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The physical and clinical constraints surrounding di�usion-weighted imaging

(DWI) often limit the spatial resolution of the produced images to voxels up

to eight times larger than those of T1w images. The detailed information

contained in accessible high-resolution T1w images could help in the

synthesis of di�usion images with a greater level of detail. However, the

non-Euclidean nature of di�usion imaging hinders current deep generative

models from synthesizing physically plausible images. In this work, we propose

the first Riemannian network architecture for the direct generation of di�usion

tensors (DT) and di�usion orientation distribution functions (dODFs) from

high-resolution T1w images. Our integration of the log-Euclidean Metric

into a learning objective guarantees, unlike standard Euclidean networks,

the mathematically-valid synthesis of di�usion. Furthermore, our approach

improves the fractional anisotropy mean squared error (FA MSE) between the

synthesized di�usion and the ground-truth by more than 23% and the cosine

similarity between principal directions by almost 5% when compared to our

baselines. We validate our generated di�usion by comparing the resulting

tractograms to our expected real data. We observe similar fiber bundles with

streamlines having <3% di�erence in length, <1% di�erence in volume, and

a visually close shape. While our method is able to generate di�usion images

from structural inputs in a high-resolution space within 15 s, we acknowledge

and discuss the limits of di�usion inference solely relying on T1w images. Our

results nonetheless suggest a relationship between the high-level geometry of

the brain and its overall white matter architecture that remains to be explored.

KEYWORDS

di�usion synthesis,manifold-valueddata learning, 3D IRM, brain imaging, Riemannian

geometry

1. Introduction

Diffusion MRI is of crucial importance in multiple challenging tasks, including

the diagnosis of complex cognitive disorders (Neuner et al., 2010; Kantarci et al.,

2017; Kelly et al., 2018), the study of neurodegenerative diseases (Huang et al., 2007;

Gattellaro et al., 2009) and neurosurgical planning (Costabile et al., 2019). Nonetheless,
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diffusion-weighted imaging (DWI) suffers from a low signal-

to-noise ratio (SNR) and a poor spatial resolution arising from

physical and clinical limitations such as the use of echo-planar

imaging (EPI) and limited patient scanning time. Indeed, the

induced trade-off between image resolution, SNR and imaging

time in the acquisition of DW often results in images with voxel

size up to 8 times larger than other common modalities such as

structural T1w images, e.g., 1 mm iso. for DWI vs. 2 mm iso.

for T1w (Poot et al., 2013). Hence, it has been shown that the

increased voxel size in DW images can impair their subsequent

analysis (Alexander et al., 2001; Oouchi et al., 2007).

These limitations have triggered the development of post-

processing methods that aim to improve the spatial resolution

of low-resolution diffusion volumes. Tackling the estimation

of high-resolution (HR) diffusion from low-resolution (LR)

images was first explored with interpolation-based methods

(Arsigny et al., 2006; Dyrby et al., 2014; Yap et al., 2014).

These approaches resample existing images to a higher-

resolution grid and is nowadays a default step in diffusion

MRI processing tools such as in TractoFlow (Theaud et al.,

2020) and MRtrix3 (Tournier et al., 2019). Although fine

anatomical details can be enhanced with such technique,

interpolations will always be limited by the inherent coarseness

of the original diffusion data as they exclusively rely on

intra-image information.

Machine learning offers an effective way to leverage the

rich information contained in HR images for the synthesis of

diffusion imaging in the same resolution, thus going beyond

interpolation. In Alexander et al. (2017), a fully supervised

image quality transfer (IQT) framework using random forests

is proposed to learn a non-linear mapping between paired low-

quality and high-quality diffusion data. Similarly, in Elsaid and

Wu (2019), a supervised 2D SRCNN is used for the same

objective. The authors demonstrate that learning a mapping

from an LR input to its HR version not only helps recovering

anatomical details better than interpolation, but can also help

in downstream tasks such as tractography. However, such

approaches rely on limited high-resolution diffusion data which

are costly and challenging to acquire. Moreover, the methods in

Alexander et al. (2017) and Elsaid andWu (2019) have only been

tested on small datasets comprising a maximum of 23 subjects

and three subjects, respectively.

In parallel, deep neural networks offer unsupervised learning

techniques that only require few paired training samples to

train specific synthesis tasks. More particularly, Generative

Adversarial Networks (GANs) (Goodfellow et al., 2014) have

been successfully used for the synthesis of missing modalities

(Dar et al., 2019), image-to-image translation (Zhu et al., 2017;

Lei et al., 2019), and image super-resolution (Sánchez and

Vilaplana, 2018), just to name a few. Therefore, deep generative

models could be a key solution for the synthesis of high-

resolution diffusion from unpaired images expressing a higher

level of structural details such as T1w images, thus removing

the dependency of the algorithms to costly high-resolution

diffusion images.

The synthesis of raw DWI signals with a proper angular

resolution is a resource-intensive task. Indeed, high-angular

resolution diffusion volumes typically have a few dozen to a

few hundreds channels, each representing an acquisition in a

particular orientation. To alleviate this potential computational

burden, the direct generation of more compact diffusion

models, notably Diffusion Tensor (DT) or Orientation

Distribution Functions (ODFs) is an interesting avenue.

However, current deep learning architectures struggle to

generate such reconstruction schemes because of their non-

Euclidean nature (Huang et al., 2019). Indeed, each voxel

of a DT image lies on a Riemannian manifold of symmetric

positive definite (SPD) 3×3 matrices (Arsigny et al., 2006), and

ODFs can be represented as points on an n-Sphere manifold

S
n (Cheng et al., 2009). In the context of image synthesis,

the inability of networks to capture the underlying non-linear

Riemannian manifold geometry of the data results in the

generation of implausible images that miss the important

mathematical properties of diffusion imaging (Huang et al.,

2019). Consequently, the limitations of current deep neural

networks (DNN) have impeded the development of generative

models in diffusion imaging, which have been mostly restricted

to the synthesis of DT scalar maps such as Fractional Anisotropy

(FA) and Mean Diffusivity (MD).

1.1. Structural-to-di�usion synthesis

Amidst the literature, Gu et al. (2019) study the generation

of diffusion-derived scalar maps from downsampled structural

images. To do so, the authors use a CycleGAN to learn the

intermodal relationships between T1w images and FA/MDmaps

and successfully translate one to another. They demonstrate

that structural images share sufficient information with the

diffusion anisotropy of tissues to synthesize plausible 2D FA

and MD slices. Similarly, in Lan et al. (2021), a Self-attention

Conditional GAN (SC-GAN) is used to generate FA and MD

maps from different input modalities including structural T1w

images. Their results indicate that both the 3D contextual

information and the adversarial objective are important building

blocks for the synthesis of diffusion data. In Zhong et al. (2020),

dual GANs with a Markovian discriminator (Li and Wand,

2016) are employed for the harmonization of inter-site DT-

derived metrics. Finally, in Son et al. (2019) functional MRI

in combination with structural T1w inputs are fed to a CNN

network to generate DT. This body of work demonstrates the

potential of generative models for the structural-to-diffusion

synthesis of imaging data. Nevertheless, they remain limited (Gu

et al., 2019; Son et al., 2019; Lan et al., 2021) in not exploiting the

high-resolution information contained in the structural images

to their full extent by either considering downsampled version
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of the T1w inputs or 2D slices with limited context. In addition,

even though diffusion scalar maps are clinically useful, they

mostly ignore fiber orientations and are of limited interest for

tasks such as tractography or connectome visualization. With

regards to the generated tensors in Son et al. (2019), the authors

provide no guarantee on their mathematical validity, such as

symmetric positive definiteness, nor on their usability in a

downstream task such as tractography.

1.2. Manifold-valued data learning

Deep learning models are well suited to model data lying in

an Euclidean vector space. However, the Euclidean operations

fromwhich they are built upon, e.g., convolutions or pooling, are

not well defined on curved manifolds. Moreover, the application

of Euclidean geometry to manifold-valued data, such as DT and

ODF, has well-documented side effects (Arsigny et al., 2006).

Consequently, studies that use neural networks for the accurate

processing of data on Riemannian manifolds have started to

emerge (Brooks et al., 2019; Chakraborty et al., 2019). However,

these works require substantial modifications of known deep

learning models and call for further investigation in a broader

set of scenarios.

Another avenue for the processing of manifold-valued data

resides in the design of computationally efficient Riemannian

metrics. To that purpose, Arsigny et al. (2006) proposed a log-

Euclidean metric to process data lying on the S∗++ manifold

with applications to diffusion tensors. With the help of the

log and exp maps defined in Arsigny et al. (2006), one can

process tensors using Euclidean operations and guarantee that

the processed tensors keep their SPD properties. Likewise, a

log-Euclidean framework has also been proposed in Cheng

et al. (2009) for the computation of orientation distribution

function and applied to diffusion ODF. These two frameworks,

combined with the matrix backpropagation of spectral layers

presented in Ionescu et al. (2015), constitutes the fundamentals

of the following manifold-valued data learning approaches. For

instance, in Huang and Van Gool (2017), the authors have

integrated the log-Euclidean metric into their deep learning

model called SPDNet to learn compact and discriminative SPD

matrices. Although SPDNet offers a way to learn data on S∗++,

it has not been designed for spatially organized and volumetric

SPD matrices learning as in DT.

More recently, Huang et al. (2019) proposed a Wasserstein

GAN (WGAN) (Arjovsky et al., 2017) leveraging the log-

Euclidean metric to synthesize plausible DT, among other

manifold-valued data type. To ensure the validity of the

generated data, the authors project the output of their generator

network to an Euclidean space using the log(·) map in Arsigny

et al. (2006) prior to the discriminator assessment. The exp(·)

operation is then used on the synthesized output to recover valid

DT. Despite its ability to generatemathematically valid diffusion,

the model in Huang et al. (2019) outputs images that are not

conditioned by any real subject specific information (e.g., a T1w

image) and, thus, are less clinically valuable. In addition, this

prior work only focuses on the generation of DT in 2D, which

once again limits the value of the generated data.

1.3. Contributions

This work proposes a novel deep learning architecture that

leverages the detailed information of high-resolution structural

images to guide the synthesis of DT and ODF in the same

high-resolution space as shown in Figure 1. Based on the

CycleGAN architecture (Zhu et al., 2017), our solution exploits

the inherent cross-modality representations of structural and

diffusion images to learn functions that map one to another in

a weakly supervised manner. To do so, we address the current

limitations of deep learning models built upon Euclidean

operations by integrating a Riemannian framework, namely the

log-Euclidean framework, for statistical computations on DT

and ODF directly into the model. Such Riemannian framework

within the learning procedure of the network enforces a valid

synthesis of diffusion data that lies on a desired Riemannian

manifold. By constraining the generated diffusion to lie on

the Riemannian manifold of 3 × 3 symmetric positive definite

matrices (S3++) for DT and on the n-Sphere S
n manifold

for ODF, we guarantee the mathematical coherence of the

solution. As opposed to existing deep generative models that

focused on the generation of diffusion derived scalar maps

(Li and Wand, 2016; Gu et al., 2019; Lan et al., 2021), our

model outputs complete diffusion schemes, here the 3 × 3

DT and the spherical harmonic coefficients of ODF. This

important difference allows one to generate, within ranges

of accuracy, tractography, tractogram visualization, and fiber

bundle segmentation in addition to scalar maps computation

directly from our network output when only a T1w image is

available as input.

Specifically, our contributions are as follows:

• The first Riemannian network for the cycle-consistent

mapping between real-valued images and data lying on

both the S3++ and the Sn manifolds;

• The first deep learning model for the guided super-

resolution of DT and ODF from unpaired high-resolution

structural images and limited priors;

• A comprehensive analysis of synthesized diffusion from

structural imaging including the evaluation of full-valued

diffusion data, scalar maps and tractography.

2. Materials and methods

Let X be the real-valued domain of structural images (e.g.,

T1w) and Y be the manifold-valued domain of diffusion images
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FIGURE 1

The forward cycle of our manifold-aware CycleGAN. GY generates high-resolution DT/ODF in the log-Euclidean domain using the Riemannian

maps log(·) and exp(·). DY assesses the generated images quality and provides feedback to GY . GX tries to reconstruct the original T1w images

from log(exp(GY (x))).

FIGURE 2

An example of the inputs and outputs of the forward cycle of

our network. The HR T1w input image (first column), the real LR

di�usion (second column), the generated HR di�usion (third

column), and the recovered HR T1w image (last column) of a

test subject. During the forward cycle, an HR T1w image is

translated to an HR di�usion image at the same spatial

resolution. The original HR T1w image is then restored from the

synthesized HR di�usion image.

(e.g., DT or ODF). We aim at learning mapping functions

GY :XHR 7→ YHR and GX :YHR 7→ XHR that translate high-

resolution T1w images to high-resolution diffusion images (see

Figure 2) and the other way around. Learning such mapping

functions is typically done using training pairs (x, y) which,

in our case, correspond to HR T1w and HR diffusion data

of the same subject aligned to a common space. In practice,

obtaining this paired data is challenging as it requires subjects

to undergo multiple MRI scans. As a result, we mainly have

access to unpaired HR T1w images and LR diffusion data that,

unlike for paired examples, come from different subjects and are

acquired at different spatial resolutions. To address this problem,

we propose a Manifold-Aware CycleGAN (MA-CycleGAN)

architecture that inherently handles both the domain translation

and the super-resolution of diffusion, while accounting for the

Riemannian geometry of the data.

We train our network with unpaired training samples

{xi}
N
i=1 where xi ∈ XHR is a 3D structural image, and

{yj}
M
j=1 where yj ∈ YLR is a diffusion image (i.e., a DT or

ODF volume) in a lower spatial resolution. The mathematical

validity of the generated diffusion is ensured by enforcing the

synthesis of DT/ODF in the log-Euclidean domain using the

Riemannian maps of their corresponding data manifolds as

shown in Figure 3. Two discriminators DX and DY evaluate

the synthesized HR T1w images GX(y) and downsampled HR

diffusion images, using a learned residual function F as follows

F(GY (x)), with regards to their real data distribution GX(y) ∼

PXHR and F(GY (x)) ∼ Plog(YLR). By combining pixel-wise

reconstruction losses and higher-level adversarial feedback in

a single objective, our MA-CycleGAN is able to exploit the
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FIGURE 3

We use the log-Euclidean metrics to project the manifold-valued di�usion data to a tangent plane before processing them with Euclidean

operations. (Left) The projection of di�usion tensors from the S
3
++ manifold to the tangent plane at the isotropic tensor TId. (Right) The

projection of square-root re-parameterized ODF from the S
n manifold to the tangent plane at the uniform distribution Tu.

local tissue information and global geometry of high-resolution

structural images to produce mathematically valid diffusion data

with a higher level of detail.

In the following sections, we detail the Riemannian

frameworks embedded in our architecture for DT and

ODF learning. Moreover, we frame our cycle-consistent and

adversarial objectives incorporating both the exp and log maps

of the aforementioned Riemannian frameworks and an up-

and-down sampling strategy. Then, we present our anisotropy-

based attention mechanism that helps the network to focus on

meaningful fiber tracts information.

2.1. Riemannian framework for di�usion
tensors learning

Diffusion tensors are 3 × 3 symmetric positive-definite

matrices M that can be decomposed in a diagonal matrix 6 ∈

R
3×3 of real and positive eigenvalues λi ∈ R

+ and a matrix

U ∈ R
3×3 of corresponding eigenvectors ui ∈ R

3 using

eigendecomposition such that M = U6U⊤. The eigenvector

u1 associated with the largest eigenvalue λ1 ofM represents the

principal direction of diffusion and aligns with the underlying

fibers population. DT-derived metrics, describing the shape of

the tensor, are computed from the positive eigenvalues λ1 >

λ2 > λ3 ∈ 6. One of the most important DT-derived

metric, fractional anisotropy, measures how far the shape of

the diffusion tensor is from a sphere (i.e., how anisotropic the

diffusion is). This metric is computed as follows:

FA =

√

1

2

√

(λ1 − λ2)2 + (λ2 − λ3)2 + (λ1 − λ3)2
√

(λ21 + λ
2
2 + λ

2
3)

. (1)

Because of their SPD properties, tensors lie on a non-linear

manifold denoted as

S
3
++ =

{

M ∈ R
3×3, M = M⊤, x⊤Mx > 0, ∀x ∈ R

3,

‖x‖2 > 0
}

(2)

S3++ is not an Euclidean space, thus using standard

Euclidean operations to process statistics on diffusion tensors

can lead to undesirable effects like the swelling effect

documented in Arsigny et al. (2006). Moreover, not considering

the S3++ manifold while synthesizing DT with deep neural

network can lead to the generation of non-SPD tensors (Gao

et al., 2020). As mentioned in Pennec (2020), minimizing an

Euclidean metric in the space of SPD matrices using algorithms

like gradient descent can easily lead to non-SPD matrices.

Indeed, in the Euclidean domain, non-SPD matrices stand at a

finite distance from SPD matrices and thus, are reachable in a

finite number of optimization steps. Such non-SPD tensors are

physically incorrect and must be avoided. To accurately process

diffusion tensors, Arsigny et al. (2006) proposed a log-Euclidean

metric that enables the convenient computation of geodesic

distance between DT and that push at an infinite distance non-

SPD tensors. Consequently, optimizing in the space of this log-

Euclidean metric (i.e., in the log-Euclidean domain) guarantees

that non-SPD tensors could never be generated in a finite

amount of optimization steps.

2.1.1. Log-Euclidean metric

Diffusion tensor matrices are well defined in the log-

Euclidean metric, where a matrix logarithm and exponential can

be conveniently processed in a metric and can always be mapped

back to a valid symmetric diffusion tensor (Arsigny et al., 2006).
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Let M = U6U⊤ be the eigendecomposition of a symmetric

matrix M. The computation of the logarithm and the

exponential of a tensor noted as logId and expId are defined

as follows:

∀M ∈ S
3
++, logId(M) = U log(6)U⊤ ∈ TId (3)

∀S ∈ TId, expId(S) = U exp(6)U⊤ ∈ S
3
++ (4)

Using these definitions, the geodesic distance between two

points on theS3++ manifold, P1 and P2, can then be expressed as

dist(P1,P2) =
∥
∥ logId(P1)− logId(P2)

∥
∥
2. (5)

For more details about the definition of the matrix

backpropagation used to train our network, the reader is referred

to Ionescu et al. (2015).

2.2. Riemannian framework for ODF
learning

Orientation distribution functions, here represented as p(s),

are probability density functions modeling the diffusion of water

molecules at any point s on the 2-sphere S2. The spaceP of such

PDFs forms the set

P =
{

p : S2 → R
+ | ∀s ∈ S

2, p(s) ≥ 0;

∫

s∈S2
p(s)ds = 1

}

(6)

The constrained function space P is not a vector space

but a nonlinear differentiable manifold that, just like the

aforementioned S3++ manifold, needs to be equipped with

an efficient Riemannian metric to accurately process statistics

on it (Srivastava et al., 2007). Fortunately, PDFs can be re-

parameterized in multiple ways leading to known manifolds

with closed-form and computationally-efficient Riemannian

operations. The square-root re-parameterization of PDFs is a

particularly convenient one as it results in a unit Hilbert sphere

manifold with an L
2 metric (Srivastava et al., 2007).

2.2.1. Square root re-parameterization of ODF

With the help of the square-root re-parameterization of ODF

ψ(s) =
√

p(s),∀s ∈ S
2, the spaceψ can be viewed as the positive

orthant of a unit Hilbert sphere:

ψ =
{

ψ : S
2 → R

+ | ∀s ∈ S
2,ψ(s) ≥ 0;

∫

s∈S2
ψ2(s)ds = 1

}

(7)

where the geodesic, exponential and logarithmmaps are defined

in a closed form. Following Descoteaux et al. (2007) and Cheng

et al. (2009), ψ(s) is further represented in a compact way using

a spherical harmonic basis, as follows:

ψ(s) =
K

∑

i=1

ciBi(s) (8)

HereK is the number of orthonormal basis functions used to

representψ(s) and {Bi}i∈K is the set of spherical harmonic basis

functions as in Descoteaux et al. (2007). From this parametric

representation, an efficient log-Euclidean framework has been

proposed in Cheng et al. (2009) and is presented in Section 2.2.2.

Similarly to the FA of the diffusion tensor model, the generalized

fractional anisotropy (GFA) (Tuch, 2004) of the ODF can

be computed from the spherical harmonic coefficients as in

Equation (9) below:

GFA =

√
√
√
√1−

(c00)
∑L

k=0

∑k
m=−k(c

m
k
)2
. (9)

Here, the GFA measure how far is the ODF from the

uniform distribution.

2.2.2. Log-Euclidean metric

Given the parametric representation ofψ(s) in Equation (8),

the square root of any ODF can be expressed by its Riemannian

coordinate c = (c1, c2, . . . , cK )
⊤ and gives the probability

family PFK :

PFK =
{

p(s | c) =
( K

∑

i=1

ciBi(s)
)2

:

∫

s
p(s | c)ds =

K
∑

i=1

c2i = 1,

=

K
∑

i=1

ciBi(s) ≥ 0, ∀s ∈ S
2
}

. (10)

Following Equation (10), the parameter space PSK can be

defined as

PSK =
{

c | ‖c‖ =

K
∑

i=1

c2i = 1,
K

∑

i=1

ciBi(s) ≥ 0,∀s ∈ S
2} (11)

which is also a subset of the sphere manifold S
K−1. The

sphere, being a simple and well-studiedmanifold, makes the log-

Euclidean framework for ODFs computation straight-forward

and efficient as seen in Equations (12) and (13) below:

∀c ∈ PSK ⊂ Sk−1, logu(c) =
c− u cos9

‖c− u cos9‖2
9 ,

where9 = arcos(〈u|c〉) (12)

∀vc ∈ Tu, expu(vc) = u cos9 +
vc

‖vc‖2
sin9 ,

where9 = ‖vc‖2. (13)

Here, u is the uniform orientation distribution function

defined as u = (1, 0, . . . , 0). We use the maps in Equations

(12) and (13) to accurately learn ODFs and ensure their validity

throughout the training process. Furthermore, the log-Euclidean

framework offers a simple geodesic estimation between two

parameterized ODFs p( · | c) and p( · | c′) as follows:

dist
(

p( · | c), p( · | c′)
)

=
∥
∥logu(c)− logu(c

′)
∥
∥
2 . (14)
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FIGURE 4

The architecture of our residual downsampling function F used to reduce the resolution of our synthesized HR di�usion before DY assessment.

2.3. Adversarial training

In a standard GAN setup as in Goodfellow et al. (2014),

a generator network G tries to generate samples so close to

the true data distribution that a discriminator network D is

unable to distinguish between real and fake examples. Following

the CycleGAN architecture, our method uses two generators

and two discriminators denoted as GX ,GY ,DX , and DY . Here,

GX takes as input a batch of LR diffusion volumes in the log-

Euclidean domain that have been upsampled, using trilinear

interpolation, to the spatial resolution of the target HR T1w

images (i.e., 0.7 mm3 voxels). GX tries to fool DX by generating

realistic high-resolution T1w volumes that are indistinguishable

from real HR T1w images. Similarly, GY takes HR T1w volumes

as input and tries to generate plausible diffusion volumes in the

log-Euclidean domain at the same level of details.

Because we only have access to real LR diffusion data,

the synthesized HR diffusion is downsampled using a learned

residual function F prior to DY ’s assessment as shown

in Figure 4. Our adversarial objectives follow the LSGAN

formulation in Mao et al. (2017) and are expressed as follows:

min
DY

LLSGAN(GY ,DY ,XHR,YLR) =

1
2 Ey∼PYLR

[

(DY (log(y))− 1)2
]

+ 1
2 Ex∼PXHR

[

(DY (F(GY (x))))
2] (15)

min
DX

LLSGAN(GX ,DX ,YLR,XHR) =

1
2 Ex∼PXHR

[

(DX(x)− 1)2
]

+ 1
2 Ey∼PYLR

[

(DX(GX(↑ log(y))))
2] (16)

where ↑ represents trilinear upsampling and log is the logarithm

map defined in either Equation (3) or Equation (12) depending

on the diffusion model that is synthesized. It should be noted

that both the upsampling of the real data and the discriminator

evaluation of the generated diffusion information are performed

in the log-Euclidean domain to account for the underlying

data manifold.

2.4. Cycle-consistency loss

The adversarial losses alone are not sufficient to drive

the generation of HR diffusion. Indeed, DY only evaluates

downsampled diffusion volumes and, thus, cannot help GY

improving beyond a certain precision level. Therefore, the

cycle-consistency loss denoted in Equation (17) not only helps

ensuring the structural coherence of the synthesized images

across modalities, but also provides important high-resolution

gradients to train GY .

Our cycle-consistency loss is three-fold: (1) the error

between the original HR structural volume x and the

reconstructed volume GX(GY (x)), (2) the error between the

upsampled diffusion↑log(y) and its HR reconstructionGY
(

GX(↑

log(y))
)

, and (3) the error between the original LR diffusion y

and the downsampled recovered volume F
(

GY
(

GX(↑ log(y))
))

.

Combining these in a single loss gives

Lcyc(GY ,GX) = λcycX Ex∼PXHR

[ ∥
∥GX(GY (x)) − x

∥
∥
1

]

︸ ︷︷ ︸

Forward Cycle HR

+ 1
2λcycY Ey∼PYLR

[ ∥
∥GY

(

GX(↑ log(y))
)

− ↑ log(y)
∥
∥
1

]

︸ ︷︷ ︸

Backward Cycle HR

+ 1
2λcycY Ey∼PYLR

[ ∥
∥F

(

GY

(

GX(↑ log(y))
))

− log(y)
∥
∥
1

]

︸ ︷︷ ︸

Backward Cycle LR

(17)

We employ the ℓ1 norm in Equation (17) to measure both

the forward and backward cycle reconstruction errors, as it is

less sensitive to large errors than the ℓ2 norm (Zhao et al.,

2016). Again, the log map is used to project the generated

and the real manifold-valued data onto a tangent plane before

computing the cycle-consistency loss. This projection enables
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FIGURE 5

(Left) Our forward cycle: A T1w image is translated to a high-resolution DT on the S
3
++ manifold and back to the T1w domain where the cycle

consistent loss is computed. (Right) Our backward cycle: An upsampled DT on TId is translated to the T1w domain and back to TId where the

cycle consistent loss is computed.

the accurate computation of the distance between each DT/ODF

of the synthesized and real diffusion volumes and ensures the

mathematical validity of the synthesized images during training.

Indeed, a DT/ODF in the log-Euclidean domain can always

be mapped back to a mathematically valid DT/ODF using

the Riemannian exp(·) map of their respective Riemannian

framework (see Sections 2.1 and 2.2). Furthermore, two

parameters λcycX and λcycY control the contribution of both

cycles and have been empirically tuned to compensate for the

difference in the scale of the different terms of the loss (i.e., more

weight was given to the smaller loss terms). Full cycles, including

the manifold mappings and the loss computation in the tangent

plane, are illustrated in Figure 5.

2.5. Image prior regularization

By using a cycle-consistency loss in both directions, the

CycleGAN model is able to learn a bijective mapping between

two domains using unpaired examples (Zhu et al., 2017).

However, for many cross-domain translation problems, the

solution space is extremely large and the model does not

necessarily converge to a solution that satisfies important

domain-specific properties (Lu et al., 2019). This is problematic,

especially in the case of medical images synthesis where

the generated images must not only be realistic from the

discriminator’s point of view, but also be faithful to expected

results of the downstream tasks and known anatomical

properties. Thus, to ensure the model’s convergence toward

plausible solutions, we introduce a prior loss as follows:

Lprior(GY ,GX) = λpriorYEx∼PXHR ,y∼PYLR
[ ∥
∥GY (xi)− ↑ log(yi)

∥
∥
1

]

+ λpriorXEx∼PXHR ,y∼PYLR

[ ∥
∥GX(↑ log(yi)) − xi

∥
∥
1

]

(18)

where xi and yi are paired volumes (i.e., HR T1w volumes

and aligned and upsampled diffusion volumes of the same

subjects) taken from a limited number of subjects. With this loss,

the super-resolved diffusion stays close to the real upsampled

diffusion while integrating high-frequency elements from the

HR structural images.

2.6. Di�usion anisotropy weighted loss

Voxels expressing fiber tracts information typically have

higher FA values than those representing other tissues like gray

matter (GM) or cerebrospinal fluid (CSF). Therefore, we would

like our diffusion synthesis method to be particularly accurate

in regions with higher fractional anisotropy. However, as seen in

Figure 6, voxels with high FA are underrepresented compared to

those with lower values. Consequently, this imbalance problem

drives the network’s generation toward diffusion with FA close

to the mean. To alleviate this issue, we weight the diffusion error

in Lcyc and Lprior by the FA/GFA of the target volume at every

voxel. The benefit of such mechanism can be observed on the

density plots at the bottom of Figure 6 which clearly exhibit a

more faithful FA distribution when using the proposed diffusion

anisotropy weighting scheme.

2.7. Full objective

Combining all loss terms, our full objective function is

given by

L = −LLSGAN(GX ,DX ,YLR,XHR)

− LLSGAN(GY ,DY ,XHR,YLR)

+ Lcyc(GY ,GX) + Lprior(GY ,GX) (19)
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FIGURE 6

(Left) A typical FA distribution of a randomly selected subject. (Right) The comparison of the real FA (blue) and the generated FA (orange)

distribution density of the same subject with and without di�usion anisotropy weighted loss.

As in standard adversarial learning approaches, we train the

generators and discriminators concurrently by solving a mini-

max problem:

G∗
X ,G

∗
Y = arg min

GX ,GY

max
DX ,DY

L(GX ,GY ,DX ,DY ) (20)

Hence, Equation (19) combines the error feedback from

both the HR structural images and the LR diffusion in an

adversarial and voxel-wise manner.

3. Results

3.1. Data and pre-processing

We employ the T1w and diffusion MRI data of 1,065

subjects from the HCP1200 release of the Human Connectome

Project (Van Essen et al., 2013) to evaluate our manifold-aware

CycleGAN. The T1w (0.7 mm3 voxels, FOV = 224 mm, matrix

= 320, 256 sagittal slices in a single slab) and diffusion (1.25

mm3 voxels, sequence = Spin-echo EPI, repetition time (TR)

= 5,520 ms, echo time (TE) = 89.5 ms) data were acquired

with a Siemens Skyra 3T scanner (Sotiropoulos et al., 2013) and

minimally processed following (Glasser et al., 2013).

Diffusion tensors were fitted using the DSI Studio toolbox

software (Jiang et al., 2006) and the dODFs estimated using the

constant solid angle (CSA) method (Aganj et al., 2010) from

the DIPY library (Garyfallidis et al., 2014). Diffusion ODFs

were then re-parameterized following Section 2.2.1 and further

estimated using 4th order spherical harmonics (Descoteaux

et al., 2007). Both the DT and the ODF volumes were

transformed to the log-Euclidean domain using their respective

Riemannian framework described in Section 2. Once in the

log-Euclidean domain, these volumes were upsampled to the

T1w spatial resolution using trilinear interpolation and aligned

to their corresponding HR T1w images. In experiments, we

consider these upsampled and aligned diffusion volumes as the

“ground truth” HR diffusion. Indeed, we do not have access

to real diffusion volumes in the same spatial resolution as the

T1w images (i.e., 0.7 mm3 voxels) therefore, we consider the

upsampled diffusion volumes as the gold standard. Even though

the upsampled diffusion volumes are not as informative as real

HR diffusion volumes, they still represent a valid and valuable

target objective. For instance, the upsampling of diffusion

volumes is nowadays a default step in MRI processing tools such

as in TractoFlow (Theaud et al., 2020) and MRtrix3 (Tournier

et al., 2019). The T1w images have been rescaled to the [0,1]

range by min-max normalization. Finally, both the structural

and the diffusion volumes, in high and low-resolution, were

decomposed in overlapping patches of 323 and 183 voxels,

respectively. Volumes are processed patch-wise by our model

for two important reasons: (1) limiting the memory required by

the model to compute network activations and outputs, and (2)

increasing the amount of training examples.

3.2. Implementation details

Our two generator networks, GX and GY , follow the U-Net

implementation in Çiçek et al. (2016) where the last activation

layer has been replaced to fit the different output data scale. In

all the experiments, we used a sigmoid in GX to generate T1w

images within the [0, 1] range. For the generation of diffusion,

the last activation function of GY varies depending on the

generated diffusion model. For the generation of DT, we used a
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hard hyperbolic tangent function and for the generation of ODF,

a tanh activation.

Moreover, we set the amount of input and output channels

of our networks according to our input and output data shape.

The DT inputs are of shape 9 × 32 × 32 × 32, where the nine

channels represent the flattened 3 × 3 diffusion tensors at every

voxel. The ODF inputs are of shape C × 32 × 32 × 32 where

C depends on the order of the spherical harmonic basis that is

used to represent them. Due to limitations on computational

resources, we estimated the diffusion ODFs using 4th order

spherical harmonics, yielding a total of C = 15 coefficients.

Our discriminator networks DX and DY follow the SRGAN

discriminator architecture in Ledig et al. (2017) where we

replaced the 2D convolutions by 3D ones. Furthermore, we

reduced the number of feature maps in convolution layers to 32,

64, 128, and 256 as suggested in Sánchez and Vilaplana (2018)

for volumetric data. In all scenarios, DX assesses T1w volumes

of shape 1 × 32 × 32 × 32 while DY takes as inputs volumes of

shape 9× 18× 18× 18 for DT and 15× 18× 18× 18 for ODFs.

3.3. Training setup

To train our network, we randomly selected 70% (746

subjects) of the 1,065 subjects for training, 20% (213 subjects)

for validation and 10% (106 subjects) for testing. From the 746

training subjects, we kept aside 50 subjects as paired priors in

Equation (18) and split the remaining 696 subjects into two

groups of 348 subjects. To form our unpaired training set, we

sampled 50,000 patches from the diffusion images of the first

group of 348 training subjects and 50,000 patches from the T1w

images of the second group of 348 training subjects. The same

number of patches (50,000) was selected from our 50 subjects

kept as paired priors, i.e., aligned HR T1w and upsampled

diffusion. For the validation and test sets, we randomly selected

10,000 paired patches from validation subjects and 5,000 paired

patches from test subjects.

We trained the networks using an Adam optimizer (Kingma

and Ba, 2015) with a learning rate of 10−4 and beta1, beta2

values of 0.5 and 0.999. Hyper-parameters λpriorX , λpriorY , λcycX
and λcycY were set to 10, 0.5, 5, and 0.25. Furthermore, we used

a reduce on plateau learning rate scheduler with a patience of

10 epochs and a factor of 10. Batches of eight patches were used

and the models were trained for 35 epochs (∼ 220k steps) on an

NVIDIATITANXPGPUwith 12GB of VRAM.All experiments

were repeated three times with a different initialization seed.

3.4. Baselines

As mentioned before, deep learning models for the

synthesis of manifold-valued data are just starting to emerge.

Consequently, the number of baselines for the task of

diffusion synthesis from structural imaging that require minimal

adaptation to evaluate our model is limited. Nevertheless, we

compare our model to the three approaches described below.

3.4.1. Manifold-aware WGAN

Our first baseline is an adaptation of the manifold-aware

WGAN presented in Huang et al. (2019) for the conditional

generation of diffusion from structural T1w images. This

method denoted as “MA-WGAN” in our results, can generate

plausible manifold-valued images by incorporating the log-

Euclidean maps within the network and therefore provides a

natural point of comparison for our method. For this baseline,

we use the same generator GY and discriminator DY as

in our proposed model. The manifold mapping used in the

network is changed according to the generated diffusion scheme

following Section 2.

3.4.2. Manifold-aware U-Net

We also compare our method to a supervised U-Net

model. For this baseline, we use the same generator as in

our own architecture, i.e., GY (Çiçek et al., 2016), but train it

in a supervised manner with paired HR T1w and upsampled

diffusion volumes in the log-Euclidean domain. Similar to the

MA-WGAN baseline, we change the manifold mapping of the

network according to the generated diffusion reconstruction

scheme (DT or ODF). This baseline, denoted as “MA-U-Net”

in results, helps us measure the effect of our adversarial and

cycle-consistent losses.

3.4.3. U-Net

Our last baseline is a standard supervised U-Net (Çiçek

et al., 2016) trained with paired HR T1w images and upsampled

diffusion without manifold-awareness. With this method, we

aim at measuring the performance gain of our method induced

by both the manifold-mapping and the use of additional

unpaired samples. In addition, we validate that manifold-

awareness is necessary to synthesize realistic samples strictly

lying on the data manifold.

One should note that we are using the same generator

network architecture (Çiçek et al., 2016) in all baselines so that

they have comparable inference latency (i.e., 9.32±0.26 s) for the

translation of a T1w volume to a DTI volume and 11.73 ± 0.32

s for the translation to ODF) and the exact same amount of

parameters at inference (16.32 M for DTI synthesis and 16.33

M for ODF).

3.5. DT and ODF synthesis

We first test our network and baselines for the task of DT

and diffusion ODF synthesis. In this setup, we train our network

with unpaired HR T1w patches and LR diffusion patches in the
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log-Euclidean domain. Moreover, we use a paired training set of

50,000 patches from 50 randomly chosen subjects. The paired

training set is used as prior for our method and as the training

set for our baselines. Hence, both our method and baselines are

trained with the same amount of paired information.

3.5.1. Evaluation metrics

Three metrics were considered to quantitatively evaluate

the generated diffusion. First, we use the cosine similarity to

compare the principal fiber orientation of every synthesized

tensor and ODF to their expected real orientation:

similarity(a, b) =

∣
∣
∣
∣

a · b

‖a‖ ‖b‖

∣
∣
∣
∣

(21)

To retrieve the main orientation of the ODF, we first

calculate the spherical coordinates at which the value of the ODF

is maximum using a discretized sphere of 724 vertices. We then

convert these spherical coordinates to Euclidean coordinates

to obtain their principal orientation vector. For DT, the main

orientation is given by the eigenvector associated with the largest

eigenvalue of the DT as described in Section 2.1.

In addition, we compare the generated and real diffusion

with the mean square error (MSE) between their FA/GFA. The

FA and GFA are computed following Equations (1) and (9).

This help evaluating the shape of the synthesized DT/ODF

independently of their orientation.

Finally, we measure the mean geodesic distance using

Equation (5) for DT and Equation (14) for ODF between our

generated data and the real diffusion. This latter metric encode

both the orientation and the shape error in a single measure.

3.6. Tractography

To further assess the integrity of the synthesized diffusion

volumes by the proposed method, we performed whole-

brain tractography on both the real and the generated

data, and segmented the resulting tractograms into bundles.

We then posed the tractograms generated on real data as

ground truth and extracted quantitative measures from whole-

brain tractograms. Likewise, we segmented bundles to better

appreciate the differences between the tractograms produced

using real diffusion and generated diffusion from structural

inputs. In the following subsections, we describe each step of

the analysis.

3.6.1. Streamlines generation and bundling

Tracking was performed using the EuDX

algorithm (Garyfallidis, 2013) with a step-size of 0.5mm.

A maximum angle of 60◦ was used between steps, using the

principal direction of the diffusion tensor and maxima of

ODF. Maxima were extracted from the ODF using scilpy.

Seeding was done at two seeds per voxel on the whole

white-matter mask, which was computed from the ground-

truth T1w image using Dipy (Garyfallidis et al., 2014).

Streamlines with a length below 10mm or above 300mm were

discarded. Whole brain tractograms were then segmented

using RecobundlesX (Garyfallidis et al., 2018), using 80 bundles

from Yeh et al. (2018) as reference. To allow for a more robust

comparison, and because initial streamline points placement

depends on randomness which may have an impact on the

reconstructed streamlines, tracking was performed five times

with different random seeds on each volume.

3.6.2. Streamlines assessment

The similarity between the streamlines reconstructed from

the real and generated diffusion volumes is assessed using three

measures: streamline length, bundle volume and bundle shape.

First, we compare the streamline length (in mm) between all

real and synthesized whole-brain tractograms, as well as each

segmented bundle. We also compare the volume occupied

by the whole-brain tractograms and bundles in a voxel-wise

matter. Furthermore, the shape similarity of reconstructed

tractograms is measured by their voxel-wise Dice, overlap (OL)

and overreach (OR). The OL, defined as

OL =
|B ∩ A|

|A|
, (22)

where A, B are binary bundle masks, quantifies how much the

volume of bundle A is reconstructed by bundle B. The OR,

expressed as

OR =
|B ∪ A| − |B ∩ A|

|A|
, (23)

evaluates how much of bundle B goes over bundle A. Segmented

bundles were merged to allow for pairwise comparison between

real and generated data. Merged bundles with fewer than 100

streamlines were discarded from the analysis. To evaluate the

overall reconstruction quality, we also report Dice, OL and OR

between the reconstructed tractograms from the real and the

generated diffusion.

Figure 7 presents some of the reconstructed bundles from

real and synthesized data.

3.7. Di�usion synthesis analysis

As reported in Table 1, our model yields a mean cosine

similarity of 0.8648 ± 5.5× 10−3 and 0.8846 ± 4.4× 10−3 in

voxels with FA ≥ 0.2 for DT and ODF, respectively. In voxels

with FA ≥ 0.5, a mean cosine similarity of 0.9167 ± 3.2× 10−3

is reached for DT and 0.9425 ± 1.4× 10−4 for ODF. This
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corresponds to FA MSE values of 0.0089 ± 1.5× 10−3 and

0.0159 ± 1.4× 10−4 for DT and GFA MSE values of 0.0229

± 2.8× 10−4 and 0.0614± 1.3× 10−3 for ODF.

As a point of comparison, we also give in Table 1 the

performance of our baselines when they are trained with the

same 50 paired subjects. As can be seen, the proposed model

obtains the highest performance for all metrics when trained

on DT images, as well as better geodesic and fiber orientation

estimation than baselines when trained on ODF.

Compared to the fully-supervised U-Net, which does

not enforce manifold consistency on the output, our model

improves FAMSE by 23.14%, mean geodesic distance by 81.11%

and mean cosine similarity by 4.23% for regions with FA ≥ 0.5

for DT. This shows the benefit of imposing manifold-awareness

constraints on the network’s output. Without these constraints,

U-Net generates an average of 3,843.5± 481.22 non-SPD tensors

and 1,559.7 ± 122.3 non-PDF ODF. Our model also provides

statistically better performance, for both DT and ODF data,

FIGURE 7

Visualization of three segmented bundles from real and

synthesized tractograms. (Left) Left Corticospinal Tract (CST),

Arcuate Fasciculus (AF), and Inferior Longitudinal Fasciculus (ILF)

segmented from real and generated DT data. (Right) Left CST,

AF, and ILF segmented from real and synthesized ODF data.

on the mean cosine similarity and mean geodesic distance

compared to MA-U-Net (paired t-test p < 0.05), that does not

include cycle-consistency and is only trained with paired data.

Improvements are particularly important for voxels with

FA ≥ 0.5, where our method obtains a 3.43% higher mean

cosine similarity, 11.19% lower geodesic and 13.58% better FA

MSE for DT and 4.18% higher mean cosine similarity for ODF.

This demonstrates the impact of our anisotropy-weighted loss

described in Section 2.6, which gives more importance to voxels

with higher anisotropy values.

Our results can be further appreciated in Figure 8, where

we report the FA and cosine error yielded by our method and

baselines on a sagittal, axial and coronal slice of a randomly

chosen test subject. We see that our network is able to

recover most of the fibers orientation, especially in regions with

typically higher FA/GFA like the corpus callosum. Moreover, the

estimated FA/GFA is generally faithful to the real data except in

the corticospinal tract where the error is higher.

Finally, as a qualitative evaluation, we compare in Figure 9

the generated color encoded FA of compared methods. From

this figure, we can see how our cycle-consistent and prior

losses help our model converging toward plausible solutions

better than baselines, especially compared to the MA-WGAN

that only relies on an adversarial objective. We also observe a

visually more faithful orientations estimation by our method

in the splenium of the corpus callosum and in the pons. In

Figure 10, we compare the real GFA map of a test subject to

the generated maps by the tested methods. We also compare

the real and synthesized GFA maps to the associated HR T1w

image of this said subject. It can be seen from Figure 10 that

our method generates GFA maps that are more consistent

with the real HR T1w image of the subject while visually

reducing boundary artifacts. Our method also seems to recover

fine anatomical details that are present in the HR T1w but

not in the real diffusion. Indeed, the GFA maps generated by

TABLE 1 The fractional anisotropy mean squared error (FA MSE), geodesic, and cosine similarity between the principal orientations obtained by the

di�erent compared methods when trained with 50 paired subjects.

Method No. of parameters

FA∗ MSE Geodesic Cosine similarity

FA∗ ≥ 0.2 FA∗ ≥ 0.5 FA∗ ≥ 0.2 FA∗ ≥ 0.5 FA∗ ≥ 0.2 FA∗ ≥ 0.5

DT

U-Net 16.32 M 0.0100 0.0207 2.2559 2.5457 0.8266 0.8795

MA-WGAN 17.19 M 0.0294 0.0781 0.7791 1.046 0.5724 0.6246

MA-U-Net 16.32 M 0.0088 0.0184 0.3947 0.5415 0.8288 0.8863

Ours 34.36 M 0.0089 0.0159 0.3531 0.4809 0.8648 0.9167

ODF

U-Net 16.33M 0.0220 0.0559 0.3639 0.6299 0.8702 0.9045

MA-WGAN 17.21 M 0.0443 0.1173 0.5351 0.9121 0.6823 0.7278

MA-U-Net 16.33 M 0.0219 0.0563 0.3611 0.6249 0.8710 0.9047

Ours 34.4 M 0.0229 0.06145 0.3467 0.6238 0.8846 0.9425

Since the metrics are more relevant in regions that typically encode fibers information, we report them at increasing FA thresholds of 0.2 and 0.5.

*FA is used for DT and GFA for ODF. The bold values represent the best results.
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FIGURE 8

FA MAE and cosine distance on the sagittal, coronal and axial slices between the generated HR di�usion by the compared methods and the

interpolated ground-truth of a random test subject. A lower FA MAE indicates a more faithful estimation of the DT/ODF shape, while a lower

cos. distance indicates a better estimation of their principal orientation.

FIGURE 9

Comparison of the color FA of the generated di�usion of compared methods on a sagittal, axial, and coronal slice of a random test subject.
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FIGURE 10

GFA of the real low-resolution di�usion (first column), the real upsampled di�usion (second column) and the generated di�usion of the

compared methods. One can notice the ability of our network to recover fine anatomical details that are clearly visible in the HR T1w image but

not in the original di�usion.

our method exhibit sharper edges and better tissue delineation

particularly at the bottom of the coronal slice where the real

diffusion may lack details. In Figure 11, we compare the ODFs

produced by our method and baselines in a region with crossing

fibers. One can see that our method generates ODFs that

smoothly transition between orientations and plausible crossing

estimation. While all the compared methods are able to recover

crossing fibers patterns, MA-WGAN seems to generates more

of them. However, most of the generated crossing fibers by

MA-WGAN can’t be found in the real diffusion and their

orientation are most of the time far from the ground-truth

orientation as shown by the low cosine similarity reported

in Table 1.

3.8. Streamlines length and volume

We can observe from the results that reconstructed whole

brain tractograms are very similar in size, but that individual

bundles segmented from synthesized data tend to be shorter.

Indeed, looking at the mean bundle lengths and volumes

reported in Table 2, it can be seen that bundles segmented from

the generated DT/ODF tractograms are, respectively 14.98 and

2.32% shorter than real data. Nonetheless, generated ODFs tend

to produce bundles that are slightly more voluminous withmean

volume of ∼24,408 voxels compared to ∼24,210. In addition,

we detail in Figure 12 the mean streamline length (in mm)

for each segmented bundles. While some bundles were only

segmented on the real data or the generated data (IFOF vs. TPT,

for example), we can observe that the bundles recovered in both

cases exhibit similar statistics.

3.9. Streamlines shape

Despite their similarity in length and volume, the space

occupied by the segmented bundles from real and generated

data may vary. This disparity can be observed in Figure 7

where we compare three real and generated segmented

bundles. Furthermore, we observe a high inter-bundle metrics

performance variability. For instance, bundles such as the

Frontal Aslant Tract (FAT), Frontopontine (FPT), and Vertical

Occipital Fasciculus (VOF) reach a high agreement (i.e., Dice,

OL and OR close to 1) whereas the Superior Cerebellar Peduncle

(SCP) and Occipitopontine Tract (OPT) are hardly matched.

This high inter-bundle variability can be appreciated in Table 3

where we note the mean Dice, OL and OR and their standard

deviation for all segmented bundles.
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FIGURE 11

Qualitative comparison of the generated ODF by the compared methods. (First row) The color encoded GFA of a coronal slice of a test subject.

(Second row) The generated ODF and GFA in a region with crossing fibers. (Third row) A close-up look of the generated ODF and GFA. (Fourth

row) A close-up look at the ODF peaks. While all the compared methods are able to recover some crossing fibers, MA-WGAN seems to generate

more of them, most of which are not present in the real di�usion ground-truth.

TABLE 2 Measures on the real and generated segmented bundles

from tractography.

Real Generated

(mean ± std) (mean ± std)

DT Length (mm) 99.99± 54.37 85.01± 50.02

Volume (voxels) 15963.62± 24199.55 14119.52± 24274.11

ODF Length (mm) 120.94± 72.29 118.13± 71.57

Volume (voxels) 24210.36± 42082.48 24408.78± 44255.32

From Table 3, we can see that the segmented bundles from

the generated ODF are more faithful to their real counterpart

than DT with a mean Dice of 0.54 ± 0.24, a mean OL of 0.42 ±

0.19 and a mean OR of 1.23± 0.58.

More figures comparing the volume (in voxels) and the

shape of each segmented bundles from real and generated

diffusion can be found in the Supplementary materials of

the manuscript.

4. Discussion

In this work, we propose a novel Riemannian deep learning

architecture for the synthesis of 3D manifold-valued data and

have tested its performance on two tasks: (1) the generation

of diffusion tensors (DTs) and (2) the generation of diffusion

orientation diffusion functions (ODFs). Specifically, we have

explored the feasibility of generating high-resolution DT and

ODF from high-resolution structural T1w images and unpaired

LR diffusion. We demonstrate that a standard model relying

on Euclidean operations fails to capture the geometry of
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FIGURE 12

Mean streamline length (in mm) for the segmented bundles from DT tractography (top) and ODF tractography (bottom).

the diffusion data manifold which leads to the estimation of

physically incorrect diffusion (i.e., 3,843.5 ± 481.22 non-SPD

tensors and 1,559.7 ± 122.3 non-PDF ODF on average). To

alleviate this issue, we have built a framework on top of recent

advances in manifold-valued data processing and Riemannian

geometry (Arsigny et al., 2006; Cheng et al., 2009; Huang

et al., 2019) to ensure the validity of the generated diffusion.

We have evaluated the generated volumes properties using

mean squared errors of FA/GFA maps, geodesic distances and

cosine similarities between real and predicted principal fiber

orientation. To further evaluate the integrity of the synthesized

diffusion in a typical diffusion application, we have performed

tractography and assessed the lengths, volumes and shapes of

resulting tractrograms and segmented bundles.

4.1. Structural-to-di�usion synthesis
performance

The generation of DT/ODF solely relying on a T1w image

is an ill-posed problem for which a single T1w intensity

can correspond to several fiber arrangements. However, by

providing the contextual information required for the network

to localize the structural input, we observe that strong fiber

patterns can successfully be recovered by our method and

TABLE 3 Average metrics from the bundle shape comparison between

real and synthesized data.

Dice OL OR

(mean ± std) (mean ± std) (mean ±

std)

DT 0.46± 0.24 0.38± 0.21 1.36± 0.86

ODF 0.54± 0.24 0.42± 0.19 1.23± 0.58

baselines. Hence, it is reasonable to say that there exists a

relationship between the high-level geometry of the brain and its

underlying fibers organization. This seems to be particularly true

in regions of higher anisotropy where fiber tracts are strongly

organized. As a result, we observed a better estimation of the

principal fibers orientation in regions with higher FA/GFA and

a generally poor estimation of the principal orientations in

regions with a more chaotic distribution of orientations like in

the ventricles.

Using HR structural images to drive the synthesize of

diffusion can help recovering some fine anatomical details and

sharp edges. By leveraging the detailed information contained

in HR structural images, our network is not limited by the

coarseness of the low-resolution input diffusion signal such as in
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interpolation-based methods. This transfer of information from

HR to LR images is enforced by our cycle-consistency loss that

preserves a high structural coherence between the HR structural

inputs and the generated diffusion. In addition, our adversarial

and prior loss help recovering plausible fiber patterns better than

our baselines by leveraging unpaired examples of real diffusion.

Furthermore, the manifold-awareness yields on-par or

better metrics when compared with equivalent Euclidean

architectures. The manifold-awareness, however, comes

with the benefit of ensuring the mathematical properties

of the synthesized diffusion regardless of the amount of

network training.

4.2. Tractography performance

4.2.1. DT vs. ODF

We observe from Table 2 that bundles segmented from ODF

tractography tend to be longer and more voluminous which

is usually an expected behavior. While a thorough comparison

between DT and ODF tractography is out-of-scope for this work

(c.f. Farquharson et al., 2013; Thomas et al., 2014; Jeurissen et al.,

2019), we can nevertheless appreciate that the synthesized DT

and ODF behave in a manner similar to their real counterparts

in the context of tractography.

Moreover, we observed that the bundles segmented from

ODF tractography have a higher mean Dice, higher overlap and

lower overreach than bundles segmented fromDT tractography.

Since the same algorithm was used to perform tractography

on both datasets, the main difference is that DT tractography

makes use of a single direction while ODF tractography may

use multiple local maxima to propagate streamlines. As such,

the lower discrepancies in ODF bundle shapes can be explained

by the multiple directions used in tractography compensating

for local errors. At the opposite, DT tractography is known

to be sensitive to local estimation error (Huang et al., 2004).

This sensitivity, which often lead to the early termination

or to the switch to a wrong adjacent tract of the tracking

algorithm (Jeurissen et al., 2019), can greatly affect the final

tractograms shape.

4.2.2. Bundle shape analysis

Since DT/ODF synthesis studies are still few, it is hard to

provide a definitive conclusion on the quality of the streamlines

generated on synthesized data. However, we observe that whole

brain tractograms have a similar streamline length, occupy the

same number of voxels and have the same shape. Segmented

bundles, if extracted from both real and generated data, also tend

to exhibit the same average length and volume.

While the reported bundle shape metrics might seem to

indicate a poor correspondence between bundles generated

from real and synthesized data, it should be noted that bundle

segmentation is a highly variable operation. For example,

Rheault et al. (2020), which analyzed the reproducibility of

the segmentation of a single bundle reports a median Dice

scores around 0.77 for intra-rater reproducibility, 0.65 for inter-

rater reproducibility and 0.8 for reproducibility with a gold

standard. In a similar manner, Schilling et al. (2021) analyzed

the variability in the segmentation of 14 bundles between 42

groups using both manual and automatic segmentation. While

few actual metrics are reported, figures indicate a generally

low Dice score, as well as a high variability in bundle volume

and streamline length for inter-protocol responsibility. Analysis

for specific pathways report Dice scores between 0.4 and 0.6

for inter-protocol and inter-subject reproducibility and Dice

scores between 0.6 and 0.8 for intra-protocol reproducibility.

As such, we can theorize that the reported Dice scores in the

present work could be impacted by the inherent variability in

the segmentation process.

5. Limitations

Our work has shown that the optimization of log-Euclidean

metrics in diffusion tensors and ODFs indeed reduces the

diffusion synthesis error within a local region, typically within

a patch, but does not take into account global information

at higher levels such as the global brain connectivity. Our

approach, therefore, enables local approximation of the diffusion

to be more accurate, however, it still lacks support of a global

optimization at the whole connectome level. Long fiber tracts

spanning multiple patches, such as IFOF, remains harder to

synthesize accurately. Synthesis has also been only tested on

healthy subjects, for the purpose of detecting deviations from

healthy fiber tracts. The generalization of the method on

synthesizing diffusion imaging from structural images under

neurological conditions, such as a brain tumor, is left as

future work.

6. Conclusion

This work presents a novel Riemannian network

architecture for the cycle-consistent synthesis of diffusion

tensors and diffusion ODF in high-resolution structural T1w

space. The results have demonstrated that our Riemannian

architecture can synthesize mathematically valid diffusion

images with a 5% improvement in principal fibers orientation

and a 23% improvement in FA MSE with respect to our

baselines. The better performance of our approach over

compared methods shows the benefit of using both paired and

unpaired samples in a single objective. Furthermore, as opposed

to standard Euclidean deep learning models, which generate

an average of 3,844 invalid tensors and 1,560 invalid ODFs per

volume, our method guarantees the mathematical coherence
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of the synthesized diffusion schemes, free of invalid tensors

or ODFs.

Moreover, we have evaluated qualitatively our generated

diffusion volumes by comparing their tractogramswith their real

counterparts. It was observed that our generated T1w-driven

diffusion shares similarities with the real diffusion in terms of

streamline length, volume and fiber bundles shape. We have

also shown the ability of our network to transfer fine anatomical

details from the high-resolution T1w images to diffusion images.

This transfer of information allows the generation of images

with sharper edges and a higher level of details that could not

be achieved with image interpolation.

Our results suggest that the high-level geometry of the

brain, encoded in structural T1w images, can be used to

predict its global fiber bundles organization. Leveraging

this principle, our method could enable the fast synthesis

of DT and ODF in situations where the acquisition of

diffusion imaging is not available. More generally, it

offers the basis of a framework targeting any real-to-

manifold-valued image translation tasks. For instance, our

method could be used for missing modalities synthesis

and datasets completion, manifold-valued image inpainting

or manifold-valued population based statistics that rely

on non-Euclidean metrics.
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