the impact

of chemotherapy and/or surgery separately on microstructural

Frontiers inNeuroimaging 07 frontiersin.org

https://doi.org/10.3389/fnimg.2022.845609
https://www.frontiersin.org/journals/neuroimaging
https://www.frontiersin.org


Tanedo et al. 10.3389/fnimg.2022.845609

changes in the 11 majorWM tracts. Statistically significant tracts

with decreased FA in the CC, bilateral CST, and right IFOF were

observed in both groups of patients compared to their healthy

age-matched sibling controls. Decreased FA was also observed

in the UF when comparing the surgery and chemotherapy group

to healthy controls. No tracts with significant FA differences

were found between the two patient groups. Findings in the

surgery vs. control group indicate that surgical resection in

the cerebellar region, while necessary, may have effects on

the relatively distant supratentorial white matter. Our study

findings support others of children with brain tumors that

also report decreased mean FA in WM tracts. However, unlike

many previous studies, we controlled for tumor location and

stratified our dataset by treatment type (Baron Nelson et al.,

2021). Further work on this study population will include a

third patient group who received surgery, chemotherapy, and

radiation in order to further understand WM damage and

neurocognitive functioning in pediatric survivors of posterior

fossa brain tumors.
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