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Postmortem studies are currently considered a gold standard for investigating

brain structure at the cellular level. To investigate cellular changes in the

context of human development, aging, or disease treatment, non-invasive

in-vivo imaging methods such as di�usion MRI (dMRI) are needed. However,

dMRI measures are only indirect measures and require validation in graymatter

(GM) in the context of their sensitivity to the underlying cytoarchitecture, which

has been lacking. Therefore, in this study we conducted direct comparisons

between in-vivo dMRI measures and histology acquired from the same four

rhesus monkeys. Average and heterogeneity of fractional anisotropy and

trace from di�usion tensor imaging and mean squared displacement (MSD)

and return-to-origin-probability from biexponential model were calculated

in nine cytoarchitectonically di�erent GM regions using dMRI data. DMRI

measures were compared with corresponding histology measures of regional

average and heterogeneity in cell area density. Results show that both

average and heterogeneity in trace and MSD measures are sensitive to the

underlying cytoarchitecture (cell area density) and capture di�erent aspects

of cell composition and organization. Trace and MSD thus would prove

valuable as non-invasive imaging biomarkers in future studies investigating

GM cytoarchitectural changes related to development and aging as well as

abnormal cellular pathologies in clinical studies.
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Introduction

Diffusion MRI is a widely used in-vivo imaging method that measures the

displacement of water molecules within brain tissue. Since the water movement is

affected directly by the underlying biology, dMRI can provide a non-invasive measure

of the underlying tissue microstructure and offers a unique opportunity to conduct
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neuroimaging studies investigating microstructural brain

changes. DMRI has been shown to be sensitive to changes

in gray and white matter associated with brain development

(Tanner et al., 1999; Yoshida et al., 2013), and aging (Giorgio

et al., 2010; Lebel et al., 2012), as well as psychiatric and

neurological disorders such as amyotrophic lateral sclerosis

(ALS) (Baek et al., 2020), multiple sclerosis (MS) (Inglese and

Bester, 2010), traumatic brain injury (TBI) (Laitinen et al.,

2015; Zhang et al., 2017), Alzheimer’s disease (Stebbins and

Murphy, 2009), Parkinson’s disease (Zhang and Burock, 2020),

depression (Coloigner et al., 2019), and schizophrenia (Kubicki

et al., 2007). Characterization of brain microstructure with

this imaging method thus provides an opportunity to study

developmental and aging related changes as well as disease

related abnormalities.

However, dMRI can only provide indirect measures of

the underlying microstructural properties of the tissue due to

limited spatial resolution of the data. Further, dMRI provides an

ensemble average of the displacement of water molecules within

cell bodies, its processes (axons, dendrites), and extra-cellular

spaces which are several orders of magnitude smaller than

the millimeter scale image resolution. This necessitates the

need for validation of dMRI measures. Currently, postmortem

histological studies remain the gold standard to study

tissue microstructure. So far, they have provided important

information about gray matter (GM) microstructure at

the cellular level, in healthy individuals as well as patients

with psychiatric and neurological disorders (Huttenlocher,

1979, 1984; Rakic et al., 1986; Stockmeier and Rajkowska,

2004; Williams et al., 2013; Khaw et al., 2021). Therefore,

validating the biological basis of these dMRI measures using

postmortem tissue from animals scanned premortem can help

establish the specificity and the interpretation of diffusion MRI

studies in healthy and clinical populations as well as push the

frontiers for the diagnosis and treatment of neurological and

psychiatric disorders.

Several studies have been conducted in white matter for

ex-vivo validation of dMRI models and the derived measures

against relevant histological measures. These studies include

those that validate dMRI tractography, fiber orientation, and

other microstructural properties of axonal bundles estimated

using various dMRImodels, e.g., diffusion tensor imaging (DTI),

high angular resolution diffusion-weighted imaging (HARDI),

neurite orientation dispersion and density imaging (NODDI),

and white matter tract integrity (WMTI) (Leergaard et al., 2010;

Gao et al., 2013; Schilling et al., 2018; Gutierrez et al., 2020;

Zhou et al., 2020; Leuze et al., 2021; Yendiki et al., 2021)

with the relevant histological measures. Histological measures

were computed in these dMRI validation studies, using various

postmortem techniques such as neural tracer data (Gutierrez

et al., 2020), myelin stains (Zhou et al., 2020), label-free

optical imaging techniques (Yendiki et al., 2021), and optical

imaging of fluorescently labeled neurofilaments and vasculature

in 3D tissue cuboids cleared using the clear lipid-exchanged

acrylamide-hybridized rigid imaging/immunostaining/in situ-

hybridization-compatible tissue hydrogel (CLARITY) (Leuze

et al., 2021). Animal models such as rats (Leergaard et al., 2010),

marmosets (Gutierrez et al., 2020), squirrel monkeys (Schilling

et al., 2018), macaques (Leuze et al., 2021) and humans (Zhou

et al., 2020) were used to conduct these studies.

All of the above studies were primarily focused on white

matter microstructure validation. In contrast, only a handful of

studies have conducted postmortem validation of dMRI models

and derived measures in GM (Kroenke et al., 2007; Bock et al.,

2010; Jespersen et al., 2012; Laitinen et al., 2015; Seehaus et al.,

2015; Khan et al., 2016; Dyrby et al., 2018; Shimony et al., 2018;

Maiter et al., 2021; Salo et al., 2021). Moreover, the majority

of these studies have used induced lesions (Laitinen et al.,

2015), neonatal enucleation (Bock et al., 2010) or animal disease

models of depression (Khan et al., 2016) or Parkinson’s disease

(Shimony et al., 2018) as a way of validation. Previous studies

conducted in animal models of disorders have used histological

techniques showing dMRI measures in GM regions to be

sensitive to the underlying pathologies, e.g., neurodegeneration,

myelinated fiber loss (Laitinen et al., 2015), and changes

in neuronal density (Khan et al., 2016) and fiber density

(Shimony et al., 2018). A few other histological validation

studies conducted in normal, unaffected gray matter, reported

a strong relationship between dMRI measures estimated from

DTI, NODDI and constrained spherical deconvolution (CSD)

models, and underlying properties of axonal, dendritic, and

myelin microstructure in the neuropil (Kroenke et al., 2007;

Jespersen et al., 2012; Seehaus et al., 2015; Maiter et al., 2021;

Salo et al., 2021).

Even so, gray matter is comprised of not just dendrites

and axonal bundles but also cell bodies and extracellular

matrix. In GM, cellular composition and organization of

cell bodies is very important to study because disorders

such as schizophrenia, autism, bipolar disorder, and 22q11.2

deletion syndrome (22q11DS) have been shown to be associated

with cytoarchitectural pathologies such as abnormal neuronal

migration, changes in cell density, morphology, and other

cytoarchitectural abnormalities (Arnold et al., 1991; Avino

and Hutsler, 2010; Muraki and Tanigaki, 2015; Cho et al.,

2016; Tee et al., 2017; Kikinis et al., 2019; Harrison et al.,

2020). So far, there is only one model, the soma and neurite

density MRI (SANDI) model, that has primarily focused on

the characterization of cellular and neurite densities in gray

matter (Palombo et al., 2020). Validation was provided for

this model by comparing the SANDI-derived soma fraction

in gray matter with the Allen mouse brain atlas contrast that

represents the cellular density in the mouse brain (Ianuş et al.,

2021). However, the SANDI model requires specific acquisition

parameters (i.e., very high b-values) which can only be acquired

on preclinical or specialized ultra-high gradient strength MRI

scanners posing challenges for translation to human application
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(Palombo et al., 2020; Ianuş et al., 2021). Additionally, it is

important to note that in most of the above-mentioned studies

conducted in GM, postmortem validation was done using ex-

vivo dMRI data. Imaging measures derived from the ex-vivo

dMRI data cannot be directly translated to those measured

in-vivo. The reason for this lies in the altered properties of

the fixed postmortem tissue such as, significantly reduced

intrinsic diffusivity and inhomogeneous shrinkage in brain

volume due to formalin fixation across brain regions (Siegel

et al., 1985; Rane and Duong, 2011; Lerch et al., 2012; Roebroeck

et al., 2019). These challenges associated with using the ex-vivo

dMRI data make it difficult to translate the results to in-vivo

human studies.

A commonly used dMRI model, diffusion tensor imaging

(DTI) (Alexander et al., 2007; O’Donnell and Westin, 2011)

and a recently developed biexponential model (Rathi et al.,

2013; Ning et al., 2015) have been used in several in-vivo

human studies (especially the DTI model) to understand

changes related to normal development, aging, and clinical

conditions, showing strong translational value (Kubicki et al.,

2007; Lebel et al., 2012; Yoshida et al., 2013; Avram et al.,

2016; Wu et al., 2019; Baxi et al., 2020; Le et al., 2020).

Measures derived from both these models individually have

shown the ability to capture the influence of both genetic

and environmental factors on brain microstructure in human

subjects (Elman et al., 2017; Vuoksimaa et al., 2017; Gustavson

et al., 2019; Baxi et al., 2020). Thus, DTI and biexponential

model derived measures once validated, have the potential to

be individually used as imaging biomarkers to study disease-

related as well as normal development and aging-related

brain changes.

The DTI model is by far the simplest and most commonly

used model for dMRI data to study brain microstructure in

health and disease. The commonly used scalar measures derived

from this model are fractional anisotropy (FA) and trace that

measure biophysical properties of the underlying tissue. FA

measures the degree of anisotropy in the water diffusion within a

voxel and trace describes the averagemobility of watermolecules

in the tissue. However, the DTI model relies on the assumption

of anisotropic Gaussian diffusion of water molecules in the

tissue (Basser et al., 1994; Jones and Cercignani, 2010; O’Donnell

and Westin, 2011). In contrast, the biexponential model allows

modeling of non-Gaussian water diffusion behavior in complex

brain tissue thus making it a more realistic model to probe

the complex tissue microstructure (Özarslan et al., 2013; Rathi

et al., 2013; Ning et al., 2015). The diffusion propagator derived

from the biexponential model uses amixture of Gaussians (Rathi

et al., 2013) to represent the diffusion signal across multiple b-

values. In this case, all derived measures have simple analytical

expressions, making them easier and more robust to estimate.

The scalar measures derived from this biexponential model

are mean-squared-displacement (MSD) and return-to-origin-

probability (RTOP). MSD primarily captures the displacement

of fast-moving water molecules while RTOP measures the

probability of a water molecule returning to its starting

position in a given experimental diffusion time and is an

indicator of restricted diffusion (Assaf et al., 2002; Wu and

Alexander, 2007; Özarslan et al., 2013; Ning et al., 2015;

Boscolo Galazzo et al., 2018; Afzali et al., 2021). For example,

if water is highly restricted, one might expect higher RTOP

as there is a higher likelihood of the water molecules coming

back to their starting positions. On the other hand, in the

ventricles where there is little restriction, the RTOP is low.

Similarly, MSD will be high in the ventricles and lower in

restricted regions.

However, the question of how the fundamental GM

microstructural properties such as cell size, cell packing density,

spatial arrangement, and geometry of cell bodies influence these

measures (FA, Trace, MSD and RTOP) derived from these two

in-vivo dMRI models (DTI and Biexponential), still remains

unclear. Quantifying the connection between these dMRI

measures and histological properties of cellular architecture is

critical for progress in the field and is themain focus of this work.

Therefore, in this study, we investigated how the

underlying cytoarchitecture in gray matter is related

to DTI and biexponential measures. To validate these

diffusion measures (trace, FA, MSD and RTOP), we

compared them with the histology based cytoarchitectural

regional tissue properties of average and heterogeneity

of cell area density. Specifically, we used digitized Nissl-

stained slices and in-vivo high-resolution multi-shell dMRI

data acquired from the same four monkeys to quantify

the contribution of underlying cytoarchitecture to the

dMRI measures.

Methods

Demographics

This study included in-vivo MRI scans and archived brain

tissue from four rhesus monkeys (all male) 19–20 years old

(equivalent to 57–60 years in humans; Tigges et al., 1988). A

small age range was chosen specifically to reduce age effect on

variability across the histological and imaging measures. Health

records of these monkeys were screened to exclude any possible

confounding clinical diseases or experimental manipulations

that could impact normal aging.

Monkeys were obtained from national primate research

facilities or private vendors and had known birth dates and

complete health records. Monkeys were housed in the Animal

Science Center of Boston University School of Medicine which

is AAALAC accredited. All procedures were approved by

the Boston University Institutional Animal Care and Use

Committee and complied with the NIH guidelines for the care

and use of laboratory animals.
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Structural and di�usion MRI

MRI acquisition

Structural and diffusion MRI scans were acquired using

the same protocol and scanner for all four monkeys as

described below. Monkeys were anesthetized with ketamine

(10 mg/kg) and xylazine (0.10 mg/kg) and placed into

a 3 Tesla Connectome MRI scanner (Siemens), located

at the Martinos Center for Biomedical Imaging using an

MRI compatible stereotactic frame that fixed the monkey

head in the standard coronal plane (Saunders et al.,

1990). The following parameters were used for acquiring

structural (sMRI) and dMRI scans, which took around

3 h:

T1 MPRAGE Structural MRI:

TI/TR/TE = 1100/2530/1.37ms, flip angle = 7◦,

FOV= 160×160 mm2, slices= 176, voxel size= 0.6×0.6×0.59

mm3, bandwidth = 650 Hz/pixel, 32 channel head coil, and

acceleration factor of 2.

Multi-shell Diffusion-weighted MRI: Spin-echo single-shot

EPI sequence, TR/TE = 15700/73ms, flip angle = 90◦,

slices = 118, FOV = 140×140 mm2, voxel size = 0.8×0.8×0.8

mm3, bandwidth = 1185 Hz/pixel. Three repetitions of

diffusion MRI scans were acquired with 11 b-value of 0

s/mm2 and 60 directions for each b-value of 1,000, 2,000, and

3,000 s/mm2.

MRI preprocessing

MRI scans were preprocessed using the standard in-house

pipeline (https://github.com/pnlbwh) (Figure 1). Both sMRI and

dMRI image modalities were visually inspected for significant

artifacts and signal dropouts. Upon manual visual inspection

of dMRI data, we observed that one of the three repetition

scans from two monkeys, each had significant motion artifacts

through most volumes and hence if one or more slices

had motion artifacts the corresponding dMRI volume was

removed from further processing. No data was removed from

the remaining repetition scans as we were able to correct

for minor motion artifacts. This data can be made available

upon request.

Diffusion-weighted MRI scans: Diffusion MRI scans for each

monkey included three repetitions/runs which went through

the following preprocessing steps (Figure 1) that included MP-

PCA denoising (Veraart et al., 2016) using https://github.com/

NYU-DiffusionMRI/mppca_denoise code, followed by motion

correction, brain extraction and eddy current correction using

Functional Magnetic Resonance Imaging of the Brain (FMRIB)

Software Library (FSL) software (http://www.fmrib.ox.ac.uk/fsl)

(Smith et al., 2004) on each run. The three preprocessed runs

were then averaged into one volume for each monkey.

T1-weighted scans: T1-weighted scans went through the

preprocessing steps (Figure 1) that included skull stripping

and bias field correction using FSL (Smith, 2002). Next, T2-

weighted images were synthetically generated using in-house

MATLAB scripts that performed a cascade of image processing

steps including intensity reversal, log transformation for image

enhancement and histogram equalization on preprocessed T1-

weighted scans (Kubicki et al., 2019). T2-weighted images

were generated for accurate co-registration of the T1-weighted

images and associated brain parcellation with dMRI data (as the

intensities of T2-weighted and b = 0 dMRI images are quite

similar). In order to calculate regional diffusion MRI measures,

a brain macaque atlas (Dubach and Bowden, 2009; Rohlfing

et al., 2012) was non-linearly registered first to the T2-weighted

images and then to the diffusion space for each monkey, using

Advanced Normalization Tools (ANTs) registration (Avants

et al., 2014).

Fitting di�usion MRI models

DTI Model: Conventional diffusion tensor imaging (DTI)

model was fit using Slicer v4.8 (http://www.slicer.org), (Fedorov

et al., 2012) to diffusion MRI data using the b = 0 and b = 1000

s/mm2 shells of the multi-shell diffusion MRI scans. DTI model

is a single tensor model and relies on the assumption that water

diffusion in the brain follows a mono-exponential Gaussian

distribution (Basser et al., 1994; Jones and Cercignani, 2010).

Using this DTI model, scalar maps of fractional anisotropy (FA)

and trace (Tr) were computed for each monkey. FA represents

the degree of anisotropy of the biological tissue and has been

commonly used to study white matter structure. Trace describes

the average mobility of water molecules in the tissue.

Biexponential model: A more sensitive model, i.e.,

biexponential model was fit to the multi-shell dMRI data,

which allows modeling of non-Gaussian water diffusion

behavior in brain tissue exhibited by the underlying biological

structures e.g., myelin, cell bodies and its processes (Özarslan

et al., 2013; Rathi et al., 2013; Baxi et al., 2020). The model

consisted of a weighted mixture of two exponentials oriented in

the same direction modeling the signal across multiple b-values

and gradient directions (Mulkern et al., 1999; Rathi et al., 2013).

CSF contamination was accounted for and removed when we

modeled the diffusion behavior using the biexponential model.

This model consisted of an isotropic compartment to model

the CSF contamination apart from the restricted compartment

to model the non-gaussian diffusion in the GM tissue for each

voxel. This allowed us to remove CSF contamination before

computing the dMRI measures used in further analysis. More

details on this model can be found in a recently published paper

by Baxi et al. (2020). Scalar maps of return-to-origin-probability

(RTOP) and mean squared displacement (MSD) were then

computed for each monkey using this biexponential model

(Ning et al., 2015; Baxi et al., 2020). MSD primarily captures

the displacement of fast-moving water molecules (i.e., it is more

sensitive to larger displacements).
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FIGURE 1

Pipeline for dMRI and T1-weighted scans preprocessing and analysis. dMRI data underwent a cascade of preprocessing steps including MP-PCA
denoising, motion correction, and eddy current correction, followed by masking and brain extraction. T1-weighted images also underwent
preprocessing steps including bias field correction and brain extraction. Next, brain macaque anatomical atlas was registered to T1 space and
then to di�usion space. Two dMRI models of DTI and the biexponential model were fit to the dMRI data and corresponding scalar maps of trace,
FA (from DTI) and MSD, RTOP (from biexponential model) were computed. Using the dMRI scalar maps computed from the two model fits and
the atlas registered to the dMRI data, regional average and variance/heterogeneity of these dMRI measures (FA, Trace, MSD and RTOP) were
computed.

Immunohistochemistry

Macaque postmortem tissue processing and
histology

The four monkeys that were scanned in-vivo to acquire

dMRI scans, were sacrificed shortly after the MRI scans.

They were deeply anesthetized with sodium pentobarbital and

perfused transcardially through the aorta with Krebs Henseleit

buffer, pH 7.4 at 4◦C for 5min while fresh tissue samples were

harvested. This was followed by perfusion with 4% buffered

paraformaldehyde (pH 7.4, 37◦C) for 10min. Next, the brain

was blocked, in situ, in the coronal stereotactic plane, removed

from the skull and placed in the same paraformaldehyde fixative

overnight at 4◦C. It was then cryoprotected by incubations in

0.1M phosphate buffer containing first 10% glycerol with 2%

DMSO and then 20% glycerol and 2% DMSO (Rosene et al.,

1986). Next it was flash frozen in isopentane at −75◦C and

stored at −80◦C. Frozen sections were cut into interrupted

series on a sliding microtome. Eight sections were cut at 30µm

thickness and one at 60µm and this was repeated until the entire

whole hemisphere brain was cut. As a result, sections within

each series are spaced at 300µm intervals. The 60µm sections

were mounted onto gelatin-albumin subbed microscope slides,

dried overnight at room temperature and then stained with

thionin to reveal cell bodies. This series was prepared for

digitization as done here and for stereology which is more

efficient with the thicker sections. The other 8 series of 30µm

sections are collected in phosphate buffer with 15% buffered

glycerol and stored at −80◦C until needed for other staining

such as immunohistochemistry (IHC) (see Estrada et al. (2017)

for examples). No 30µm IHC series were analyzed for this study.

Microscopy digitization

We then digitized the stained slices by imaging them using

a Zeiss Axioscan microscope with 10x objective to obtain Z-

stacked images which were then merged into a single image

per slice with resolution of 0.44×0.44 µm2. Z-stack imaging of

tissue samples, allows for accurate visualization of the cell bodies

in the tissue.

Cell segmentation of digitized histological
slices

To avoid registration errors between histology and

dMRI, we used manual delineations of nine cortical and

subcortical regions on histology sections. We then segmented

the histological slices to identify stained cell bodies using the

MATLAB Image Processing Toolbox and Nuclei Counter Code

(https://www.mathworks.com/matlabcentral/fileexchange/
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45174-nuclei-counter) (Figure 2). The segmentation quality

of our code was assessed by comparing the automatically

segmented samples with the manually segmented samples

(performed by trained expert). Three samples were chosen

randomly from the anterior, middle, and posterior sections

of each ROI. Measures of Dice coefficient and error in cell

area density were computed for each of these samples upon

comparing the automated cell segmentation with the manual

cell segmentation.

Computing average and heterogeneity
regional measures

The distribution profile of diffusion measures and

histological cytoarchitectural properties of cell composition

in any brain region should be described by two metrics,

mean/average and variance/heterogeneity, as opposed to just

the mean/average which is commonly done. This is because

two very differently shaped distribution profiles as seen in

Figure 3 could have similar means and using only the mean

to characterize a distribution profile would give the false

impression of the distributions being similar when they might

be different in their variance.

Since cortex is highly plastic and undergoes changes in

cellular composition with age, this could alter the spatial

organization of GM within a voxel and hence change

heterogeneity measures (Zatorre et al., 2012; Rathi et al., 2014).

The importance of using variance/heterogeneity to study the

structure has also been shown by previous studies to differentiate

between patients with early course schizophrenia and healthy

controls (Seitz et al., 2018) and to study/detect disruption of

migration patterns of neural crest cells in 22q11DS (Kikinis et al.,

2019).

Hence, in this study, we computed both mean/average and

variance/heterogeneity of dMRI and histological measures for

nine gray matter regions. It is well known from neurobiology

literature (Brodmann, 1909; Vogt and Vogt, 1926; Goldman-

Rakic, 1982) that different brain areas including cortical and

subcortical regions, vary in their cellular composition and

organization across different gray matter regions. The nine

GM ROIs used in this study (Figure 4), were chosen to

get a good sampling of different cytoarchitectural properties.

Hence it included cortical regions of anterior cingulate gyrus

(ACG), precentral gyrus, postcentral gyrus, superior temporal

gyrus (STG), insular cortex and entorhinal cortex along with

subcortical regions of caudate, putamen, and thalamus.

Estimating regional average and heterogeneity
DMRI measures

The brain macaque atlas (Dubach and Bowden, 2009;

Rohlfing et al., 2012) was registered to the dMRI scans for

each monkey which was used to compute regional average

(avgdMRImeas) and heterogeneity (hdMRImeas) of dMRI

measures for nine GM regions of interest (ROIs). These

measures were computed using FA, trace, MSD and RTOP

for each monkey. AvgdMRImeas was computed by taking the

average of a given dMRI measure (FA/trace/MSD/RTOP) over

all voxels in an ROI. HdMRImeas is defined as the inter-

voxel variance in a given dMRI measure (FA/trace/MSD/RTOP)

across a region.

avgdMRImeas=
1

N
×

N∑

i=1

dMRImeasi

N is the number of voxels in the ROI and the dMRI measure

in a voxel is indexed by i.

hdMRImeas=
1

N2
×

N∑

i=1

N∑

j=1

‖dMRImeasi−dMRImeasj‖

N is the number of voxels in an ROI and the dMRI measure

in a voxel is indexed by i or j.

Estimating regional average and heterogeneity
histological measures

Next, we computed analogous histological measures of cell

area density and heterogeneity of cell area density for the same

9 ROIs for each monkey, to compare with regional average and

heterogeneity of dMRI measures (Figure 5). Cell Area Density

for each region was computed as the fraction of area covered by

cell bodies in each ROI. In order to compute the heterogeneity of

cell area density, each ROI was resampled into 2D grid to match

the diffusion voxel size. Variance of cell area density was then

computed across all such 2D voxel-sized squares within each

ROI, which provided us the heterogeneity in cell area density.

Comparing in-vivo DMRI measures with
ex-vivo histology measures

In order to quantify the contribution of regional histological

measures to the dMRI measures (FA/trace/MSD/RTOP), we

conducted Pearson correlations between histology-derived

and dMRI-derived measures (Figure 5). We performed

correlations between average histology and dMRI measures

separately in cortical and subcortical regions, given the major

cytoarchitectural differences known to exist between cortical

and subcortical regions (Amunts and Zilles, 2015). All p-values

were corrected for multiple comparisons using FDR-correction.

We also checked for the effect of regional volume on regional

average cell area density and did not find any significant effect.
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FIGURE 2

Pipeline for digitized histological sections preprocessing and cell segmentation. Digitized histological section images underwent preprocessing
steps that involved top hat and bottom hat filtering, contrast enhancement, binarizing the image using a histogram-based threshold, filling holes
followed by connected-component labeling for cell segmentation and edge detection with Laplacian of gaussian filter for plotting the edges of
the cell bodies.

FIGURE 3

Example representation of the cytoarchitecture profile in di�erent gray matter regions. (Left) Two boxes represent two regions, with circles
representing cell bodies of di�erent types, sizes, and uniformly or non-uniformly packed, showing region 1 (blue) being less heterogeneous and
region 2 (purple) being more heterogeneous in the underlying cytoarchitecture. (Right) Plot shows an example of what the cytoarchitecture
profile would be expected to look like for region 1 (blue) and region 2 (purple) using two di�erent shaped distributions. Region 1 being less
heterogeneous, would be expected to show a distribution profile (in blue) that has a certain mean and a tighter variance. On the other hand, a
more heterogeneous region 2 would be expected to show a distribution profile (in purple) with similar mean but a much larger variance than
region 2. The shape of the two-distribution profile for region 1 and region 2 can be seen to be described by both mean and the variance.
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FIGURE 4

Cortical and subcortical ROIs. 3D rendering and projection on T1-weighted image of the nine regions used in this study for the region-based
comparison between histology and dMRI are shown in this figure. The color coding for the regions is as follows: anterior cingulate gyrus (ACG)
in sky blue, caudate in orange, entorhinal gyrus in yellow, insula in dark green, postcentral gyrus in red, precentral gyrus in light blue, putamen in
light green, superior temporal gyrus (STG) in dark pink, and thalamus in light pink.

FIGURE 5

Comparison between regional histology and dMRI measures. In this figure, we only show the comparison between histology and dMRI measure
of trace as an example. Similar comparisons were preformed between histology and other dMRI measures of FA, MSD and RTOP. (Left section)
Top histology images are zoomed in sections, from a cortical region of precentral gyrus showing large Betz cells and heterogeneous
cytoarchitecture, and another from a subcortical region of thalamus showing homogeneous cytoarchitecture. Bottom dMRI image is a trace
map from the same monkey as the top histology images. (Middle and Right sections) Regional average and variance/heterogeneity measures
were computed for the same nine regions from the histology and dMRI data which were then compared using Pearson correlation. Regional
average and heterogeneity of cell area density were computed from the histology data to be compared with corresponding regional average
and heterogeneity of dMRI measures (FA, trace, MSD and RTOP). Right section also shows a small graphical representation of how a less
heterogeneous (left box) vs. a more heterogeneous region (right box) would look like, using circles to represent cell bodies of di�erent cell sizes,
types, and locations.
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Results

Cell segmentation algorithm quality
assessment

Quality of our automated cell segmentation was assessed

by comparing the automatically segmented samples with the

manually segmented samples that were chosen from the anterior,

middle, and posterior sections of each ROI. Quantitative

measures of dice overlap coefficient and error in cell area density

were computed for each sample. Dice coefficient provides the

similarity index between two segmentations and ranges from

0 to 1, with 1 signifying an absolute match. Samples from all

three portions of all the ROIs showed high dice coefficient

which varied between 0.91 and 0.99, and an average error in the

estimated cell area density measure of less than 0.04.

Comparing DMRI (in-vivo) measures with
histology (ex-vivo) measures

Comparison between dMRI measures (DTI and

biexponential model) and corresponding histology measures of

cell area density computed for 9 GM regions from four rhesus

macaques, showed the following results.

Average regional measures

Average cell area density values which were computed as

the fraction of area covered by all cell bodies (Figure 6) were

overall consistent with the previous studies (Semendeferi et al.,

2001; Casanova et al., 2002) that measured Gray Level Index

(GLI) which is defined as the fraction of the area covered by

Nissl-stained neurons and glial cells in postmortem samples.

Gray level index is thus the same as the average cell area density

defined in this study. Average trace showed significant positive

correlation with average cell area density in cortical regions

(r = 0.47, p = 0.02), whereas it showed significant negative

correlation in subcortical regions (r = −0.71, p = 0.0097)

(Figure 6). Similarly, between average cell area density and

average MSD, results showed a positive correlation in cortical

regions (r = 0.64, p = 0.00076), whereas a negative correlation

was shown in subcortical regions (r = −0.7, p = 0.011)

(Figure 6). Average FA when correlated with average cell area

density did not show significant correlation in cortical regions

(r = −0.36, p = 0.082) but showed positive correlation in

subcortical regions (r = 0.74, p = 0.0062) (Figure 6). Average

RTOP did not show significant correlation (p > 0.05) with

average cell area density in either cortical or subcortical regions.

Variability in the histology and dMRI measures within each

region can be observed across the four monkeys (same colors

on Figure 6) showing the sensitivity to inter-subject differences

in the brain structure. Even though measures for each region

from all four monkeys show some variation, they tend to

cluster together, highlighting the robustness of our results

across monkeys.

Heterogeneity regional measures

Regional heterogeneity in cell area density measure

computed from histology data showed a high positive

significant correlation with DTI-derived hTrace (r = 0.73,

p = 4.3∗10−7) and biexponential model-derived hMSD

(r = 0.68, p = 6.1∗10−6) measures and moderate correlation

with DTI-derived hFA (r = 0.4, p = 0.015) (Figure 7). No

significant correlation was observed between the histological

measure of regional heterogeneity in cell area density measure

and biexponential model-derived hRTOP (p > 0.05) (Figure 7).

We also performed correlations between heterogeneity

histology and dMRI measures separately in cortical and

subcortical regions, which showed similar trends as the results

upon combining cortical and subcortical regions in the same

analysis. Overall, these results showed that the higher the

heterogeneity in cell area density, the higher the heterogeneity

in trace and MSD (and FA to a smaller degree).

Discussion

This study presents an important step toward quantifying

the contribution of GM cytoarchitecture to in-vivo dMRI

measures using histology in rhesus monkeys. This research

paves the way for bridging the gap between the two distinct

modalities and allows for a better and more informed use

of dMRI in the future. Specifically, we aimed to investigate

the influence of the underlying cell composition and spatial

organization/distribution on dMRI measures estimated using

the conventional DTI model (FA and trace) and an advanced

biexponential model (MSD and RTOP). This was achieved

by conducting correlations between regional average and

heterogeneity of cell area density (estimated using Nissl-stained

digitized histology data) and corresponding dMRI measures

(FA, trace, MSD and RTOP), in the same four rhesus monkeys.

The work presented here is based on in-vivo dMRI in non-

human primate animal models and provides an important guide

to interpreting the results of in-vivo dMRI measures in the

human brain (Gao et al., 2013). The main finding of this

study is that regional heterogeneity in trace and MSD measures

from dMRI capture the underlying biological features of spatial

arrangement of cell bodies as measured by heterogeneity of cell

area density in that region.

Our results showed a statistically significant positive

correlation between the histological measure of regional

heterogeneity in cell area density and dMRI heterogeneity

measures of trace and MSD. This suggests that the dMRI

heterogeneity measures are sensitive to heterogeneity in the cell
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FIGURE 6

Average histology vs. di�usion MRI correlations separately in cortical and subcortical regions. (Top row) Plots show linear fits used to model the
relationship between regional average of cell area density from histology and dMRI regional average measures of trace, FA and MSD in cortical
regions, acquired from the same four monkeys. (Bottom row) Plots show linear regression fits for regional average cell area density (histology)
vs. regional average dMRI measures of trace, FA and MSD in subcortical regions, acquired from the same four monkeys. All plots show 95%
confidence band in gray color around the linear regression line. Pearson correlation co-e�cient r and its p-value have been indicated on the
top left corner for each plot. In each plot, individual points have been color coded to represent a region from the four monkeys. The color
coding for the regions is as follows: anterior cingulate gyrus (ACG) in sky blue, caudate in orange, entorhinal gyrus in yellow, insula in dark green,
postcentral gyrus in red, precentral gyrus in light blue, putamen in light green, superior temporal gyrus (STG) in dark pink, and thalamus in light
pink.

FIGURE 7

Heterogeneity in histology vs. di�usion MRI correlations. Plots show linear fits used to model the relationship between regional heterogeneity of
cell area density from histology and dMRI regional heterogeneity measures of trace, FA and MSD acquired from the same four monkeys. All plots
show 95% confidence band in gray color around the linear regression line. Pearson correlation co-e�cient r and its p-value have been indicated
on the top left corner for each plot. In each plot, individual points have been color coded to represent a region from the four monkeys. The
color coding for the regions is as follows: anterior cingulate gyrus (ACG) in sky blue, caudate in orange, entorhinal gyrus in yellow, insula in dark
green, postcentral gyrus in red, precentral gyrus in light blue, putamen in light green, superior temporal gyrus (STG) in dark pink, and thalamus in
light pink.

area density, driven by the variability in cell size and cell packing

density in a region. A region is considered to be homogeneous

in cytoarchitecture if the variation in the cell size and type is low

and they are uniformly distributed across the region. Conversely,

a region with cell bodies of varied sizes and shapes organized

in a complex, non-uniform arrangement is considered to have a
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FIGURE 8

Regional average vs. heterogeneity of dMRI measures. In this figure, scatter plots of regional average vs. heterogeneity of dMRI measures:
DTI-derived trace (left) and biexponential model-derived MSD (right), visually show clustering of each region from four monkeys. In each plot,
individual points have been color coded to represent a region from the four monkeys. Clusters of each region from four monkeys have been
delineated using color coded ellipses. The color coding for the regions is as follows: anterior cingulate gyrus (ACG) in sky blue, caudate in
orange, entorhinal gyrus in yellow, insula in dark green, postcentral gyrus in red, precentral gyrus in light blue, putamen in light green, superior
temporal gyrus (STG) in dark pink, and thalamus in light pink.

heterogeneous cytoarchitecture. Our findings show that hTrace

and hMSD can capture the variability in the underlying cell

composition and spatial arrangement.

GM regions are known to vary in their underlying

cytoarchitecture, with some regions exhibiting more

heterogeneity in the organization of cell bodies and its processes

compared to others. Our results reflect these differences between

regions. For example, the entorhinal cortex shows the highest

heterogeneity in trace and MSD and also in heterogeneity in

cell area density, as compared to their cortical and subcortical

regions. This finding corroborates with previous postmortem

studies reporting the complex cytoarchitectonic organization

of the entorhinal cortex, which can be further differentiated

into seven subfields on the basis of differences observed in

the morphological features visible in Nissl- and fiber-stained

preparations (Amaral et al., 1987; Sewards and Sewards, 2003).

These studies found that rostrally located fields show a number

of morphological inhomogeneities with neurons organized

in patches in contrast to the caudally located subfields that

more closely resemble the neocortex with neurons arranged

in discrete radial columns (Amaral et al., 1987; Sewards and

Sewards, 2003; de Góis Morais et al., 2020). Heterogeneity in cell

area density observed in precentral gyrus and postcentral gyrus

can be attributed to the presence of large pyramidal cells (Betz

cells), in the layer V of precentral gyrus as well as somatotopic

organization (Cusick et al., 1989; Krubitzer and Kaas, 1990; Fink

et al., 1997; Eickhoff et al., 2007). Among the subcortical regions,

our results show that caudate shows higher heterogeneity in

cytoarchitecture as compared with putamen, which is consistent

with a previous study that reported homogeneous cellular

appearance of the putamen compared to the more prominent

complex cellular islands consisting of densely packed neurons

of variable cell sizes and shapes seen in the caudate nucleus

(Goldman-Rakic, 1982).

Further, our results demonstrate that the dMRI measures

of hTrace, hFA, hMSD and hRTOP show differences in their

ability to capture the biological features of the underlying

cytoarchitecture. Both hMSD and hTrace show similar high

positive correlation with the histology measure of heterogeneity

in cell area density. This could be explained by the similarities

in the biophysical properties captured by these two measures

derived from DTI and biexponential models. Previous studies

have shown that MSD and trace measures are related via

the Einstein diffusion equation (Wu and Alexander, 2007;

Hosseinbor et al., 2013; Boscolo Galazzo et al., 2018) and have

been reported to show visually correlated behavior with very

similar tissue contrast maps (Wu and Alexander, 2007) and

similar patterns when studied in patients with ischemic oedema

(Alexander et al., 2007). These studies are thus consistent with

our finding of similar patterns seen in the correlations between

both hMSD and hTrace with heterogeneity in cell area density.

However it is important to note that previous studies have also

found MSD to be more sensitive to underlying microstructure

as compared to trace, demonstrating the advantage of using

the biexponential model measure of MSD (Boscolo Galazzo

et al., 2018). In contrast to the findings from MSD and trace,

hFA showed only low to moderate influence of heterogeneity

in cell area density. FA is known to measure the restriction and

anisotropy of water diffusion and, in WM it has been shown to

capture the underlying biological properties of myelin integrity

and axonal architecture (Alexander et al., 2007; O’Donnell and

Westin, 2011). Even in GM, postmortem validation studies have
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shown that orientation and distribution of myelin and axons

significantly contribute to FA (Kroenke et al., 2007; Jespersen

et al., 2012; Seehaus et al., 2015). Since our histology data did

not contain myelin stains, it is not surprising that there is only

a low to moderate correlation with cell composition observed

relative to FA. It is likely that similar to FA, the biological factors

of myelin and axons could also be a major contributor to RTOP

which is not captured by our Nissl-stained cell bodies and could

be the reason why our study found no significant contribution

of cell composition on RTOP and should be investigated in

future studies.

In contrast to the regional heterogeneity dMRI measures,

the regional average dMRI measures estimated from both

DTI and the biexponential model did not show significant

correlation with the histological measure of regional average

cell area density when all the regions (cortical and subcortical)

were included together in the correlation analysis. However,

separate analysis conducted in cortical and subcortical regions

revealed opposite trends showing positive correlation between

average trace, MSD, and average cell area density in cortical

regions whereas negative correlation in subcortical regions.

These opposing correlation trends observed between average

trace, MSD, and average cell area density in cortical vs.

subcortical regions, could explain the reason why we did not

see any significant correlation when including all the regions

(cortical and subcortical) together in the analysis. Future studies

with data from more subcortical regions and perhaps myelin,

dendrites, axonal, and cell type specific stains are needed to

understand the reason behind such opposing correlation trends

observed between the average dMRI and histology measures in

cortical vs. subcortical regions. Nevertheless, our results show

that regional average dMRI measures of trace and MSD are

sensitive to the underlying biological feature of average cell area

density. Additionally, the two-dimensional scatter plots of DTI-

derived trace measure (hTrace vs. avgTrace) and biexponential-

derived MSD measure (hMSD vs. avgMSD) (Figure 8), both

showed that the same regions from all four monkeys visually

clustered together.

Clustering of the same regions from all four monkeys

demonstrates that average and heterogeneity dMRI measures

together show regional specificity, suggesting sensitivity to

microstructural tissue properties. It is important to note that in

this study we only investigated the histological measure of cell

composition, and it is possible that other biological features of

myelin, axons, and dendrites are the likely contributors to the

dMRI measures.

Future implications

Investigation of the contribution of underlying

cytoarchitecture to the dMRI measures, provided us with

the much needed validation for dMRI measures of trace

and MSD regarding their ability to capture changes in cell

composition and organization in GM. Changes in cell density

and cell size as well as position due to cell migration, have been

observed during development and aging (Götz et al., 2016;

Martínez-Pinilla et al., 2016; Nakafuku and Del Águila, 2020;

d’Alessandro et al., 2021; Sikora et al., 2021). Non-invasive

imaging measures of hTrace, hMSD along with average trace,

and average MSD could be used as important tools in future

longitudinal research studies investigating GM changes during

normal development and aging. In addition, abnormalities in

the cellular microstructure have been reported in relation to

several developmental as well as degenerative disorders such as

autism, schizophrenia, Alzheimer’s, and Parkinson’s (Arnold

et al., 1991; Cho et al., 2016; Martínez-Pinilla et al., 2016;

Giguère et al., 2018). Our measures of MSD and trace could

thus prove extremely valuable biomarkers in the diagnosis and

treatment monitoring of such disorders.

Limitations

This study has a few limitations that must be acknowledged.

We acknowledge that other biological factors such as

synaptic changes (synaptogenesis, pruning) or changes

in dendritic arborization, myelination, axonal orientation

could also influence dMRI measures, which should be

investigated in future work. In addition, our histological

study used spaced sections forcing our analysis to be

conducted on 2D sections within a region, leading to

local discontinuities. In the future, methods such as

CLARITY that allow conducting histological measurements

in whole intact tissue followed by 3D imaging could

be used for validation of dMRI-based microstructure

estimates. Nevertheless, this study is an important first

step toward histological validation of dMRI measures in GM

in macaque.

Conclusion

Based on the results of our study we conclude that

dMRI measures can serve as imaging biomarkers of GM

cellular structure and organization. Average and heterogeneity

in dMRI measures of trace and MSD appear to be best suited

to study the underlying cytoarchitecture. Direct quantitative

comparisons conducted in this study between these dMRI

measures and histological features of cytoarchitecture would

provide an important guide to interpreting the results of

studies using these dMRI model-derived measures. These

dMRI measures of hTrace, hMSD, average trace and average

MSD thus have the potential for use as non-invasive imaging

biomarkers in studies that involve investigation of the changes

in GM cytoarchitecture related to development and aging in
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healthy populations as well as abnormal cellular pathologies in

clinical studies.
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