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Introduction: Cerebral microbleeds are small perivascular hemorrhages that

can occur in both gray and white matter brain regions. Microbleeds are a

marker of cerebrovascular pathology and are associated with an increased

risk of cognitive decline and dementia. Microbleeds can be identified and

manually segmented by expert radiologists and neurologists, usually from

susceptibility-contrast MRI. The latter is hard to harmonize across scanners,

while manual segmentation is laborious, time-consuming, and subject to

interrater and intrarater variability. Automated techniques so far have shown

high accuracy at a neighborhood (“patch”) level at the expense of a

high number of false positive voxel-wise lesions. We aimed to develop

an automated, more precise microbleed segmentation tool that can use

standardizable MRI contrasts.

Methods: We first trained a ResNet50 network on another MRI segmentation

task (cerebrospinal fluid vs. background segmentation) using T1-weighted,

T2-weighted, and T2∗ MRIs.We then used transfer learning to train the network

for the detection of microbleeds with the same contrasts. As a final step, we

employed a combination of morphological operators and rules at the local

lesion level to remove false positives. Manual segmentation of microbleeds

from 78 participants was used to train and validate the system. We assessed

the impact of patch size, freezing weights of the initial layers, mini-batch size,

learning rate, and data augmentation on the performance of the Microbleed

ResNet50 network.

Results: The proposedmethod achieved high performance, with a patch-level

sensitivity, specificity, and accuracy of 99.57, 99.16, and 99.93%, respectively.

At a per lesion level, sensitivity, precision, and Dice similarity index values were

89.1, 20.1, and 0.28% for cortical GM; 100, 100, and 1.0% for deep GM; and

91.1, 44.3, and 0.58% for WM, respectively.

Discussion: The proposed microbleed segmentation method is more suitable

for the automated detection of microbleeds with high sensitivity.
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microbleeds, cerebrovascular disease, magnetic resonance imaging, deep neural
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Introduction

Cerebral microbleeds are defined as small perivascular

deposits filled by hemosiderin leaking from the vessels

(Greenberg et al., 2009). They are recognized as a marker

of cerebral small vessel disease, alongside white matter

hyperintensities (WMHs) and lacunar infarcts (Wardlaw et al.,

2013). Cerebral microbleeds are commonly present in patients

with ischaemic stroke and dementia and are more prevalent

with increasing age (Roob et al., 1999; Sveinbjornsdottir et al.,

2008; Vernooij et al., 2008). The presence of microbleeds has

been linked to cognitive impairment and an increased risk of

dementia (Werring et al., 2004; Greenberg et al., 2009).

In vivo, cerebral microbleeds can be detected as small,

round, and well-demarcated hypointense areas on susceptibility-

weighted (SWI) and T2∗ magnetic resonance images (MRIs)

(Shams et al., 2015). Different studies used various size cutoff

points to classify microbleeds, withmaximumdiameters ranging

from 5 to 10mm, and, in some cases, a minimum diameter

of 2mm (Cordonnier et al., 2007). These are well correlated

to histopathological findings in the hemosiderin (Shoamanesh

et al., 2011). In practice, microbleeds are labeled onMRI as being

either “definite” or “possible” using a visual rating (Gregoire

et al., 2009). However, visual detection and segmentation

are time consuming and subject to inter- and intra-rater

variabilities, particularly for smaller microbleeds, frequently

overlooked by less experienced raters. Therefore, there is a need

for reliable and practical automated microbleed segmentation

tools that can produce sensitive and specific segmentations at

the lesion level.

Most of the microbleed segmentation methodologies

currently available are semi-automated, i.e., they require

expert intervention in varying degrees to produce the final

segmentation (Barnes et al., 2011; Kuijf et al., 2012, 2013;

Bian et al., 2013; Fazlollahi et al., 2015; Morrison et al., 2018).

There have also been a few attempts at developing automated

microbleed segmentation pipelines based on SWI scans, which

in general have a higher sensitivity and resolution formicrobleed

detection (Roy et al., 2015; Shams et al., 2015; Dou et al., 2016;

Van Den Heuvel et al., 2016; Wang et al., 2017; Zhang et al.,

2018a; Hong et al., 2020). These attempts were shown to have

sensitivity (ranging from 93 to 99 %) and specificity (ranging

from 92 to 99%) at a neighborhood (“patch”) level but less so

at the voxel-wise, lesion level (Dou et al., 2016).

To address these issues, we employed techniques from

the deep learning literature. In particular, convolutional

neural networks (CNNs) have been successfully employed

in many image segmentation tasks. Very deep convolutional

networks such as ResNet (He et al., 2016), GoogLeNet

(Szegedy et al., 2015), AlexNet (Krizhevsky et al., 2017),

and VGGNet (Simonyan and Zisserman, 2014) have shown

impressive performances in image recognition tasks. CNNs

have also exceeded the state-of-the-art performance in semantic

segmentation, with significantly lower performance time, when

sufficiently large training datasets with labels are available (Long

et al., 2015; Rosenberg et al., 2020; Billot et al., 2021; Isensee et al.,

2021). For example, when trained on a large dataset of 5,300

scans of six modalities, SythSeg by Billot et al. (2021) can provide

robust segmentations of brain scans of different contrasts and

resolutions. Recently, Girones Sanguesa et al. (2021) and Kuijf

(2021) used R-CNN and nnU-net models to detect microbleeds

in SWI and T2∗ images. In the absence of large sets of labeled

training data, voxel-wise segmentation tasks can be transformed

into patch-based segmentation tasks. For example, ResNet50 has

recently been used by Hong et al. to detect microbleeds from

SWI (Hong et al., 2019), achieving an accuracy of 97.46% at the

patch level, outperforming other state-of-the-art methods (Roy

et al., 2015; Zhang et al., 2018a,b).

As mentioned, most of these deep learning-based studies

only report patch-level results, without assessing their

techniques on voxel-wise lesions on a full brain scan. The

reported specificities are generally between 92 and 99% (Lu

et al., 2017; Wang et al., 2017; Zhang et al., 2018a; Hong et al.,

2019, 2020). While high accuracy at a patch level is important,

when applied to the whole brain, even a specificity of 99%

might translate into thousands of false positive voxels. In fact,

applying different microbleed segmentation methods at a voxel

level, Dou et al. reported precision values ranging between 5

and 22% in some cases, leading to 280–2,500 false positives on

average (Dou et al., 2016). The proposed method by Dou et al.

had a much better performance in terms of precision and false

positives, with a precision rate of 44.31% and an average false

positive rate of 2.74; however, their reported sensitivity was

relatively lower (93.16%).

Thus, improving performance at the lesion level would

be desirable. Further, given that SWI is not always collected

in either clinical or research settings and/or are hard to

harmonize in multi-centric settings, it would be useful if

a more versatile algorithm was proposed, able to segment

microbleeds from other, used more general MRI contrasts (e.g.,

T1-weighted, T2-weighted, or T2∗). To our knowledge, there

is no published automated microbleed segmentation tool based

on T1w/T2w/T2∗ acquisitions, which is the first contribution of

our article.

The main challenge in developing automated microbleed

segmentation tools using machine learning and in particular

deep learning methods pertains to a general lack of reliable,

manually labeled data. Our second contribution is how we

address this problem by using transfer learning to deal with

the relatively small number of manually labeled microbleeds in

our dataset. Considering promising results from other authors,

we employed a pre-trained ResNet50 network, further tailoring

it for another, relevant MRI segmentation task, namely the

classification of cerebrospinal fluid vs. brain tissue, for which

we were able to generate a large number of training samples.

The pre-trained weights were then used as the initial weights
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for our microbleed segmentation network, allowing for a faster

convergence with a smaller training sample.

A third contribution is how we employed post-processing

to winnow out false positives. This strategy is described below,

along with results on the performance of our technique, both at

the patch level and the pixel level. Transfer learning is a powerful

paradigm that makes our algorithm potentially versatile on

several MRI contrasts for microbleeds detection.

Materials and methods

Participants

Data included 78 subjects (32 women, mean age = 77.16 ±

6.06 years) selected from the COMPASS-ND cohort (Chertkow

et al., 2019) of the Canadian Consortium on Neurodegeneration

in Aging (CCNA; www.ccna-ccnv.ca). The CCNA is a Canadian

research hub for examining neurodegenerative diseases that

affect cognition in aging. Clinical diagnosis was determined by

participating clinicians based on longitudinal clinical, screening,

and MRI findings (i.e., diagnosis reappraisal was performed

using information from recruitment assessment, screening visit,

clinical visit with physician input, and MRI). For details on

clinical group ascertainment, refer to the study by Dadar et al.

(2021a,b) and Pieruccini-Faria et al. (2021).

All COMPASS-ND images were read by a board-certified

radiologist. Out of the whole cohort, participants in this

study were selected based on the presence of WMHs on fluid

attenuated inversion recovery MRIs as another indicator of

cerebrovascular pathology and microbleeds on T2∗ images.

Consequently, the sample was comprised of six individuals

with subjective cognitive impairment (SCI), 30 individuals with

mild cognitive impairment (MCI), six patients with Alzheimer’s

dementia (AD), eight patients with frontotemporal dementia

(FTD), seven patients with Parkinson’s disease (PD), three

patients with Lewy body disease (LBD), five patients with

vascular MCI (V-MCI), and 13 patients with mixed dementias.

Given that ours is a study on segmentation performance, we

assumed that there was no difference in the T2∗ appearance of a

microbleed related to participants’ diagnosis.

Ethical agreements were obtained for all sites. Participants

gave written informed consent before enrollment in the study.

MRI acquisition

MRI data for all subjects in the CCNA were acquired

with the harmonized Canadian Dementia Imaging Protocol

[www.cdip-pcid.ca; (Duchesne et al., 2019)]. Table 1 summarizes

the scanner information and acquisition parameters for the

subjects included in this study.

MRI preprocessing

All T1-weighted, T2-weighted, and T2∗ images were

preprocessed as follows: intensity non-uniformity correction

(Sled et al., 1998) and linear intensity standardization to

a range of [0–100]. Using a 6-parameter rigid registration,

the three sequences were linearly co-registered (Dadar et al.,

2018). The T1-weighted images were also linearly (Dadar

et al., 2018) and nonlinearly (Avants et al., 2008) registered

to the MNI-ICBM152-2009c average template (Manera et al.,

2020). Nonlinear registrations were performed to generate the

necessary inputs for BISON and were not applied to the data

used for training the models. Brain extraction was performed

on the T2∗ images using the BEaST brain segmentation tool

(Eskildsen et al., 2012).

CSF segmentation

The Brain tISue segmentatiON (BISON) tissue classification

tool was used to segment CSF based on the T1-weighted images

(Dadar and Collins, 2020). BISON is an open source pipeline

based on a random forests classifier that has been trained using

a set of intensity and location features from a multi-center

manually labeled dataset of 72 individuals aged 5–96 years (data

unrelated to this study) (Dadar and Collins, 2020). BISON

has been validated and used in longitudinal and multi-scanner

multi-center studies (Dadar and Duchesne, 2020; Dadar et al.,

2020; Maranzano et al., 2020).

Gray and white matter segmentation

All T1-weighted images were also processed using

FreeSurfer version 6.0.0 (recon-all-all). FreeSurfer is an open-

source software (https://surfer.nmr.mgh.harvard.edu/) that

provides a full processing stream for structural T1-weighted

data (Fischl, 2012). The final segmentation output (aseg.mgz)

was then used to obtain individual masks for cortical GM,

deep GM, cerebellar GM, WM, and cerebellar WM based

on the FreeSurfer look up table available at https://surfer.

nmr.mgh.harvard.edu/fswiki/FsTutorial/AnatomicalROI/

FreeSurferColorLUT. Since FreeSurfer tends to segment some

WMHs as GM (Dadar et al., 2021c), we also segmented the

WMHs using a previously validated automated method (Dadar

et al., 2017a,b) and used them to correct the tissue masks (i.e.,

WMH voxels that were segmented as cortical GM or deep GM

by FreeSurfer were relabelled as WM, and WMH voxels that

were segmented as cerebellar GM by FreeSurfer were relabelled

as cerebellar WM).
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TABLE 1 Acquisition parameters of the harmonized Canadian Dementia Imaging protocol.

Sequence Scanner model Matrix Resolution (mm3) Number of slices TR (msec) TE (msec) TI (msec) Flip angle

T1w GE 256× 256 1.0× 1.0× 1.0 180 6.7 2.9 400 11

Philips 256× 248 1.0× 1.0× 1.0 180 7.3 3.3 935 9

Siemens 256× 256 1.0× 1.0× 1.0 192 2,300 2.98 – 9

T2w GE 256× 256 0.94× 0.94× 3.0 48 3,000 11 – 125

Philips 256× 254 0.94× 0.94× 3.0 48 3,000 13 – 90

Siemens 256× 256 0.94× 0.94× 3.0 48 3,000 10 – 165

T2* GE 256× 256 0.94× 0.94× 3.0 48 650 20 – 20

Philips 256× 256 0.94× 0.94× 3.0 48 650 20 – 20

Siemens 256× 256 0.94× 0.94× 3.0 48 650 20 – 20

TR, repetition time; TE, echo time; TI, inversion time.

Manual segmentation

The microbleeds were segmented by an expert rater

(JM > 15 years of experience reading research brain MRI)

using the interactive software package Display, part of the

MINC toolkit (https://github.com/BIC-MNI) developed at the

McConnell Brain Imaging Center of the Montreal Neurological

Institute. The software allows visualization of co-registered MRI

sequences (T1w, T2w, and T2∗) in three planes simultaneously,

cycling between sequences to accurately assess the signal

intensity and anatomical location of an area of interest.

Identification criteria were in accordance with the study

by Cordonnier et al. (2007), comprised a round area of

hypointensity on T2∗ within the brain tissue, and based on

the exclusion of colocalization with blood vessels based on

the T1w and T2w information (Cordonnier et al., 2007). A

maximum diameter cutoff point of 10mm was used to exclude

large hemorrhages (Cordonnier et al., 2007). No minimum

microbleed size cutoff was used. Eight cases with a varying

number of microbleeds were segmented a second time by the

same rater (JM) to assess intra-rater variability.

Quality control

We visually assessed the quality of the preprocessed images,

as well as the BISON and FreeSurfer automated segmentations.

Generating training data

Transfer learning CSF segmentation task

400,000 randomly sampled two-dimensional (2D) image

patches were generated from the in-plane (axial plane, i.e.,

the plane with the greatest resolution) preprocessed and co-

registered T2∗, T2-weighted, and T1-weighted image slices. Half

of the generated patches contained a voxel segmented as CSF

by BISON in the center voxel of the patch, and the other half

contained either GM or WM in the center of the patch. The

patches were randomly assigned to training, validation, and test

sets (50, 25, and 25% respectively). To avoid leakage, patches that

were generated from one participant were only included in the

same set; i.e., the random split was performed at the participant

level (Mateos-Pérez et al., 2018). Figure 1 shows examples of the

generated CSF and background patches.

Microbleed segmentation task

Similarly, 11,570 2D patches were generated from the

preprocessed and co-registered T2∗, T2-weighted, and T1-

weighted in-plane image slices for microbleed segmentation.

One half of the generated patches contained a voxel segmented

as microbleed by the expert rater in the center voxel of the

patch, and the other half was randomly sampled to contain a

non-microbleed voxel in the center. The patches were randomly

assigned to the training, validation, and test sets (60, 20, and 20%

respectively) also at the participant level. We further ensured

to include similar proportions of participants with small (1–4

voxels), medium (5–15 voxels), and large (more than 15 voxels)

microbleeds in the three sets. Figure 2 shows examples of the

generated microbleed and background patches.

We further augmented the microbleed patch dataset by

randomly rotating the patches to generate additional training

data. The random rotations were performed on the full slice (not

the patches) centering around the microbleed voxel; therefore,

the corner voxels in the patches include information from

different areas not present in other patches. Matching numbers

of novel background patches were also added to balance the

training dataset. The performance of the model was assessed

using the training dataset with no augmentation and by adding

4, 9, 14, 19, 24, and 29 random rotations to the training

set, respectively.

Note that the sameMRI dataset was used to generate patches

for both CSF segmentation and microbleed segmentation tasks.
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FIGURE 1

Examples of CSF and background patches generated for the CSF segmentation task.

However, the individual patches were not the same, since the

microbleed and CSF patches needed to have (respectively) either

a microbleed or CSF voxel at their center, while the background

patches were randomly sampled from the rest of the dataset.

Training the ResNet50 network using
transfer learning

Previous study by Hong et al. showed that using a pre-

trained network based on natural images can be beneficial to

microbleed segmentation tasks (Hong et al., 2019). Based on

this study, we also used the ResNet50 network (He et al.,

2016), a CNN pre-trained on over 1 million images from the

ImageNet dataset (Russakovsky et al., 2015), to classify images

into 1,000 object categories. This pre-training has allowed the

network to learn rich feature representations for a wide range

of images, which can also be useful in our task of interest. Our

approach was to further train ResNet50 first on a task similar

to microbleed segmentation (i.e., CSF vs. tissue) and then on

microbleeds identification itself.

To satisfy the input size requirements of ResNet50 network,

all patches were resized to 224 × 224 pixels, and the T2∗,

T2-weighted, and T1-weighted patches were copied into three

channels to generate an RGB image (Figure 3). The last fully

connected layer of ResNet50, which contained 1,000 neurons (to

perform the classification task for 1,000 object categories), was

replaced with two neurons to adapt the network for performing

a binary classification task (i.e., object vs. background). The

weights of this last fully connected layer were initialized

randomly. The network was first trained (all layers, no weight

freezing) to perform the CSF vs. tissue segmentation task. We

then retrained this network to perform microbleed vs. tissue

segmentation. The training was performed on a single NVIDIA

TITAN X with 12 GB GPU memory.

Parameter optimization

We assessed the performance of the network with five

different patch sizes (14, 28, 52, 56, and 70 mm2), with and

without freezing the weights of the initial layers (no freezing

as well as freezing the first 5, 10, 15, and 20 layers), different

mini-batch sizes (20, 40, 60, 80, and 100), and different learning

rates (0.002, 0.004, 0.006, 0.008, and 0.010). Each experiment

was repeated five times by changing one hyper-parameter at a
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FIGURE 2

Examples of microbleed and background patches generated for the microbleed segmentation task.

time, and the results were averaged to ensure their robustness.

The epoch parameter was set to 10. Stochastic gradient descent

with momentum (SGDM) of 0.9 was used to optimize the

cross-entropy loss.

Post-processing

After applying ResNet50 to segment all microbleed

candidate voxels in the brain mask and reconstructing the

final map into a 3D segmentation map, we performed a

post-processing step to reduce the number of false positives as

well as to categorize the microbleeds into five classes depending

on location. In this post-processing step, the microbleeds

were first dilated by two voxels. Then, for each voxel at the

border of the microbleed, if the ratio between the T2∗ intensity

of the microbleed voxel and the surrounding dilated area

(
Microbleed Intensity
Dilated Mask Intensity

) was lower than a specific threshold

(to be specified by the user based on sensitivity/specificity

preferences), the voxel was removed as a false positive. For

each microbleed, the process was repeated iteratively until no

voxel was removed as a false positive. The final remaining

microbleeds were then categorized into regions (cortical GM,

deep GM, cerebellum WM, and cerebellum GM and WM based

on their overlap with FreeSurfer segmentations). Figure 4 shows

examples of FreeSurfer-based tissue categories, some segmented

microbleeds, and some dilated surrounding areas.

Figure 5 shows a flow diagram of all the different steps

performed in the microbleed segmentation pipeline. All

implementations (i.e., generating training patches, training and

validation of the model, and postprocessing) were performed

using MATLAB version 2020b.

Performance validation

At the patch level, to enable comparisons against the

results of other studies, we measured accuracy, sensitivity, and

specificity to assess the performance of the proposed method.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Sensitivity =
TP

TP + FN
(2)

Specificity =
TN

TN + FP
, (3)
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FIGURE 3

Generating an RGB patch for training ResNet50.

Where TP, TN, FP, and FN denote the number of true

positive, true negative, false positive, and false negative patch-

level classifications, respectively. While high accuracy at the

patch level is desirable, it does not necessarily ensure accurate

segmentations at a voxel level. Applied across the entire brain

(i.e., 100,000s of pixels), a patch-level specificity of 0.96%−0.99%

e.g., as reported by Hong et al., 2019, 2020) might translate into

thousands of false positive voxels. To assess the performance

at a voxel-wise level, we applied the network to all patches in

the brain mask, reconstructed the lesions in 3D across patches,

and then measured per lesion sensitivity, precision, and Dice

similarity index (Dice, 1945) values betweenmanual (considered

as the standard of reference) and automated segmentations.

Sensitivity =
TP

TP + FN
(4)

Precision =
TP

TP + FP
(5)

Dice Similarity Index = 2
MB1

⋂
MB2

MB1 + MB2
(6)

Here, TP (true positive) denotes the number of microbleeds

(i.e., the number of distinct microbleeds segmented, regardless

of their size) detected by both methods. FN (false negative)

denotes the number of microbleeds detected by the manual

expert but not the automatedmethod. FP (false positive) denotes

the number of microbleeds detected by the automated method

and not the manual rater. The Dice similarity index shows

the proportion of microbleed detection by both methods over

the number of microbleeds detected by each method. A Dice

Similarity index of 1 shows a perfect agreement between the two

methods. A microbleed is considered detected by both methods

if there are any overlapping microbleed voxels between the two

segmentations. Note that, in accordance with previous studies,

specificity was used to reflect the proportion of true negative vs.

all negative classifications for patch-level results. However, since

specificity cannot be defined at the per-lesion level, we assessed

precision instead of specificity for per-lesion results.

U-Net segmentations

A U-Net model was also trained on complete axial slices

(256 mm2) as well as smaller patches (patch sizes of 32, 64, 128

mm2) from the same dataset for comparison (SGDM, Epoch

= 10, initial learning rate = 0.001, mini-batch size = 20).

The input images were similar to those used for the ResNet50
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FIGURE 4

Axial slices showing FreeSurfer based tissue categories, segmented microbleeds, and their dilated surrounding areas.

model (i.e., T2∗, T1-weighted, and T2-weighted axial slices), and

the same number of training samples as those used to train

the best ResNet50 models (i.e., with data augmentation) were

generated for the segmentation tasks. The performance of the

model in detecting the microbleeds (i.e., per lesion sensitivity)

was then assessed for different patch sizes at the patch level.

For the optimal patch size, the voxel level performance vs. the

testing time was also assessed for overlapping patches (using the

labels from the centering voxels of each patch) with different

stride values from 1, 1/2, 1/4, 1/8, and 1/16 of the patch

sizes to investigate whether performance improves when using

overlapping patches at the expense of longer processing time.

Data and code availability statement

All image processing steps were performed using the

MINC tools, publicly available at: https://github.com/vfonov/

nist_mni_pipelines. BISON (used for tissue classification) is

also publicly available at http://nist.mni.mcgill.ca/?p=2148. For

more information on the CCNA dataset, please visit https://

ccna-ccnv.ca/. The microbleed segmentation methodology has

been reported by the inventors to Université Laval (Report on

invention 02351) and is now subject to patent protection (U.S.

Trademark and Patent Office 63/257, 536).

Results

Manual segmentation and quality control

The distribution of manually segmented lesions for all

78 participants is shown in Figure 6. Based on the manual

segmentations, 46.1, 14.10, and 58.9% of the cases had at

least one microbleed in the cortical GM, deep GM, and WM

regions, respectively. Only five cases (6.4%) had microbleeds in

the cerebellum (in either GM or WM). The overall intra-rater

Frontiers inNeuroimaging 08 frontiersin.org

https://doi.org/10.3389/fnimg.2022.940849
https://github.com/vfonov/nist_mni_pipelines
https://github.com/vfonov/nist_mni_pipelines
http://nist.mni.mcgill.ca/?p=2148
https://ccna-ccnv.ca/
https://ccna-ccnv.ca/
https://www.frontiersin.org/journals/neuroimaging
https://www.frontiersin.org


Dadar et al. 10.3389/fnimg.2022.940849

FIGURE 5

Flow diagram of the microbleed segmentation pipeline.

reliability (per lesion similarity index) for manual segmentation

was 0.82 ± 0.14 (κCorticalGM = 0.78 ± 0.22, κDeepGM = 1.0 ±

0.0, κWM = 0.81± 0.15).

All MRIs passed the visual quality control step for

preprocessing and BISON/FreeSurfer segmentation.

CSF segmentation

At the patch level, ResNet50 segmentations had accuracies

of 0.946 (sensitivity = 0.955, specificity = 0.936) and 0.933

(sensitivity = 0.938, specificity = 0.928) for the validation

and test sets, respectively. At a whole brain voxel level, the

segmentations had a Dice similarity index of 0.913± 0.015 with

BISON segmentations. Overall, ResNet50 CSF segmentations

(mean volume = 129.06 ± 31.43 cm3) were more generous in

comparison with BISON (mean volume= 117.78± 29.51 cm3).

Figure 7 compares the two segmentations, with the color yellow

indicating voxels that were segmented as CSF with bothmethods

and the colors purple and green indicating voxels that were

only segmented as CSF by BISON or ResNet50, respectively.

The majority of the disagreements are in the borders of CSF

and brain tissue, where ResNet50 segments CSF slightly more

generously than BISON.

Microbleed segmentation

Figure 8 shows the patch level performance results averaged

over five repetitions for different patch sizes, freezing of initial

layers, mini-batch sizes, and learning rates. Increasing patch size

to more than 28 voxels leads to consistently lower accuracy for

both the validation and test sets. Similarly, learning rates higher

than 0.004 lowered the performance. The best performance (in

terms of accuracy) was obtained with a patch size of 28, freezing

the first five initial layers, a mini-batch size of 40, and a learning

rate of 0.006.

Figure 9 shows the average performance of the model with

these parameters trained with no augmentation as well as the

same model trained on original data plus data augmented with

4, 9, 14, 19, 24, and 29 random rotations (no augmentation

was performed on validation and test sets). All models with

data augmentation performed better than themodel without any

data augmentation. The best performance was obtained using
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FIGURE 6

Microbleed distribution for each tissue type, based on the manual segmentations.

data augmented with 19 random rotations. For this network,

patch-level accuracy, sensitivity, and specificity values were

respectively 0.990, 0.979, and 0.999 for the validation set and

0.996, 0.992, and 0.999 for the test set.

Figure 10 shows sensitivity, precision, and similarity index

values separately for the cortical, deep, and cerebellar GM and

the cerebral and cerebellar WM, after applying post-processing

with different thresholds to the voxel-wise segmentations. The

threshold values can be selected by the user based on sensitivity

and precision preferences.

Figure 11 shows examples of automated vs. manual

segmentations for threshold = 1.4 for the deep GM and 1.2 for

the rest of the regions, with examples of true positive (indicated

in red), false positive (indicated in blue), and false negative

(indicated in green) classifications. Most of the disagreements

are in the voxels in the border of the microbleeds, where the

automated tool sometimes performs a more generous (i.e. blue

voxels) or more conservative (i.e. green voxels) segmentation

than the manual expert. Such differences will not affect the

overall microbleed counts since both methods have essentially

identified the same microbleed.

U-Net segmentations

The U-Net model trained on full axial slices had similar

accuracy for the CSF segmentation task to the patch-based

classification model (mean Dice similarity index of 0.90± 0.07),

indicating that, with sufficient training data, this U-Net model

is ideal for the CSF classification task, given its low processing

time (i.e., <30 s). Figure 12A shows the per lesion sensitivity

(applied at the patch level for all patches with microbleeds) of

the transfer-learned U-Net model in microbleed segmentation

for different patch sizes. The full-slice model was not able to

provide accurate segmentations, missing many of the smaller

microbleeds. Models trained on smaller patches had better

performance, with sensitivity increasing as patch size decreased.

Figures 12B,C show the performance and testing time for the

most sensitive model at the patch level (i.e., patch size = 32)

assessed with overlapping patches, showing increased sensitivity

in detecting microbleeds for smaller stride values, at the expense

of an increase in testing time. Taken together, these results

indicate that, when sufficient training data are not available, the

less efficient patch-based models have better performance for

microbleed segmentation tasks.

Discussion

In this study, we presented a multi-sequence microbleed

segmentation tool based on the ResNet50 network and routine

T1-weighted, T2-weighted, and T2∗ MRI. To overcome the

lack of availability of a large training dataset, we used

transfer learning to first train ResNet50 for the task of CSF

segmentation and then retrained the resulting network to

perform microbleed segmentation.
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FIGURE 7

Axial slices comparing ResNet50 and BISON CSF segmentations.

FIGURE 8

Performance accuracy as a function of patch size, freezing of initial layers, mini-batch size, and learning rate. Colors indicate the patch-level

accuracy values, with warmer colors reflecting higher accuracy.

Due to the unavailability of ample training data for

microbleed segmentation, we transformed the problem at hand

to a patch-based classification task, allowing us to obtain

better performance at the expense of reduced efficiency and

an increase in testing time. For comparison, while a U-Net

model trained on complete axial slices (as opposed to smaller
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FIGURE 9

Impact of data augmentation on performance accuracy, sensitivity, and specificity at patch level. RR, Random Rotation.

FIGURE 10

Sensitivity, precision, and similarity index values for di�erent post-processing threshold values in validation and test sets.

patches) from the same dataset was able to provide CSF

segmentations with similar accuracy (mean Dice similarity

index of 0.90 ± 0.07 vs. the patch-based equivalent of

0.91 ± 0.01), when applied in a transfer-learned model for

microbleed segmentation, it was not able to provide sufficiently

accurate microbleed segmentations, missingmany of the smaller
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FIGURE 11

Axial slices comparing automated and manual segmentations.

microbleeds (mean sensitivity of 0.22 and mean testing time

of 18 s, compared to sensitivity values >0.9 for the proposed

model). Along the same line, training the U-Net segmentation

model on patches improved the ability of the model to detect

microbleeds (mean sensitivity values ranging from 0.64 to

0.86 with stride values from 1, 1/2, 1/4, 1/8, and 1/16 of

the patch size) at the expense of an increase in testing time

(from 2min to 7 h per case). Testing time can however be

reduced to minutes by limiting the initial search mask (e.g.,

by excluding CSF voxels or areas that are hyperintense on

the T2∗ image from the initial mask of interest since they

would not include any microbleeds) or parallelizing the patch-

based segmentation.

Pre-training the model on the CSF segmentation task led to

a significant improvement in the segmentation results. Without

performing this pre-training step, using the same model and

hyper-parameters, we had obtained patch-level accuracy values

ranging between 0.74 and 0.96 for the validation and test sets. In

comparison, the final transfer learned model was able to achieve

patch level accuracies of 0.990 and 0.996 for the validation

and test sets, respectively, strongly indicative of the need for

this approach.

CSF segmentation was selected as the initial task for pre-

training the model since a large number of CSF segmentations

could be generated automatically without requiring manual

segmentation. Furthermore, since there is no overlap between
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FIGURE 12

Performance of U-Net models for the microbleed segmentation task. (A) Patch level sensitivity vs. patch size, (B) Voxel-level sensitivity vs. stride

for patch size = 32, and (C) testing time vs. stride for patch size = 32 applied at the voxel level.

CSF and microbleed voxels and given that CSF voxels have

a very different intensity profile than microbleeds on T2∗

images (CSF voxels are hyperintense in comparison with GM

and WM, whereas microbleed voxels are hypointense), there

would be no leakage between CSF segmentation and microbleed

segmentation tasks.

The CSF classification experiments showed excellent

agreement (Dice similarity index = 0.91) between ResNet50

and BISON segmentations. The majority of the disagreements

were in the voxels bordering the CSF and brain tissue, where

ResNet50 segmented CSF slightly more generously than

BISON. Given that BISON segmentations were based only on

T1-weighted images, whereas ResNet50 used information from

T1-weighted, T2-weighted, and T2∗ sequences, these voxels

might be CSF voxels correctly classified by ResNet50 method

that did not have enough contrast on T1-weighted images to be

captured by BISON.

At the patch level, with sensitivity and specificity values

of 99.57 and 99.93%, the microbleed segmentation method

outperforms most previously published results. At a per lesion

level, the strategy yielded sensitivity, precision, and Dice

similarity index values of 89.1, 20.1, and 0.28% for the cortical

GM, 100, 100, and 1% for the deep GM, and 91.1, 44.3, and

0.58% for the WM, respectively. Post-processing improved the

results (increased the similarity index) for all microbleed types

(by successfully removing the false positives). The improvement

was most evident for deep GM microbleeds, where most of

the false positives were at the boundaries of the deep GM

structures, which tend to have lower intensities compared to the

neighboring tissue.

There are inherent challenges in comparing the performance

of our proposed method against previously published results.

Other studies have been mostly based on susceptibility-weighted

scans, which in general have higher sensitivity and resolution

levels (usually acquired at 0.5 × 0.5 mm2 voxels vs. 1 ×

1 mm2 voxels in our case) and are better suited for the

microbleed detection (Roy et al., 2015; Shams et al., 2015; Dou

et al., 2016; Van Den Heuvel et al., 2016; Wang et al., 2017;

Zhang et al., 2018a; Hong et al., 2020). Another concern in

comparing results across studies regards the characteristics of

the dataset used for training and validation of the results. Most

previous methods used data from populations that are much

more likely to have microbleeds, such as patients with cerebral

autosomal-dominant arteriopathy with subcortical infarcts and

leukoencephalopathy (also known as CADASIL) (Wang et al.,

2017; Zhang et al., 2018a; Hong et al., 2020). In contrast, our

dataset included non-demented aging adults and patients with

neurodegenerative dementia, who do not necessarily have such

a high cerebrovascular disease burden. In fact, 63% of the cases

in our sample had fewer than three microbleeds. Since we use a

participant-level assignment in the training, validation, and test

sets, even one false positive would reduce the per-participant

precision value by 33%−50% for those cases. In comparison,

the training dataset used by Dou et al. (2016) included 1,149

microbleeds in 20 cases (i.e., 57.45 microbleeds per case on

average), in which case one false positive detection would only

change the reported precision by 1.7%. Along the same line,

we included very small microbleeds with volumes between 1

and 4 mm3 (i.e., 1–4 voxels) in our sample (∼35% of the total

microbleed count, distributed consistently between training,

validation, and test sets), whereas others might choose to not

include such very small lesions which are more challenging to

detect and also have lower inter- and intra-rater reliabilities

(Cordonnier et al., 2007). Regardless, even considering the

disadvantage of fewer microbleeds per scan inherent to our

population, the proposed method compares favorably against

other published results.

Generalizability to data from other scanner models and

manufacturers is another important point when developing

automated segmentation tools. Automated techniques that have
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been developed based on data from a single scanner might

not be able to reliably perform the same segmentation task

when applied to data from different scanner models and with

different acquisition protocols (Dadar and Duchesne, 2020). To

ensure the generalizability of our results, we used data from

seven different scanner models across three widely used scanner

manufacturers (i.e., Siemens, Philips, and GE) from a number of

different sites.

Due to the inherently difficult nature of the task, even

in manual ratings, inter-rater and intra-rater variabilities in

microbleed detection is not very high. The per-lesion intra-

rater similarity index for our dataset (based on eight randomly

selected cases) was 0.82. Other studies also reported similar

results, with one study reporting intra-rater and inter-rater

agreements (similarity index) of 0.93 and 0.88, respectively,

while others report more modest inter-rater agreements ranging

between 0.33 and 0.66 (Cordonnier et al., 2007). In a dataset

of 301 patients and using T2∗ images for microbleed detection,

Gregoire et al. reported inter-rater similarity index values of

0.68 for the presence of microbleeds, where the two raters

detected 375 (range: 0–35) and 507 (range: 0–49) microbleeds,

respectively (Gregoire et al., 2009). Given the relatively high

levels of inter-rater and intra-rater variability in microbleed

segmentation results, it is also possible that some of the

false positives detected by the automated method might be

actual microbleed cases that were missed by the manual rater.

Regarding the location of the microbleeds, Gregoire et al.

reported higher levels of agreement (between the manual

ratings) for microbleeds in the deep GM regions, similar to our

results. This could be explained by the higher intensity contrast

between the microbleeds (greater levels of hypointensity) and

the background GM, which has a higher T2∗ signal than the

WM, where the performance is usually less robust for manual

raters as well (Gregoire et al., 2009). Finally, the relatively

lower performance for cortical GM microbleed segmentation is

also expected, given the close proximity to blood vessels (both

in the sulci and on the surface of the brain), which show a

hypointense signal that confounds with that of the microbleeds,

leading to false positives and lowering the precision. However,

despite the different levels of performance in the different

brain areas, an automated segmentation method has the clear

advantage of providing robust segmentations across different

runs, essentially eliminating intra-rater variability, which is

inevitable in manual segmentations.

Accurate and robust microbleed segmentation is necessary

for assessing cerebrovascular disease burden in the aging

and neurodegenerative disease populations, who may show

a lower number of microbleeds than other pathologies (e.g.,

CADASIL), making the task more challenging. Additionally,

an automated tool that can reliably detect microbleeds using

data from different scanner models is highly advantageous. Our

results suggest that the proposed method can provide accurate

microbleed segmentations in multi-scanner data of a population

with a low number of microbleeds per scan, making it applicable

for use in large multi-center studies.
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