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The detection of new multiple sclerosis (MS) lesions is an important marker of

the evolution of the disease. The applicability of learning-basedmethods could

automate this task e�ciently. However, the lack of annotated longitudinal

data with new-appearing lesions is a limiting factor for the training of robust

and generalizing models. In this study, we describe a deep-learning-based

pipeline addressing the challenging task of detecting and segmenting new MS

lesions. First, we propose to use transfer-learning from a model trained on a

segmentation task using single time-points. Therefore, we exploit knowledge

from an easier task and for which more annotated datasets are available.

Second, we propose a data synthesis strategy to generate realistic longitudinal

time-points with new lesions using single time-point scans. In this way, we

pretrain our detection model on large synthetic annotated datasets. Finally,

we use a data-augmentation technique designed to simulate data diversity

in MRI. By doing that, we increase the size of the available small annotated

longitudinal datasets. Our ablation study showed that each contribution lead to

an enhancement of the segmentation accuracy. Using the proposed pipeline,

we obtained the best score for the segmentation and the detection of new MS

lesions in the MSSEG2 MICCAI challenge.

KEYWORDS

new lesion detection, new lesions segmentation, data augmentation, transfer

learning, data synthesis

1. Introduction

Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous

system. The pathology is characterized by inflammatory demyelination and axonal

injury, which can lead to irreversible neurodegeneration. The disease activity, such as

MS lesions, can be observed using magnetic resonance imaging (MRI). The detection

of new MS lesions is one of the important biomarkers that allow clinicians to adapt the

patient’s treatment and assess the evolution of this disease.

Recently, the automation of single time-point MS lesion segmentation has shown

encouraging results. Many techniques showed performance comparable to clinicians in

controlled evaluation conditions (refer to Commowick et al., 2016; Carass et al., 2017).

Thesemethods use a single time-point scan to segment all appearing lesions at the time of

the image acquisition. However, these cross-sectional techniques are not adapted to the

longitudinal detection of new lesions. Indeed, using these methods requires repeatedly
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running the segmentation process for each time-point

independently to segment MS lesions before detecting new

ones. Unlike the human reader, these methods are not designed

to jointly exploit the information contained at each time point.

Consequently, single-time MS lesion segmentation methods

performance is not optimal for the detection of new lesions

between two time-points. Moreover, inconsistencies may appear

between segmentations of both time-points since they are

processed independently.

To specifically address this detection task using both

time-points at the same time, some detection methods have

been proposed. In one of the earliest studies, Bosc et al.

(2003) used a nonlinear intensity normalization method

and statistical hypothesis test methods for change detection.

Elliott et al. (2013) used a Bayesian tissue classifier on the

time-points to estimate lesion candidates followed by a

random-forest-based classification to refine the identification

of new lesions. Ganiler et al. (2014) used image subtraction

and automated thresholding. Cheng et al. (2018) integrated

neighborhood texture in a machine learning framework.

Salem et al. (2018) trained a logistic regression model with

features from the image intensities, the image subtraction

values, and the deformation field operators. Schmidt et al.

(2019) used lesion maps of different time-points and FLAIR

intensities distribution within normal-appearing white

matter to estimate lesion changes. Krüger et al. (2020)

used a 3D convolutional neural network (CNN) where

each time-point is passed through the same encoder. Then,

the produced feature maps are concatenated and fed into

the decoder.

Training learning-based methods for the task of new

lesions detection require a dataset specifically designed for

the task. The most obvious form of the training data would

be a longitudinal dataset of MS patients (with two or more

successive time-points) with new appearing lesions carefully

delineated by experts in the field. However, the construction

of such a dataset is very difficult. To begin, new lesions may

take several months or even years to appear and be visible

in a patient’s MR image. Moreover, a time-consuming and

costly process is necessary for several experts to annotate new

lesions from the two time-points and to obtain an accurate

consensus segmentation. Although the organizers of the

MICCAI Longitudinal Multiple Sclerosis Lesion Segmentation

Challenge (MSSEG2-challenge MICCAI, 2021) provided such a

dataset, the training set is severely impacted by class imbalance

(refer to Section 2.5.3 for more details) due to the difficulty

of finding new lesions in the follow-up scan. This under-

representation of new lesions in longitudinal datasets is limiting

the training of state-of-the-art deep learning algorithms from

scratch on this complex task. Besides, achieving generalizing

results on unseen domains (refer to Mårtensson et al., 2020;

Bron et al., 2021; Omoumi et al., 2021) may require more

data diversity.

Several studies tackled the problem of training data scarcity.

First, transfer learning is a strategy used to create high-

performance learners trained with more widely available data

from different domains when the target domain/task data are

expensive or difficult to collect (refer to Torrey and Shavlik,

2009; Weiss et al., 2016). Second, synthetic data generation is

performed by using a model able to simulate realistic artificial

data that can be used during training (refer to Tremblay

et al., 2018; Tripathi et al., 2019; Khan et al., 2021). Third,

data-augmentation is a set of techniques used to handle the

variability in real-world data by enhancing the size and quality

of the training dataset (refer to Shorten and Khoshgoftaar,

2019). Recently, Zhang et al. (2020) showed that applying

extensive data augmentation during training also enhances the

generalization capability of the methods.

In this article, we propose an innovative strategy integrating

these three strategies into a single pipeline for new MS lesion

segmentation to tackle data rarity for our task. First, we use

transfer-learning to exploit the larger and more diverse datasets

available for the task of single-point MS lesion segmentation

which does not require longitudinal data. Second, we propose

a novel data synthesis technique able to generate two realistic

time-points with new MS lesions from a single FLAIR scan.

Third, we use a data-augmentation technique to simulate a large

variety of artifacts that may occur during the MRI acquisitions.

This technique aims to enhance both the variability and size of

the training data and to improve the generalization of ourmodel.

2. Methods and materials

2.1. Method overview

To deal with data rarity for new MS lesion segmentation,

we proposed a three stage pipeline as shown in Figure 1. In

Stage One, an encoder-decoder network is trained on the task

of single time-point MS lesions segmentation. This step aims

to train the encoder part of the network to extract relevant

features related to MS lesions that can be used in the next steps.

Stage One enables to indirect use of large datasets dedicated to

single time-point MS lesion segmentation for the task of new

lesions segmentation. This stage is detailed in Section 2.2. In

Stage Two, the new lesions segmentationmodel composed of the

previous task encoder is pretrained with synthetic data. To this

end, we trained external models able to generate two realistic

time-points from a single image also taken from single time-

point MS datasets. It combines the effects of lesion inpainting

and lesion generating models to simulate the appearance of new

lesions. This strategy is detailed in Section 2.3. In Stage Three,

the decoder is fine-tuned with real longitudinal data from the

new MS lesion training-set of the MSSEG2 MICCAI challenge.
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FIGURE 1

The pipeline of our new MS lesion segmentation method. The three stages include: First, the pre-training on the task of single-time-point MS

lesion segmentation (Task 1). Second, pre-training on the task of new MS lesions segmentation (Task 2) with synthetic data. Third, fine-tuning

the model with real data. The encoder weights are trained (T) in Stage One and freezed (F) in Stage Two and Stage Three.

2.2. Transfer-learning from single
time-point MS lesion segmentation task

The encoder used for new MS lesion segmentation is first

trained on single time-point lesion segmentation (refer to

Figure 2, from Stage One to Stage Two). This choice is motivated

by two reasons. First, we consider that datasets for MS lesion

segmentation with lesion mask segmentation by experts are

more diverse and larger than available datasets for new lesion

segmentation (which requires a longitudinal study). Second, the

task of MS lesion segmentation is tightly close to the one of

newMS lesion segmentation. By learning to segment lesions, the

model implicitly learns the concept of a lesion, either the lesion

is considered new or was already existing in the first time-point.

To conclude, since there is a proximity between the two tasks,

there is likely a gain from exploiting a large amount of training

data for the first task to improve the second task’s performance.

2.2.1. Model architecture design

Ourmethod is based on the transfer learning from the task of

“Single time-point MS lesion segmentation” to the task of “new

lesions segmentation from two time-points.” Thus, two different

architectures are used but with the same building blocks for each

task. For the first task, a 3D U-Net shape architecture is used,

as shown in Figure 3A. This kind of architecture has been very

effective and robust for MS lesion segmentation (Isensee et al.,

2021; Kamraoui et al., 2022). It is composed of an encoder and a

decoder linked with one another by skip connections.

For the second task, a siamese-encoder followed by a single

decoder is used, as shown in Figure 3B. The shared-weights

encoders are chosen to extract the same set of features from both

time points. Then, these features resulting from the different

levels of both encoder paths are aggregated (refer to Figure 3B).

The aggregation module is composed of concatenation and a

convolution operation. Feature maps are first concatenated by

channels (i.e., the result channel size is two times the original

size), then the convolution operation aggregates the information

back to the original channel size. Finally, the aggregated features

are passed through the decoder.

2.3. Time-points synthesis

The data synthesis method is based on the simulation of

newMS lesions between two time-points using single time-point
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FIGURE 2

The diagram represents our training method. Input images are augmented with the proposed method (DA). The encoder trained in Stage One is

used in Stage Two and Stage Three to extract feature maps (FMs) of the two-time points. The aggregation block (Concat. FMs) is used to

combine features.

FLAIR images. As shown in Figure 4, our pipeline generates

“on the fly” synthetic 3D patches that represent longitudinal

scans of the same patient with evolution in their lesion mask.

The synthetic data is generated in three steps. In the first

step, a 3D FLAIR patch and its MS lesion segmentation mask

are randomly sampled from different MS lesion segmentation

datasets (refer to Section 2.5.1). Then, the patch and lesion mask

are randomly augmented with flipping and rotations. A copy of

the FLAIR patch is performed to represent the two time-points.

Then, both identical patches are altered with the described data

augmentation (refer to Section 2.4) to differentiate the two

patches. At this point, the lesion masks of the two synthetic

time-points are still identical. Thus, there are no new lesions.

In the second step, a connected component operation is used

to separate each independent lesion from the lesion mask. Each

lesion is either inpainted (i.e., removed) from one of the two

time-points or both of them, or it can be kept in both of the time-

points. The lesion inpainting model is used to inpaint the lesion

region with hallucinated healthy tissue (refer to Section 2.3.1).

Next, the new lesionmask is constructed from lesion regions that

have been kept in the second time-point but not the first one. In

the third step, the lesion generator model is used to simulate new

synthetic lesions at realistic locations (using white/gray matter

segmentation and a probabilistic distribution of MS lesions on

the brain in the MNI space). Synthetic lesions are generated for

one of the time-points or both of them (refer to Section 2.3.2).

Similar to the previous step, the new lesion mask is updated to

include only the generated lesions on the second time-point.

2.3.1. Lesion inpainting model

The lesion inpainting model is trained, independently and

priorly to our proposed pipeline, with randomly selected 3D

FLAIR patches which do not contain MS lesions or white

matter hyperintensities. Similar to Manjón et al. (2020), A

3D U-Net network is optimized to reconstruct altered input

images. Specifically, the input patch is corrupted with Gaussian

noise (i.e., with a mean and a standard deviation of the image

intensities) in lesion-like areas at random locations. When the

model is trained, it can be used to synthesize healthy regions in

lesion locations that are replaced with random gaussian (refer to

Manjón et al., 2020 for details).

2.3.2. Lesion generator model

The lesion generator is trained before our proposed pipeline

to simulate realistic lesions. The generator is a 3D U-Net

network with two input channels and one output channel. The

first input channel receives an augmented version of 3D FLAIR

patches containing MS lesions where lesions are replaced with

random noise. The second input channel receives the MS lesion

mask of the original 3D FLAIR patch. The output channels

predict the original 3D FLAIR patch with lesions. Thus, the

trainedmodel can simulate syntheticMS lesions from a 3D patch

of FLAIR and its corresponding lesion mask.

2.4. Data augmentation

The quality of the MRI greatly varies between datasets.

The quality of the images depends on several factors such

as signal-to-noise ratio, contrast-to-noise ratio, resolution, or

slice thickness. Since our training set is limited, it does

not reflect the diversity of real-world images. To make our

training stages robust to the large variety of artifacts that

may occur during the MRI acquisitions, an extensive Data
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FIGURE 3

(A) Represents U-Net like architecture composed of an encoder (in red) and a decoder for the task of MS lesion segmentation (in green). This

task requires a single time-point as input and produces the MS lesion mask. (B) Shows a siamese-encoder (in red) to extract the same sets of

features from the two time-points. Same-level features are aggregated with a combination module and are forwarded to a decoder for the task

of new lesions segmentation (in blue).

Augmentation (DA) is used (refer to “DA” in Figure 2 and “Data

Augmentation” in Figure 4). Such DA technique also helps to

better oversample the scarce samples with new lesions (refer to

Section 2.5.3).

We use an improved version of the data augmentation

strategy proposed in Kamraoui et al. (2022), which simulates

MRI quality disparity. During training, we simulate “on the fly”

altered versions of 3D patches. We randomly introduce a set of
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FIGURE 4

Synthetic time points with new MS lesion generation pipeline. Dashed orange and green rectangles on images represent areas where lesions are

inpainted or generated.

alterations in the spatial and frequency space (k-space): Blur,

edge enhancement, axial subsampling distortion, anisotropic

downsampling, noise, bias-field variation, motion effect, MRI

spike artifacts, and ghosting effect. Figure 5 shows augmentation

samples.

For the blur, a gaussian kernel is used with a randomly

selected standard deviation (SD) ranging between [0.5, 1.75].

For edge enhancement, we use unsharp masking with the

inverse of the blur filter. For axial subsampling distortion, we

simulate acquisition artifacts that can result from the varying

slice thickness. We use a uniform filter (a.k.a mean filter) along

the axial direction with a size of [1×1×sz] where sz ∈ 2, 3, 4. For

anisotropic downsampling, the image is downsampled through

an axis with a random factor ranging between [1.5, 4] and

upsampled back again with a B-spline interpolation. For noise,

we add to the image patch a Gaussian noise with 0 mean and an

SD ranging between [0.02, 0.1]. Bias-field variation is generated

using the study of Sudre et al. (2017) which considers the bias

field as a linear combination of polynomial basis functions.

Motion effect has been generated based on the study of Shaw

et al. (2018). The movements are simulated by combining in the

k-space a sequence of affine transforms with random rotation

and translation in the ranges [−5, 5] degrees and [−4, 4] mm,

respectively. Both MRI spike artifacts and the ghosting effect

have been generated with the implementation of Pérez-García

et al. (2021).

2.5. Data

Different datasets are used for the training and validation of

the two tasks (refer to Table 1).

2.5.1. Single time-point datasets

For time-points synthesis (refer to 2.3) and encoder

pretraining (refer to 2.2), we jointly used three datasets

containing single time-points FLAIR and lesion masks. First, the

ISBI (Carass et al., 2017) training-set contains 21 FLAIR images

with expert annotation done by two raters. Although the dataset
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FIGURE 5

Examples of data augmentation applied on FLAIR images.

TABLE 1 Summary of the used datasets. For each dataset, the object count (Obj. Count) and the total volume (Tot. Vol. cm3) represent, respectively,

the total number and the total volume in cm
3 of lesions or new lesions (depending on the task).

Task Dataset Patients Time-point Raters Obj. count Tot. vol. (cm3) Clinical site/Scanners

MS lesion segmentation

ISBI 5 4-5 2 514 243 Single-site

MSSEG’ 16 15 1 7 512 367 Multi-site: three sites

In-house 43 1 2 2,391 1,313 Multi-site

New MS lesion segmentation

MSSEG2

Training-set

40 2 4 123 23 Multi-site:

15 MRI scanners

MSSEG2

Test-set

60 2 4 174 60 (GE scanners only in Test-set)

is composed of longitudinal time-points from 5 patients, the

provided expert annotations focus on the lesion mask of each

time-point independently from the others and do not provide

new lesion masks. Thus, we use the 21 images independently.

Second, the MSSEG’16 training-set (Commowick et al., 2016)

contains 15 patients from three different clinical sites. Each

FLAIR image is along with a consensus segmentation for MS

lesions from seven human experts. Third, our in-house (Coupé

et al., 2018) dataset is composed of 43 subjects diagnosed with

MS. The images were acquired with different scanners and

multiple resolutions and their lesion masks have been obtained

by two human experts.

All images were pre-processed using the lesionBrain pipeline

from the volBrain platform (Manjón and Coupé, 2016). First,

it includes image denoising (Manjón et al., 2010). Second, an

affine registration to MNI space is performed using the T1w

modality, then the FLAIR is registered to the transformed T1w.

Skull stripping and bias correction have been performed on

the modalities, followed by the second denoising. Finally, the

intensities have been normalized with kernel density estimation.

2.5.2. Two time-points datasets

The dataset provided by the MSSEG2-challenge (MICCAI,

2021) is used to train our method. The challenge dataset features

a total of 100 patients with MS. For each patient, two 3D FLAIR

sequence time-points have been acquired spaced apart by a 1–

3 years period. The dataset has been split into 40 patients for
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training and 60 patients for testing. A total of 15 different MRI

scanners were used for the acquisition of the entire dataset.

However, all images from GE scanners have been reserved only

for the testing set to see the generalization capability of the

algorithms. Reference segmentation on these data was defined

by a consensus of four expert neuroradiologists.

For preprocessing, the challenge organizers proposed a

docker1 built with the Anima scripts. It includes bias correction,

denoising, and skull stripping. In addition, we added a

registration step to the MNI space using a FLAIR template, (i.e.,

the training and inference are performed in the MNI space,

then the segmentation masks are transformed-back to the native

space for evaluation).

Before challenge day, the testing set (the 60 patients) was not

publicly available. Thus, to test our methods (refer to Section

3.1.1), we defined an internal validation subset from the 40

challenge training data. Of the 40 patients, six cases containing

confirmed new lesions were kept out from the training-set and

were used as an internal test-set. For the challenge evaluation

(refer to Section 3.2), the model submitted to the challenge

organizers was trained on the entire MSSEG2 training-set.

2.5.3. Dataset class imbalance

Anomaly detection/segmentation tasks, such as MS lesion

segmentation, suffer from class imbalance where the positive

class is scarce (refer to Johnson andKhoshgoftaar, 2019). Herein,

the MSSEG2-challenge (MICCAI, 2021) dataset is composed

of 100 patients (40 for training and 60 for test) and all the

MS Lesions Segmentation datasets combined account for 64

patients and 79 images. Therefore, the number of image is

similar. However, the class imbalance is highly different when

evaluating the class imbalance using the number of objects

to detect/segment (which represent MS lesions for the first

task and new lesions for the second one) and their total

volume for each dataset (refer to Table 1). Indeed, we see that

the MSSEG2-challenge datasets (especially training-set) suffer

from more severe under-representation of the positive class.

Consequently, it will be more difficult to train a model for New

MS lesion segmentation than for the task of single time-point

MS lesion segmentation. Furthermore, it shows that MS lesion

segmentation datasets could significantly enrich the training of

New MS lesion segmentation models.

2.6. Implementation details

First, all models are trained on 3D image patches of size [64×

64×64]. For the two time-points new lesionmodel, an ensemble

of five networks (different training/validation data-split) is used.

1 https://github.com/Inria-Empenn/lesion-segmentation-challenge-

miccai21/

During inference, the consensus (prediction average) of the

ensemble segmentation is taken. For each voxel, the two classes,

output probabilities of the five networks are averaged, and the

class with the highest probability is picked (new lesion voxel or

not).

Second, the Dice-loss (soft DICE with probabilities as

continuous values) is used as a loss function for the training of

the single time-point MS lesion segmentation and the two time-

points new lesion models. The mean-squared error is used as

a loss function to train time-point synthesis models (inpainting

and lesion generator models).

Finally, the experiments have been performed using

PyTorch framework version 1.10.0 on Python version 3.7 of

Linux environment with NVIDIA Titan Xp GPU 12 GB RAM.

All models were optimized with Adam (Kingma and Ba, 2014)

using a learning rate of 0.0001 and a momentum of 0.9.

2.7. Validation framework

2.7.1. Evaluation metrics

The assessment of a segmentation method is usually

measured by a similarity metric between the predicted

segmentation and the human expert ground truth.

First, we use several complementary metrics to assess

segmentation performance. Namely, we use the Dice similarity

coefficient, the Positive Predictive Value (PPV or the precision),

and the true positive rate (TPR, known as recall or Sensitivity).

Dice =
2× TP

(TP + FN)+ (TP + FP)
, (1)

PPV =
TP

TP + FP
, TPR =

TP

TP + FN
, (2)

where TP, FN, and FP represent, respectively, true positives, false

negatives, and false positives.

Second, recent studies (i.e., Commowick et al., 2018)

question the relevance of classic metrics (Dice) compared to

detection metrics, which are used for MS diagnostic and clinical

evaluation of the patient evolution. Thus, in addition to the

voxel-wise metrics, we also use lesion-wise metrics that focus on

the lesion count. We use the lesion detection F1 (LesF1) score

defined as

LesF1 =
2× SL × PL

(SL + PL)
, (3)

where SL is lesion sensitivity, i.e., the proportion of detected

lesions and PL is lesion positive predictive value, i.e., the

proportion of true positive lesions. For result harmonization

with challenge organizers and participants, the same evaluation

tool is used, i.e., animaSegPerfAnalyzer (Commowick et al.,

2018). All lesions that are smaller in size than 3mm3 are

removed. For SL, only ground-truth lesions that overlap at least
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10% with segmented volume are considered positive. For a

predicted lesion to be considered positive for PL, it has to be

overlapped by at least 65% and do not go outside by more than

70% of the volume.

Finally, to jointly consider the different metrics (i.e.,

segmentation and detection performance), it would be

convenient to aggregate them into a single score. Thus, we

propose the average of DICE and LesF1 (Avg. Score) as an

aggregation score for comparing different methods.

2.7.2. Statistical test

To assert the advantage of a technique obtaining the highest

average score, we conducted a Wilcoxon test (i.e., paired

statistical test) over the lists of metric scores. The significance of

the test is established for a p-value below 0.05. In the following

tables, * indicates a significantly better average score when

compared with the rest of the other approaches.

3. Results

Several experiments were conducted on our methods,

including an ablation study and the comparison with state-of-

the-art methods in competition during the challenge evaluation.

3.1. Internal validation

3.1.1. Ablation study

To evaluate each contribution of our training pipeline,

Table 2 compares our full method with a baseline and other

variations of our method on the internal validation dataset. The

baseline in this experiment was trained with real time-points

only and by using a classic data augmentation composed of

orthogonal rotations and mirroring.

First, when using only transfer learning on top of the

baseline, we measured an increase in DICE and TPR compared

to the baseline but approximately the same LesF1 and PPV.

Second, when using only time-point synthesis pretraining on

the top of the baseline, we obtained a significantly higher

LesF1 compared to the baseline and an increase in DICE. This

variation also obtained the highest PPV at the expense of the

lowest TPR. Third, when comparing the use of the proposed

data augmentation, we see an increase in DICE and PPV

but approximately the same LesF1. Finally, when combining

the transfer learning, time-point synthesis pre-training, and

the proposed data-augmentation, we obtained the highest Avg.

Score, DICE, LesF1, and TPR.

3.1.2. The impact of longitudinal dataset size

Figure 6 shows the performance of our method when

trained with different longitudinal dataset sizes. From the 34

patients available for the training with two time-points in

Internal Validation settings (refer to Section 2.5.2), we tested the

performance of our model when training on 34, 36, 17, 8, and

0 patients. In the case of 0 patients, our method performance

was obtained using synthetic data only (i.e., Stage Two where

only cross-sectional MS segmentation databases were used as

described in Table 1). For the rest of the experiments, the

reported number of patients with two time-points was used for

the fine-tuning step (i.e., Stage Three).

First, for the baseline version (i.e., with neither pre-training

nor data augmentation), the graph can be separated into two

phases. From 0 to 17 patients, the graph shows an increase

in both metrics. From 17 to 34 patients, metrics of baseline

versions reach a plateau. Since the baseline is trained from

scratch, its performance improves with the increase in dataset

size. However, the performance increase is less significant for the

second phase since it is more difficult to improve metrics when

approaching their optimal value.

Second, for our method, the graph shows two phases. From

0 to 8 patients, the performance decreases slightly. From 8 to

34 patients, the graph shows a slow increase in metrics until

plateauing. Since we use transfer learning and pretraining on

synthetic data for our method, its performance does not depend

only on the number of patients fromMSSEG2 Training-set. The

drop in performance in the first phase can be explained by the

fact that using eight patients for fine-tuning is less effective than

using the model trained on synthetic data only.

3.2. Challenge evaluation

To evaluate our method on the challenge dataset, Table 3

compares it to the leader-board state-of-the-art methods. Results

of the top performing methods were reported from challenge-

day results.

Besides the top-performing methods, Table 3 also includes

the expert raters’ performance to give an insight into human

performance. Their performance is measured compared to

each other, contrary to the top methods that are evaluated

using consensus segmentation. Raters x vs. y means that we

evaluate the performance of rater x when considering rater

y segmentations as ground truth. Indeed, we consider that

such a strategy can be more meaningful than the consensus

segmentation in our case since the expert consensus already

encodes the raters’ segmentation and, thus, is unfair when

compared to other strategies that did not participate in the

consensus.

First, from the top five best-performing methods, LaBRI-

IQDA (Kamraoui et al., 2021; our team’s submission during

the challenge-day) obtained the best score for the challenge.

This method was similar to the proposed baseline with data

augmentation. Second, the proposed method (results obtained

after challenge-day) obtained the highest LesF1 and Average
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TABLE 2 The internal validation results for the ablation study.

Transfer learning Time-point synthesis Data augm. Avg. Score DICE LesF1 TPR PPV

✓ ✓ ✓ 0.543* 0.514* 0.573* 0.500* 0.546

✓ ✗ ✗ 0.483 0.480 0.486 0.461 0.532

✗ ✓ ✗ 0.501 0.461 0.541 0.384 0.602*

✗ ✗ ✓ 0.477 0.464 0.488 0.406 0.565

✗ ✗ ✗ 0.469 0.449 0.489 0.413 0.534

✓ and ✗ symbolize using or not each contribution. Bold values indicate the best result for a metric and * indicates that the advantage is statistically significant (Wilcoxon test).

FIGURE 6

The performance in the internal validation of our method and the baseline based on the number of patients used for training (from MSSEG2

Training-set).

scores. Moreover, these both scores are significantly better

than all the listed state-of-the-art methods. The DICE score

obtained by MedICL was not significantly better than the

one obtained by our method. Third, all but one (Empenn)

leader-board automatic method obtained better DICE than

raters segmentation. Our proposed method, LaBRI-IQDA, and

MedICL even surpassed all raters in Average Scores.

Figure 7 shows the segmentation of new lesions by our

proposed method. As a ground-truth reference, we compare the

segmentation with the consensus segmentation of raters. We

also compare each rater segmentation against their consensus.

From the five segmentation, we see that our segmentation is the

most accurate with the consensus. Each of the human experts

Rater 2, Rater 3, and Rater 4 missed one or multiple lesions

when segmenting this sample. Although Rater 1 did not miss

any lesions, we see that our segmentation is the closest to the

consensus.

Overall, our method obtained the best result in the MSSEG2

challenge evaluation (during the challenge and after). Moreover,

the result of the experiments showed that our segmentation is

objective and can produce more accurate segmentations than

human raters.

4. Discussion

The transfer-learning from a single time-point MS lesion

segmentation task is an effective method to train the model for

the task of two time-points new MS lesion segmentation even

with a small dataset. Indeed, it enables us to exploit the large
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TABLE 3 Results of MSSEG2-challenge (MICCAI, 2021) evaluation.

Experiment Avg. Score DICE LesF1

Raters 1 vs. 2 0.466 0.426 0.507

Raters 1 vs. 3 0.499 0.434 0.564

Raters 1 vs. 4 0.434 0.382 0.486

C
ha
lle
n
ge
-d
ay

LaBRI-IQDA (Kamraoui et al., 2021) 0.507 0.498 0.515

MedICL (Zhang et al., 2021) 0.503 0.506 0.5

SNAC (Cabezas et al., 2021) 0.496 0.484 0.513

Mediaire-B (Dalbis et al., 2021) 0.489 0.436 0.541

Empenn (Masson et al., 2021) 0.478 0.423 0.532

The Proposed Method 0.523* 0.495 0.550*

From top to bottom, the table shows the challenge raters’ agreement on the segmentation compared to each other, the leader-board results of the challenge-day top methods, and the

result of the method described in this article (obtained after challenge-day). For automatic methods, bold values indicate the best result for a metric, and * indicates that the advantage is

statistically significant (Wilcoxon test).

FIGURE 7

The segmentation of the proposed method and the expert rater on a sample image from MICCAI 2021—longitudinal multiple sclerosis lesion

segmentation testing dataset. The segmentations are compared against the consensus of the four raters using the colors: green, red, and blue

to symbolize TP, FN, and FP regions of new lesions.

available MS cross-sectional datasets compared to longitudinal

datasets. In our case, the encoder for the first task was compatible

with the siamese-encoder of the second task and thus was

used to extract MS-relevant features from the two time-points.

Additionally, we used a learnable aggregation module for time-

points feature combination. Besides, by freezing the encoder

weights after the transfer-learning from the first to the second

task, we ensure that the extracted features in the second task
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are dataset-independent from the second task dataset (smaller

dataset). This independence ensures that the high performance

of the proposed method is stable and generalizing.

Longitudinal time-points synthesis is an original approach

on how to augment data diversity. It can be extended to

other change detection tasks where longitudinal data are hard

to acquire. According to the results of our experiments, this

strategy turns out to be very effective when used as pretraining.

Indeed, when the model is first pretrained with time-point

synthesis, it is subject to a wider range of diversity, which aims

to constrain the model to extract more generalizing features.

The proposed data augmentation method is an effective

technique to make our learning process less dependent on

MRI quality and acquisition artifacts. It simulates different

acquisition conditions to enhance generalization and helps to

better over-sample the available new lesions examples. Our

data-augmentation comparison (refer to Table 2) showed the

proposed augmentation method contributes to segmentation

accuracy in both internal validation and challenge evaluation

(i.e., MRI from scanners not seen during training).

The ablation study performed using the internal validation

process showed that each contribution, taken separately,

enhanced the segmentation accuracy. It also showed that when

combining all contributions, we achieved the best results.

Similarly, the challenge evaluation showed that the proposed

method achieved better results than the best-performing

methods of the challenge.

Our experiment in Section 3.1.2 has shown interesting

behavior of our method when trained on only 8 patients

(minor performance decrease compared to using synthetic

data only). The fine-tuning and optimization by selecting the

best weights combination based on a very limited validation

set has foreseeably led to overfitting. Thus, it is advised

that the number of samples and their quality (containing

enough new MS lesions) are sufficient so the fine-tuning step

could enhance the performance. If the labeled dataset is not

sufficient, combining both synthetic and real data could also

be explored.

Our study explored the possibility of using a similar task

such as MS lesion segmentation to better train new MS lesion

segmentation models. Transfer learning has led to satisfactory

results. However, other methods for instance multi-task learning

and consistency regularization should be explored likewise.

Other of our experiments (that have not been covered in our

paper) investigated such strategies on both single time-point MS

and new MS lesion segmentation. Unfortunately, it is difficult

to deal with the different class imbalances and complexities of

both tasks which makes optimizing jointly over single time-

point MS and new MS lesion segmentation harder. We believe

that a training-set containing both the segmentation of new

lesions and the segmentation of other lesions contained in

both time points could lead the community to propose better

segmentation/detection models.

Although it is sometimes difficult for experts to agree

upon whether a lesion is new or not, their consistency in

the segmentation of new lesions is even more difficult. This

inconsistency, despite being mitigated by the consensus of

several experts, will have repercussions on the quality of the

segmentation accuracy. Thus, we believe that if there is interest

in the quantification of new lesion volume, the output of

models trained only on one modality (FLAIR) and for the task

of new lesion segmentation should be taken with precaution.

Combining the outputs of this model with another one trained

on a single time-point with several modalities (T1w and FLAIR)

could lead to better and more accurate segmentation.

Besides the detection of new lesions, another interesting

biomarker for MS clinicians is the measurement of disappearing

lesions. Our proposed method could potentially be used for

this task by inverting the time-point order. However, it has not

been validated in our study and requires the appropriate expert

annotations.

5. Conclusion

In this article, we propose a training pipeline to deal with

the lack of data for new MS lesion segmentation from two time

points. The pipeline encompasses transfer learning from single

time-point MS lesion segmentation, pretraining with time-point

synthesis, and data-augmentation adapted for MR images. Our

ablation study showed that each of our contributions enhances

the accuracy of the segmentation. Overall, our pipeline was

very effective for new MS lesions segmentation (Best score in

MSSEG2-challenge; MICCAI, 2021) and can be extended to

other tasks that suffer from longitudinal data scarcity.
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