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Deep learning in neuroimaging
data analysis: Applications,
challenges, and solutions

Lev Kiar Avberšek* and Grega Repovš

Department of Psychology, Faculty of Arts, University of Ljubljana, Ljubljana, Slovenia

Methods for the analysis of neuroimaging data have advanced significantly

since the beginning of neuroscience as a scientific discipline. Today,

sophisticated statistical procedures allow us to examine complex multivariate

patterns, however most of them are still constrained by assuming inherent

linearity of neural processes. Here, we discuss a group of machine learning

methods, called deep learning, which have drawn much attention in and

outside the field of neuroscience in recent years and hold the potential to

surpass thementioned limitations. Firstly, we describe and explain the essential

concepts in deep learning: the structure and the computational operations

that allow deep models to learn. After that, we move to the most common

applications of deep learning in neuroimaging data analysis: prediction of

outcome, interpretation of internal representations, generation of synthetic

data and segmentation. In the next section we present issues that deep

learning poses, which concernsmultidimensionality andmultimodality of data,

overfitting and computational cost, and propose possible solutions. Lastly,

we discuss the current reach of DL usage in all the common applications in

neuroimaging data analysis, where we consider the promise of multimodality,

capability of processing raw data, and advanced visualization strategies. We

identify research gaps, such as focusing on a limited number of criterion

variables and the lack of a well-defined strategy for choosing architecture

and hyperparameters. Furthermore, we talk about the possibility of conducting

research with constructs that have been ignored so far or/and moving toward

frameworks, such as RDoC, the potential of transfer learning and generation

of synthetic data.

KEYWORDS

artificial intelligence, machine learning, deep learning, neuroimaging, neuroscience,
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1. Introduction

Imaging of the human’s most complex organ—the brain—has a long past, but a short

history; an attempt to paraphrase a famous psychologist (Ebbinghaus, 1908), which holds

some truth. No doubt curious minds have wondered about the interior of the skull,

but it is only the technological advances of the twentieth century that have allowed

us to study the anatomy and function of our brains in more detail. The origins of

neuroscientific research of brain function can be traced back to the 1920s, when the
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first electrophysiological methods were developed. However, it

was not until the second half of the century that methods became

available to study the structure and function of the human brain

in detail. The development of functional magnetic resonance

imaging (fMRI) launched neuroimaging, which has evolved into

a highly complex, rigorous, and heterogeneous discipline to date

(Kuntzelman et al., 2021). The beginnings of neuroimaging were

marked mostly by (mass)univariate methods for data analysis

(Figure 1A). The univariate approach was important for the

discovery of many neural correlates and has a solid foundation

(Sui et al., 2020). However, it has several limitations. Univariate

methods are best suited for group-level inferences and are

poorly suited for making statistical inferences at the individual

level (Vieira et al., 2017). Because the univariate approach

typically relies on averaging neuroimaging data across groups of

participants, its generalizability is questionable. Averaging over

highly heterogeneous data can lead to inaccurate andmisleading

results (Sui et al., 2020). Moreover, the univariate approach

assumes independence of different brain regions (Vieira et al.,

2017), which dilutes the information available in neuroimaging

data, as we know that the functions of brain regions are highly

interdependent. Later, the rapid development of neuroimaging

brought about more sophisticated analysis tools that take

into account the multivariate nature of neuroimaging data.

Multivariate pattern analysis (MVPA) includes several methods

that analyse relationships between groups of predictors (e.g.,

voxels) and criterion variables (e.g., behavior or cognitive

state) (Figure 1B). Undoubtedly, MVPA methods represent

an advance over simple univariate models. Although MVPA

can include kernel operations that are sensitive to non-

linear relationships in data (Treder, 2020), they are still

mostly based on simple linear mathematical operations (e.g.,

correlation, logistic regression, support vector machines—SVM)

(Kuntzelman et al., 2021). Therefore, they are unable to capture

more complex patterns in neuroimaging data. This could be

an important limitation given the importance of non-linear

processes in the nervous system. In this review, we will look at

Deep Learning (DL). DL encompasses a group of methods that

use multilayer neural networks to enable representations of the

underlying features of the input at different levels of complexity

(Figure 1C). This computational architecture offers exciting

potential for overcoming the aforementioned limitations and

has therefore gained popularity in recent years in many fields,

including neuroimaging.

This review is structured as follows: In the first part, we

explain the basic concepts of DL, without diving too deep

into mathematical details and technical implementation. In

the second part, we review the most common applications of

DL in neuroimaging analysis. In the third part, we discuss

various challenges and possible solutions. Finally, we discuss

drawbacks and future prospects of the applications of DL

in neuroimaging.

FIGURE 1

Comparison of mass univariate, multivariate and deep learning

approaches. (A) In the mass-univariate approach, a statistic is

computed independently for each sample (e.g., voxel) and

compared between conditions. To assess the statistical

significance of the di�erence, neighboring samples are usually

grouped into clusters or regions of interest (ROI) over which the

statistics are averaged. For example, the figure shows two

samples—the activation of a group of voxels from one

participant—for condition A and B. The samples in condition A

and condition B are averaged and the mean activations are then

compared. (B) MVPA methods take into account the multivariate

nature of neuroimaging data. A classifier, such as SVM, is applied

to the data to find a discriminant function. SVM maps the

training samples to points in space to maximize the width of the

gap between the two categories. (C) Deep learning includes

multiple computational layers in form of neural networks,

allowing it to form complex (non-linear) intermediary

representations before classification. L2 is the second layer,

while LO−1 and LO are the output layer and its immediate

precursor. The representations enabled by each layer get more

complex with depth.

2. Deep learning

Deep Learning (DL) is a set of representation learning

methods that allows computational models composed of

multiple processing layers to learn representations of data with
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FIGURE 2

Artificial neuron. An artificial neuron is the basic computational

unit of a neural network. It receives weighted inputs from

neurons in the previous layer, sums them, and applies an

activation function such as sigmoid or ReLu to form an output,

which is usually a value between 0 and 1. The output is then

either passed to the next layer or read out.

multiple levels of abstraction. Each of these layers performs non-

linear transformations of data before passing it on to another

layer. In this way, very complex functions can be learned.

The abstractness of the layers’ representations increases with

depth, amplifying aspects that are important for discrimination

and suppressing irrelevant aspects. A key advantage of DL is

that feature layers do not need to be hand-crafted by domain-

expert engineers, but are learned through a process called back-

propagation (LeCun et al., 2015).

There are numerous variants of DL models that differ in

their structure, purpose, and the data they can handle. The

most basic distinction is between supervised and unsupervised

DL models. Both types of DL models belong to representation

learning methods. The main point of difference is the usage

of labeled data. Unsupervised models aim to learn the

representations of an unlabeled data set, with the goal of solving

tasks such as clustering, data synthesis and dimensionality

reduction. In contrast, supervised DL models deal with labeled

data. Their goal is to learn the probability distribution for each

label to solve regression or classification problems (LeCun et al.,

2015; Goodfellow et al., 2016).

Despite their different forms, the DL models share some

essential common features that are worth describing. Each DL

model has a specific architecture. The architecture describes the

structure of a model. The building blocks of all DL models are

artificial neurons (Figure 2). Simply put, artificial neurons are

basic computational units that receive inputs and convert them

into outputs. Neurons are arranged hierarchically in multiple

layers, with each layer receiving information from neurons

in the previous layer. The connections between neurons are

weighted so that the signal can either increase or decrease in

proportion to its contribution to the learning task. The sum

of the weighted inputs is transformed using a transformation

function such as sigmoid or ReLu. When the networks contain

feedback connections, they are called recurrent neural networks

(RNN). Eachmodel aims to reduce the cost or loss of its objective

function. The loss is the measure of the difference between the

current and desired output of the model and can be formalized

using different functions, depending on the type of the problem.

Two common examples of loss functions are mean squared error

(MSE; Equation 1) and cross-entropy (Equation 2).

During a learning phase, loss can be minimized using

various learning algorithms (optimizers), of which gradient

descent (Equation 3) is the most basic. The rate at which the

optimizer operates is determined by the learning rate (LR—

Figure 3, α in Equation 3)—a hyperparameter that determines

the scale of weight change in each iteration. The information

flows firstly forward and then—essentially—backward. The

back-propagation procedure computes the gradient of the

objective function so that the weights of the model can be

optimized. After several iterations, the model—if implemented

correctly—should converge to the optimum (the lowest value

of the loss function). The parameters that do not change

by learning are called hyperparameters. They can be divided

into structural hyperparameters, which affect the design of

the model, and training hyperparameters, which affect the

efficiency and speed of learning. Structural hyperparameters

include decisions about the number of layers and neurons in

each layer. Training hyperparameters include decisions about

learning rate, optimizers, etc. (Yu and Zhu, 2020).

J(θ) =
1

N

N
∑

i=1

(

hθ (xi)− yi
)2

(1)

Equation 1. Mean squared error loss function. MSE is one

of the most commonly used loss functions. MSE is the averaged

squared difference between the model’s prediction (hθ (xi)) and

the ground truth (yi). θ represents the parameters that must be

adjusted to minimize the loss function. MSE is most often used

for regression problems.

H(O,C) = −

M
∑

c=1

yo,c log(po,c) (2)

Equation 2. Cross-Entropy loss function for multiclass

classification problem. The value of Cross-Entropy decreases as

the probability of a given sample of belonging to the true class

increases. M represents the number of classes, y is a binary

indicator (0 or 1) if class label c is the correct classification for

observation o, p is the predicted probability that observation o

belongs to class c.

θj = θj − α
∂

∂θ j
J(θ) (3)

Equation 3. Gradient descent algorithm. Gradient descent

updates the parameters of themodel (θ) with the derivative ( ∂
∂θ j

)

of the loss function J(θ0, θ1) scaled by the learning rate (α). This
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FIGURE 3

E�ect of learning rate. Learning rate—one of the most important hyperparameters. If the learning rate is set too high, the model will start to

diverge—the loss function of the model will increase and the accuracy of the model will decrease. If the learning rate is set too low, the model

will take too long to converge. The goal is to set the learning rate to the optimal value.

is repeated until convergence is achieved. That is, until the loss

function stops decreasing.

Due to its ability to form abstract representations based on

raw data and its success in image and speech recognition, DL

has found its way into biomedical sciences (Brosch and Tam,

2013; Mamoshina et al., 2016; Li et al., 2017; Vieira et al., 2017).

We can see a tremendous expansion of studies in the field of

neuroimaging, where DL has numerous applications and far-

reaching implications. Recently researchers have utilized DL

for tasks such as segmentation (e.g., Zhao, 2019; Billot et al.,

2020; Brown et al., 2020; Li et al., 2021; Henschel et al., 2022;

Mojiri Forooshani et al., 2022; Ushizima et al., 2022) prediction

of neurologic disease (e.g., Payan and Montana, 2015; Liu et al.,

2017; Lu et al., 2018; Shi et al., 2018; Wang et al., 2018; Qureshi

et al., 2019; Zhou et al., 2021) and psychiatric disorder (e.g.,

Kuang and He, 2014; Hao et al., 2015; Kim et al., 2016; Yan et al.,

2017; Heinsfeld et al., 2018; Ulloa et al., 2018; Yang et al., 2021b;

Loh et al., 2022; Zhao et al., 2022), trajectory of a disorder (e.g.,

Spasov et al., 2019; Bae et al., 2021; Dong et al., 2021; Jung et al.,

2021), different tasks (e.g., Jang et al., 2017; Vu et al., 2020; Ngo

et al., 2022), brain age (e.g., Levakov et al., 2020; Ren et al., 2022),

personality (e.g., Bhardwaj et al., 2021), search for biomarkers

(e.g., Yang et al., 2021b), motor imagery decoding (e.g., Xu et al.,

2020; Dehghani et al., 2021; Fan et al., 2021), modeling different

functions of the neural system (e.g., Hebling Vieira et al., 2021)

and generation of synthetic data (e.g., Kazuhiro et al., 2018;

Zhao, 2019; Islam and Zhang, 2020; Li et al., 2020b; Barile et al.,

2021; Hirte et al., 2021; Kossen et al., 2021). DL has been applied

to data of different modalities, such as structural (sMRI—e.g.,

Brosch and Tam, 2013; Wang et al., 2018; Vyas et al., 2022)

and functional magnetic resonance imaging (fMRI—e.g., Hao

et al., 2015; Kim et al., 2016; Dakka et al., 2017; Guo et al., 2017;

Zeng et al., 2018), electroencephalography (EEG) (e.g., Xu et al.,

2020; Dehghani et al., 2021; Fan et al., 2021; Thanjavur et al.,

2021), positron emission tomography (PET) (e.g., Zhou et al.,

2021; Ushizima et al., 2022), clinical measures (e.g., Zhou et al.,

2021), demographic (e.g., Liu et al., 2017; Spasov et al., 2019),

and genetic data (e.g., Zhou et al., 2019; Chen et al., 2021). Before

we discuss DL applications in neuroimaging in greater depth,

we will briefly examine some of the most common DL model

architectures.

2.1. Convolutional neural network—CNN

A convolutional neural network (CNN) (Figure 4A) is a

specific subtype of a deep neural network (DNN) that applies

a mathematical operation called convolution in at least one of

its layers. Roughly speaking, a convolution is an operation on

two functions that produces a third function. To illustrate this,

we will use the example described by Goodfellow et al. (2016).

Suppose we want to measure the location x of a moving object

at different times t. We can describe this with a simple function

x(t). However, our measurement is subject to error. Therefore,

we want to average several measurements to get a more accurate

result. Since more recent measurements give a better estimate

of the current location, we want to use weighted averages with

respect to the age of the measurement w(a). The operation of

applying w(a) to x(t), by which we obtain a new function s(t) =

(x ∗ w)(t)—the smoothed estimate of the location of the moving

object—is called convolution. The first argument (x) is called the

input, while the second argument (w) is called the kernel.

The input to a convolution layer is usually a

multidimensional array of data, such as a 2D image. The

kernel, is also a multidimensional array, with non-zero values

at specific locations learned by the learning algorithm. The

output of a convolution is a feature map (Goodfellow et al.,

2016). The units in each convolutional layer are organized

into feature maps that are connected to local patches in the

feature maps of the previous convolutional layer via a matrix of

weights called a filter bank. All units in the same feature map are

assigned the same filter bank. Units in other feature maps share
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FIGURE 4

Di�erent network types. (A) Convolutional neural network (CNN). The first part of a CNN consists of convolutional layers that perform

convolutions to form feature maps. The feature maps of each layer are connected to the local patches in the feature maps of the previous

convolutional layer through a matrix of weights called filter banks. A convolutional layer is usually followed by a pooling layer that reduces the

size of the image. The “convolutional part” is followed by fully connected layers that form representations and perform classification. (B)

Recurrent neural network (RNN). The figure shows an rolled up (compressed) and a unrolled diagram of an RNN. In the unrolled diagram, we see

multiple time steps (layers). An element in a sequence (e.g., a word in a sentence) belongs to each of the layers, while the elements from the

previous layers are stored in hidden states (h). Predictions (y), such as the next word in a sentence, are based on the input (x) and the hidden

states (h). (C) Autoencoder (AE). AE encodes the input data (x) into its approximation within the hidden representation (h) and reconstructs it into

new outputs (x′). (D) Restricted Bolzmann Machine (RBM). The RBM consists of visible units (x) and hidden units (h). Its goal is to learn

meaningful dependencies of the visible units in the hidden layer.

other filter banks (LeCun et al., 2015). This type of architecture

allows the model to capture locally meaningful representations

while making it robust to variable spatial locations of motifs.

Almost all CNNs consist of a pooling layer whose task is to

merge semantically similar features of the convolutional layer

output. Typically, multiple stacks of convolutional layers and

pooling layers are placed in front of fully linked layers. The

aforementioned features allow CNNs to exploit the internal

Frontiers inNeuroimaging 05 frontiersin.org

https://doi.org/10.3389/fnimg.2022.981642
https://www.frontiersin.org/journals/neuroimaging
https://www.frontiersin.org


Avberšek and Repovš 10.3389/fnimg.2022.981642

hierarchical structure of the input data (LeCun et al., 2015).

Feature maps become more abstract with each convolutional

layer; while lower layers capture features such as shape or

direction, higher layers can learn to differentiate between

semantic categories (Zeman et al., 2020).

2.2. Recurrent neural network—RNN

The recurrent neural network (RNN) (Figure 4B) is a

subtype of the deep neural network that is capable of

processing sequential data (such as speech or language).

The key feature of an RNN is the sharing of parameters.

Sharing parameters at different points in the model allows

generalization between examples of different shapes (e.g.,

length) (Goodfellow et al., 2016). RNNs process each element of

a sequence separately and store information about all elements

in hidden units (state vectors). Each node with hidden units

represents a point in time (the position of the element in

the sequence) and receives information from the previous

node representing the previous point in time. The dynamic

system allows the model to capture the temporal dimension of

the data (LeCun et al., 2015).

2.3. Autoencoder—AE

Two components of an autoeconder (AE) are an encoder

and a decoder (Figure 4C). The encoder transforms the input

data into an internal representation. The task of the decoder

is to reconstruct the internal representation into output data

that is an approximation of the input data. An AE is intended

to be constrained in some way so that it does not learn to

output an exact copy of the input data, but instead learns

meaningful features of the data. This is based on the premise

that high-dimensional data is concentrated around a lower-

dimensional manifold. The goal of an autoencoder is to learn

the structure of this manifold. The training of an AE should

include an architectural constraint or regularization penalty.

The specific features of the training allow the model to learn

only the representations of the vectorial directions necessary

to reconstruct the input data. There are several types of AEs,

e.g., undercomplete AE, whose internal representation has a

smaller number of dimensions than the input data, sparse AE,

which adds a penalty term to the reconstruction algorithm,

denoising AE, which changes the cost function so that the

input data is treated as corrupted and must be repaired during

reconstruction, and variational AE, whose latent vector consists

of probability distributions. AEs have been successfully used

in dimensionality reduction and information retrieval tasks

(Goodfellow et al., 2016).

2.4. Restricted Bolzmann machine—RBM

A Restricted Bolzmann Machine (RBM) is a generative

model consisting of two types of units: visible and hidden

(Figure 4D). The visible units correspond to the input data

(e.g., one unit for each pixel of an image), while the hidden

units extract the meaningful dependencies of the visible units

(features). RBM is set to learn a probability distribution that

matches the probability distribution of the training data. RBMs

can also be viewed as building blocks of Deep Belief Networks

(DBNs). The idea is that each RBM receives the values of the

hidden units of the previous RBM as input data. In this way, the

deeper building blocks are able to learn higher level features of

the data (Fischer and Igel, 2012).

2.5. Generative adversarial
networks—GANs

Generative Adversarial Networks (GANs) are generative

models consisting of two adversarial components (Figure 5).

The generator draws random values from a uniform distribution

to construct images. These images are then sent to the

discriminator along with images from a real data set. The

discriminator is a CNN whose job is to distinguish between real

images from the training data set and fake images generated by

the generator. Through back-propagation, the generator learns

to construct images with increasing degrees of deception. The

ultimate goal is to reach a level of synthetic image quality

where the discriminator is no longer able to classify images

as real or fake above chance (Goodfellow et al., 2014). GANs

have achieved impressive performance in image synthesis, but

are quite difficult to train because they are highly unstable

(Goodfellow et al., 2016).

3. Deep learning applications in
neuroimaging

In this next section, we will discuss the applications of

DL in neuroimaging data analysis that we have identified as

the most common. Certainly other applications such as noise

reduction, artifact detection, and resolution enhancement have

been tried, but not as frequently. An important line of research

that we also did not include is the use of DL as a computational

model for cognitive functions, such as vision. This is because we

want to focus on DL as a statistical procedure rather than as a

computational model for brain function per se.

3.1. Prediction

Predicting future outcomes based on present data is one of

the most important tasks of science and the field of statistics.
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FIGURE 5

Generative Adeverserial Network—GAN. GAN Consists of two adversarial models. The generator (inverted CNN) draws random values from a

uniform distribution to generate images. The generated images are sent to the discriminator (CNN) along with the images from the real data set.

The goal of the discriminator is to learn to classify images as real or fake. The goal of the generator is to deceive the discriminator. The backward

flow of information allows the discriminator to adjust its parameters correctly and generate more realistic images. A GAN is converged when the

discriminator classifies at chance.

Accurate prediction enables appropriate response. Statistical

models of the highest quality are therefore invaluable not

only for basic research but also for practical applications. The

development of statistics has produced sophisticated models

for univariate and multivariate prediction of categorical and

continuous variables. Indeed, prediction is one of the most

widely recognized goals and one of the key accomplishments

of Deep Learning. Currently, the discriminative DL models, of

which the two most commonly used representatives are CNNs

and RNNs (Figure 4) and their architectural modifications,

represent state-of-the-art models for multi-array and sequential

data classification, respectively (LeCun et al., 2015).

Arguably, the most important prediction is that of

pathology. Logically, the pathology of brain structure and/or

function that we can observe from neuroimaging data can

lead to a prediction of a specific symptomatic outcome. Most

studies that have applied discriminative DL models have

focused on diagnostic prediction. That is, they discriminated

between healthy controls and diseased individuals based on

neuroimaging data (e.g., Figure 6). Although both psychiatric

disorders (as defined by DSM-5) and neurological disorders can

be the result of either functional or structural brain changes

at different levels of observation, existing studies tend to use

functional data to predict psychiatric disorders and structural

data to predict neurological disorders. DL approaches using

fMRI data have been used to diagnose schizophrenia (SCZ)

(Plis et al., 2014; Kim et al., 2016; Dakka et al., 2017; Yan

et al., 2017; Ulloa et al., 2018; Zeng et al., 2018; Chen et al.,

2021; Hu et al., 2022), autism spectrum disorders (ASD) (Guo

et al., 2017; Heinsfeld et al., 2018; Shao et al., 2021; Yang

et al., 2021b; Kashef, 2022; Zhang et al., 2022a), attention

deficit and hyperactivity disorder (ADHD) (Kuang and He,

2014; Deshpande et al., 2015; Hao et al., 2015; Zou et al.,

2017; Mao et al., 2019; Zhao et al., 2022), posttraumatic stress

disorder (PTSD) (Sheynin et al., 2021; Yang et al., 2021a),

bipolar disorder (BD) and schizoaffective disorder (Yan et al.,

2022), while sMRI data have been used to diagnose Alzheimer’s

disease (AD) or/and mild cognitive impairment (MCI) (Brosch

and Tam, 2013; Gupta et al., 2013; Chen et al., 2015; Payan

and Montana, 2015; Hosseini-Asl et al., 2018; Lu et al., 2018;

Wang et al., 2018), Parkinson’s disease (PD) (Shen et al.,

2020; Vyas et al., 2022), Huntington’s disease (HUN) (Plis

et al., 2014), cerebrovascular disorders (Liu et al., 2019), and

tumor (Van Hai and Amaechi, 2021).

In our literature review, similar to Vieira et al. (2017),

we observed a slight tendency for better results in studies

using structural data to diagnose neurological disorders than

studies using functional data to diagnose psychiatric disorders.

However, it should be noted that structural data sets are

generally larger than functional data sets and that the neural

bases of psychiatric disorders are less well-understood than that

of neurological disorders. In addition, the temporal dimension

of functional data makes them and the associated diagnosis of

psychiatric disorders more complex. Other functional data (e.g.,

EEG) have been used to detect epilepsy (Thodoroff et al., 2016;

Golmohammadi et al., 2019; Zhang et al., 2022b) concussion

(Thanjavur et al., 2021), major depressive disorder (MDD)

(Korda et al., 2021; Loh et al., 2022) and outcome of comatose
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patients (Jonas et al., 2019). Some studies went further and

employed DL to predict disorder trajectory (Jung et al., 2021)

or state of a progressive disease (Liu et al., 2014, 2015, 2017; Li

et al., 2017; Helaly et al., 2021; Zhou et al., 2021) and gender

differences in ASD (Supekar et al., 2022).

A number of studies addressed prediction outside the field of

brain pathology. Task-based fMRI data have been used to predict

task state (Jang et al., 2017; Hu et al., 2019; Vu et al., 2020; Wang

et al., 2020b; Jiang et al., 2022; Ngo et al., 2022), while EEG data

were used to predict attentional state (Zhang et al., 2021), sleep

stage (Abou Jaoude et al., 2020; Akada et al., 2021) and brain age

(Levakov et al., 2020; Niu et al., 2020; Ning et al., 2021; Ren et al.,

2022), recognize emotions (Wang et al., 2020a; Ramzan and

Dawn, 2021; Bagherzadeh et al., 2022; Xiao et al., 2022), detect

P300 (Solon et al., 2019; Borra et al., 2021), cortical oscillatory

activity (Abdul Nabi Ali et al., 2022) and cortical activity during

sleep (Li et al., 2020a). Recently, several studies have used DL to

decode motor imagery (Hassanpour et al., 2019; Ebrahimi et al.,

2020; Xu et al., 2020; Dehghani et al., 2021; Fan et al., 2021),

which is important in brain-computer interface.

The promise of DL is more than obvious. Most studies

comparing DL to other ML methods (e.g., shallow and linear

models) showed the superiority of DL (Kim et al., 2016; Dakka

et al., 2017; Guo et al., 2017; Heinsfeld et al., 2018; Shi et al.,

2018; Ulloa et al., 2018; Zeng et al., 2018; Yan et al., 2019).

Combining data from multiple modalities (e.g., MRI and PET)

to train the model has shown promise. Most authors report an

increase in accuracy compared to unimodal training methods

(Chen et al., 2015; Liu et al., 2015; Zou et al., 2017; Lu et al.,

2018; Shi et al., 2018; Ulloa et al., 2018; Niu et al., 2020; Zhou

et al., 2021; Ren et al., 2022). Several studies also reported

better results using 3D data instead of 2D data (Payan and

Montana, 2015; Vu et al., 2020; Hu et al., 2022; Vyas et al., 2022).

Transfer learning also provided promising results. It worked not

only when the pretraining was performed with neuroimaging

data set (Payan and Montana, 2015; Heinsfeld et al., 2018;

Wang et al., 2018, 2020a,b, 2021; Golmohammadi et al., 2019;

Dehghani et al., 2021; Helaly et al., 2021; Yang and Hong, 2021;

Bagherzadeh et al., 2022; Balboni et al., 2022; Jiang et al., 2022;

Ngo et al., 2022), but higher performance was also observed

when pretraining was conducted with natural images (Gupta

et al., 2013).

3.2. Interpretation

The ultimate goal of science is not only to predict future

outcomes, but also to understand what the prediction is based

on. DL models are often referred to as “black boxes” because the

representations they construct are highly complex and difficult

for human observers to interpret. This poses a risk to all

areas where artificial intelligence (AI) is used. In medicine, for

example, the inability to propose a valid interpretation of a

model could lead to the use of models that achieve high accuracy

on the one hand but exploit clinically irrelevant features of the

data for their predictions on the other (Vieira et al., 2017). In

neuroscience, the ability to understand the representations of

models would also facilitate the discovery of novel biomarkers

and thus a better and more mechanistic understanding of a

disorder or brain states (Durstewitz et al., 2019).

Fortunately, in parallel with the development of AI, the

field of explainable AI (XAI) has recently emerged. XAI does

not represent a single recipe for understanding AI decision-

making, but is rather a conceptual framework in which many

different methods are being developed with different underlying

assumptions about what “explainable” means (Ras et al.,

2020). Nevertheless, there are several general traits—evaluation

criteria—for XAI. First, confidence is a trait that assesses the

congruence of the model’s underlying computations with the

human observer’s thought process. Namely, if an AI decision is

based on the same aspects of the data as the human observer’s

decision, then confidence of the model is high. Second, trust is a

criterion based on the model’s performance on various metrics,

most commonly test accuracy. If a model is highly accurate,

then it can be trusted. Third, safety, a multi-faceted category

that is mainly concerned with the reliability of the model under

various working conditions. Finally, ethics, the most elusive of all

evaluation criteria. The cultural relativity of ethics prevents us

from imprinting a universal moral code on a model. The ability

to understand whether an AI’s decision is consistent with the

moral code of the environment in which it operates is therefore

a more viable solution (Ras et al., 2020).

All of the aforementioned traits are important to the

field of neuroimaging. The first two (confidence and trust)

are specifically valuable for research purposes, while the last

two (safety and ethics) are invaluable for practical (clinical)

applications. Since this review focuses mainly on the impact

of DL on basic research, we will look in more detail at

methods related to the first two criteria. We should emphasize

that confidence should be understood in a particular way.

Neuroimaging data are very complex and difficult for human

observers to understand. Therefore, the sole goal should not

be that the underlying computations on the basis of which a

model makes predictions resemble those of a human observer.

Rather, these latent representations should facilitate new ways of

understanding the data.

According to Ras et al. (2020) XAIs can be divided into

three groups: Visualization methods, Distillation methods, and

Implicit methods. Visualization methods attempt to highlight

the aspects of the input data that contribute highly to the output.

Distillation methods are performed after training and typically

involve encoding the learned knowledge into a “white-box”

system suitable for human interpretation. Intrinsic methods

involve models that provide explanations as part of their output.

By far the most common approach in neuroimaging

is visualization. Visualization methods can be divided into
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FIGURE 6

Classification task. 2-dimensional illustration of a DL

representation in a 3-way classification task between healthy

controls (HC), patients with Minimal Cognitive Impairment (MCI)

and Alzherimer’s Disease (AD). A pattern of voxel activations

(e.g., from a ROI) of a person is input to a DL model. The DL

model forms complex representations and classifies the subject

into one of the groups. In this example, the DL model would

classify the subject as su�ering from MCI.

backpropagation-based methods and perturbation methods.

The former are based on the evaluation of gradient signals

sent from output to input, while the latter deform the input

and examine the performance of the model after the change.

As reported by Vieira et al. (2017), deconvolutional methods,

which belong to the backpropagation group, are the most

commonly used. In the original paper (Zeiler and Fergus,

2013), deconvolutional method is defined as an inverted

operation of a CNN. Convolutional operations are replaced

by deconvolutional operations, while pooling is replaced by

unpooling. Consequently, the data flow from a given neuron to

the input image is inverted. In this way, one can check which part

of the image contributes most to the activation of the neuron.

Guided back-propagation (GBP) (Figure 7) is an extension

of the deconvolutional method.While deconvolutional methods

require a forward pass of an image before obtaining a

discriminative reconstruction, GBP does not. Thus, it is not

conditioned on a single image, which means that it can learn

latent features directly. In essence, GBP is identical to a

backward pass, except that it only considers the top gradient

when passing a non-linearity. It can therefore provide more

accurate results, especially for the higher layer (Springenberg

et al., 2014).

While GBP provides high-resolution results, it is not class

discriminating. That is, the output image is not exclusively

focused on the target concept. One solution to this problem

is Gradient-weighted Class Activation Mapping (Grad-CAM

Selvaraju et al., 2020) (Figure 7). In Grad-CAM, a forward pass

of an image is first performed to obtain a raw score. The gradient

of the target class is set to 1, while all other gradients are set to 0.

A backward pass through the feature maps of interest is then

performed. This results in coarse localizations that contribute

most to the classification. The method can be combined with

GBP to obtain high-resolution results (Selvaraju et al., 2020)

(Figure 7).

Yet another alternative is Layer-wise Relevance Propagation

(LRP Bach et al., 2015), a method that measures relevance

instead of sensitivity. That is, the strength of the connection

input or pixel to a given network output (Ras et al., 2020).

The listed methods have all been used in neuroimaging

analysis. For example, GBP was used by Wang et al. (2020b)

to study the features learned from 3DCNN, whose task was to

classify task states based on fMRI data. Grad-CAM was used

in studies where CNNs were used to examine features learned

for AD prediction based on PET data (Ushizima et al., 2022),

brain age prediction based on sMRI and blood parameters (Ren

et al., 2022), emotion recognition based on electrode frequency

distribution maps (Wang et al., 2020a), and comatose patient

outcome based on EEG (Jonas et al., 2019). LRP was used in a

study in which the authors trained a DNN to predict SCZ based

on resting-state functional connectivity MRI data (Yan et al.,

2017).

Several studies also used a simpler version of visualization

that did not directly measure the contribution of input data

aspects. These studies typically used “linear projection”, a

technique in which a feature (feature vector) in a layer is

defined as a linear combination of units from a previous layer

that are connected to it. In other words, a feature vector is

a product of features from a lower layer and a matrix of

weights connecting the lower layer features to the higher layer.

A simple forward pass can be applied to extract the features

of interest. Visualization of these features is then followed by

dimensionality reduction techniques such as PCA or t-SNE

(van der Maaten and Hinton, 2008) or techniques such as

representational similarity analysis (RSA Kriegeskorte, 2008)

and software toolboxes such as BrainNet Viewer (Xia et al., 2013)

and circularGraph (Kassebaum, 2022).

While few studies have used perturbation methods (e.g.,

Ushizima et al., 2022), there are numerous studies that use

other forms of quantitative techniques. Many studies used

perturbation methods, in which the input (e.g., a brain area or

functional network) is modified and the changes in the output

(e.g., prediction accuracy) are examined (Vieira et al., 2017).

The leave-one-out technique (LOO), which measures a target

matrix (usually accuracy) after omitting a feature, is very popular

(e.g., Yan et al., 2019, 2022; Niu et al., 2020). The basic idea

of LOO is that the importance of a feature is proportional to

the decrease in accuracy after its omission. Other quantitative

methods include measuring the ability of a layer or feature to

discriminate between groups with Fisher’s Z-scores and t-scores

(Kim et al., 2016; Guo et al., 2017), F-scores (Zhang et al., 2022a),

and feature stability (Liu et al., 2014, 2015).

Apart from methods discussed, some researchers have also

experimented with intrinsic methods. In Jiang et al. (2022), an

attentional module parallel to feature extraction was added to
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FIGURE 7

GBP, Grad-CAM, and Guided Grad-CAM. GBP is identical to a backward pass, but only considers the highest gradient when passing through a

non-linearity. GBP is high-resolution, but not class-discriminating. Grad-CAM, on the other hand, requires a forward pass to obtain a raw score

for an image. The gradient of the target class is set to 1, while all other gradients are set to 0. Then a backward pass through the feature maps of

interest is performed. This results in coarse localizations that contribute the most to the classification. To obtain high-resolution,

class-discriminative results, we can combine GBP and Grad-CAM to Guided Grad-CAM (Selvaraju et al., 2020).

a 4DCNN model aimed at predicting task state based on fMRI

data. Its function was to enhance discriminative representations

of objects with maxpool and resblock layers. In Fan et al. (2021),

the attention module was used to learn the attentional weights of

EEG channels, time points, and feature maps that contribute to

the decoding of motor imagery by a DNN called QNet.

An alternative to training discriminative DL models (such

as CNNs and RNNs), extracting their features, and visualizing

them with dimensionality reduction is to use DL models

that are themselves capable of dimensionality reduction,

such as AEs, RBMs, and DBNs (Figure 4), and inspecting

the features they learn (e.g., Plis et al., 2014; Han et al.,

2015; Guo et al., 2017; Jang et al., 2017; Heinsfeld et al.,

2018).

3.3. Generation

One of the main problems, not only in neuroimaging but

in medical imaging in general, is the scarcity of labeled data on

which supervised ML algorithms can learn (Lan et al., 2020).

Indeed, the abundance of data is one of the cornerstones for the

success of supervised DL algorithms in areas such as computer

vision. It is also a driving force in preventing overfitting. While

state-of-the-art models in computer vision have been trained

on data sets with hundreds of thousands to millions of images

(e.g., Imagenet with more than 14 million images; Deng et al.,

2009), data sets for neuroimaging typically include between

a few hundred to thousand participant (e.g., ADNI with 819

participants; Petersen et al., 2010). Projects are underway to

collect neuroimaging data from multiple sites into a single data

set (e.g., HCP; Van Essen et al., 2013), but massive data sets

optimal for training a model with several million parameters are

not expected in the near future.

One way to circumvent this serious limitation is to

create artificial (synthetic) data. A simple solution is

data augmentation, i.e., modifying the existing data by

various operations such as rotating, shearing, cropping, etc.

Data augmentation has been applied before in the field of

neuroimaging (Billot et al., 2020; He et al., 2021), but the scope

of this simple method is limited because the distribution of the

generated images is very similar to the existing images (Lan

et al., 2020). This makes the method ill-suited for applications

where the entire spectrum of a medical phenomenon (e.g.,

the spectrum of a psychiatric disorder) is to be examined. A

more appropriate method would be able to represent the entire

distribution. Indeed, such methods have been developed in the

field of DL. One of the most popular methods in recent years
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are GANs. Given their incredible success in generating images,

they have also entered other fields such as biomedical sciences

(Lan et al., 2020).

GANs are considered to be able to generate images that share

all essential features with images of real patients (Wolterink

et al., 2021). Several authors reported encouraging results.

Kazuhiro et al. (2018) tested the authenticity of “fake images”

on two radiologists who showed a 44% and 71% ability to

distinguish them from real images. Li et al. (2020a) reported

improvement in brain tumor segmentation after using synthetic

images. Islam and Zhang (2020) reported very high similarity to

real images. Barile et al. (2021) demonstrated an application of

GANs to structural connectivity in multiple sclerosis patients.

Quantitative and qualitative analyses showed no significant

differences from real images, while predictive accuracy (F1

score) increased from 66 to 81%. Hirte et al. (2021) evaluated the

ability of GAN and AE to generate synthetic MRI images. Both

models generated data that were very similar to the originals

and exhibited a high degree of sharpness and diversity. However,

the models were also found to produce groups of images that

were nearly identical. Two neuroradiologists classified the vast

majority (above 80%) of the generated images as genuine.

Kossen et al. (2021) used GANs to generate 3DTOF MRA

images for blood vessel segmentation. The results showed

that their mixed-precision GAN model was able to generate

images that were nearly identical to real images while reducing

computational costs. Segmentation on synthetic images was

close to the success level achieved by state-of-the-art models

trained on real images. Another promising approach was

implemented by Zhao (2019), who constructed a Bayesian

conditional GAN. The model was not only able to generate

highly accurate images of brain tumors, but also to propose

uncertainty maps that can help practitioners decide whether to

trust an image.

GANs have not only been used to generate images obtained

by various imaging modalities (CT, MRI, microscopy, etc.), they

are also capable of translating between imaging modalities. A

subtype of GAN, called cyclic GAN, is able to map input images

to different modalities. In practice, this means that images of one

modality can be used to generate images of another modality

(Lan et al., 2020). In neuroimaging, GANs have been most

commonly applied to CT, MRI, and PET (Laino et al., 2022).

3.4. Segmentation

Image segmentation—a process of dividing an image

into semantically meaningful homogeneous subunits—is an

important area in computer vision and neuroimaging. It is

usually an early step in the analysis and therefore has a major

impact on the quality of the results (Despotović et al., 2015). The

high performance of DL in tasks based on visual representations

has led researchers to apply it to segmentation in neuroimaging.

In the following paragraphs we review studies that used DL for

segmentation in neuroimaging.

Ushizima et al. (2022) applied Deep Learning to the

segmentation of tau proteins in PET images, which is important

for understanding the neurobiological basis of AD. Their end-

to-end solution was able to achieve high performance, with

ROC curves ranging from 0.85 to 0.91 for different tracers.

Henschel et al. (2022) developed FastSurferVINN, a voxel

size independent DNN capable of performing segmentation

on images with different resolutions from 0.7 to 1 mm. The

proposed method outperformed state-of-the-art models for

segmentation of different resolutions while overcoming the data

imbalance problem. Zhao (2019) constructed a Bayesian DNN

for brain extraction that can generate uncertainty maps for

each pixel and image. The model achieved efficiency superior

to current state-of-the-art methods, was very time efficient and

flexible, and could learn highly complex structures. Brown et al.

(2020) demonstrated a DL approach for segmenting orbital fat,

a tissue that is not usually affected by pathological processes

and is therefore important for contrast normalization. The DL

approach agreed with the segmentations of the adjudicating

expert and performed better than the segmentations of other

human experts. Billot et al. (2020) developed a fully automated

segmentation method of the hypothalamus and its subunits

based on T1-weighted MR scans processed by a CNN. The

method, based on DL, outperformed inter-rater reliability

(variability between two different raters) and approached intra-

rater reliability (variability of one expert rater on two different

occasions). The model also outperformed an automated multi-

atlas approach and was able to generalize its segmentation

ability to a larger and more heterogeneous data set (ADNI) and

show sensitivity to AD-specific atrophy. Balboni et al. (2022)

presented a DL model with transfer learning for hippocampal

segmentation in patients with MCI and AD. The results showed

very high similarity to an expert. The high precision of the

model could facilitate the detection of minor abnormalities

already present in MCI and thus contribute to early diagnosis.

Addressing the problem of generalizing segmentation methods,

Mojiri Forooshani et al. (2022) presented a Bayesian 3D

convolutional neural network that can automatically segment

white matter hyperintensity and output uncertainty estimates

for quality control. Themodel was robust to different acquisition

protocols and therefore had higher ability to generalize. Li

et al. (2021) presented a DL-based segmentation method for

the claustrum—a subcortical unit that is usually difficult to

segment using classical methods—and showed equivalent or

performance superior to inter-rater reliability of human experts.

4. Challenges and solutions

The goal of the following section is to identify common

challenges and limitations faced by users of DL and
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propose workable solutions. We discuss challenges related

to data, overfitting and regularization, architectures and

hyperparameters, and computational costs.

4.1. Data

4.1.1. Multidimensionality—space and time

Neuroimaging data can provide information in two

dimensions: spatial and temporal. In some applications, such

as the study of brain anatomy and structural changes, we focus

primarily on the high-precision spatial information provided by

sMRI. In other applications, e.g., studying the precise timing of

neuronal events, oscillations, or synchrony in neuronal activity,

we may focus primarily on temporal information provided by

high temporal and low spatial resolution methods such as EEG

and MEG. In many cases, though, such as the study of brain

function, it is important to consider both spatial and temporal

information. Furthermore, when using neuroimaging data to

discriminate between individuals or groups, it is beneficial to

consider both brain structure and brain function together. For

example, it is well-known that both functional connectivity and

brain structure are altered in psychiatric disorders. The optimal

solution in these cases is to combine or merge the information

from the two dimensions. To achieve this, an architecture that

can incorporate both dimensions should be applied with a

model or combination of models that can handle spatial and

sequential data.

The first approach that comes to mind is the most popular:

a combination of CNNs for spatial processing and RNNs for

temporal processing. This method has been tested several times

in neuroscience research in recent years. Dakka et al. (2017)

applied a combination of CNN and RNN to 4D fMRI data to

distinguish patients with schizophrenia from healthy controls.

A CNN extracted spatial information, which was then sent

to an RNN whose output was a binary classification. The

architecture achieved 64.9% accuracy, which was better than the

performance of SVM but worse than that of a global functional

connectivity model.

Yan et al. (2019) combined a CNN and an RNN to create

a multiscale RNN that could process spatiotemporal data.

The input was time components (TCs) from different spatial

components (ICs) extracted with Independent Component

Analysis (ICA). The convolutional layers had filters of different

sizes that allowed the model to analyze the data at multiple time

scales. The authors reported 83.4% accuracy, outperforming

other comparable models (AdaBoost, random forest, SVM).

Hebling Vieira et al. (2021) used an ensemble of RNNs

to predict general intelligence (g-factor), feeding time series

of 360 ROIs into the model. Using their approach, they

found networks that predicted g-factor better than other

resting state networks of similar size. Similarly, Wang (2020)

developed a new DL architecture for analyzing fMRI data.

The convolutional RNN, consisted of convolutions to extract

spatial features in ROIs and an RNN to process the temporal

aspect of the data. The convolutional RNN outperformed

the conventional RNN on most single-subject identification

tasks with different window sizes (number of frames). The

convolutional layers also facilitated visualization of important

features.

Mao et al. (2019) developed a DL architecture that used

3D CNNs to extract spatial features from each fMRI frame and

passed these latent features to an RNN to process temporal

dependencies within task-evoked brain activity, and achieved

71.3% accuracy in ADHD diagnosis. Wang et al. (2020b)

developed a CNN in which the first convolutional layer was

able to generate temporal descriptors for each voxel. The model,

trained for seven-fold classification of brain states, was able to

achieve an impressive accuracy of 93.7%, which is about 25%

higher than the accuracy obtained with the combination of

MVPA and SVM. In addition, the model was successfully fine-

tuned on smaller data sets for predicting subtypes of working

memory and motor tasks. Jiang et al. (2022), working with

the same data set, used four-dimensional kernels to process

time series of fMRI data, which were then flattened and

sent to the attention module working in parallel with feature

extraction. The accuracy of the model in decoding brain state

was 97.4%. Supekar et al. (2022) trained a spatiotemporal CNN

to discriminate between male and female ASD patients and

achieved 86% prediction accuracy. Kashef (2022) constructed a

CNN with blocks of temporal convolutional layers using normal

convolutions and dilations, giving the model a large temporal

receptive field. The model achieved 80% accuracy in diagnosing

ASD. D’Souza et al. (2021) presented a deep generative hybrid

approach. Instead of static, they used dynamic functional

connectivity matrices that measure synchrony between regional

time series as a function of time. Factorizations of these

matrices were regularized by a structurally regularized dynamic

dictionary learning module and decomposed into time-varying

subject-specific loadings that were used as inputs to an RNN to

predict clinical scores. In this way, they were able to capture

subject-specific and group-based information and outperform

several state-of-the-art methods.

Another modality that poses a similar problem (and

solution) is EEG. Like fMRI, EEG can carry spatial and temporal

information, although the former is much coarser and the latter

much more precise than in fMRI. According to Craik et al.

(2019), solutions for data formulations in DL methods in EEG

research can be divided into three categories: raw data (e.g.,

Fan et al., 2021; Thanjavur et al., 2021), computed features (e.g.,

Wang et al., 2020a; Bagherzadeh et al., 2022), and images (e.g.,

Loh et al., 2022). The structure of the EEG data allows it to

be provided to the model as a 2D matrix, with one dimension

representing electrodes and the other representing time points.

Spatial and temporal convolutions can then be applied together

or separately (Borra et al., 2021). Temporal dependencies can
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also be analyzed by RNNs, which is why some authors have

combined them with CNNs (e.g., Thodoroff et al., 2016).

There are also alternative methods to extract the temporal

(functional) information without requiring a sequence

processing architecture. However, these methods require some

preprocessing of the data, which may result in information

loss. In this case, the preprocessing aims to transform the

raw time series into static data compatible with models that

are not capable of processing sequential data (e.g., CNNs). In

other words, these methods aim to select the relevant static

features of the data. This goal can be achieved using a number

of methods, the most common of which are data-driven (e.g.,

ICA, Canonical Correlation Analysis—CCA) and seed-based

(e.g., seed-based correlation) (Yan et al., 2019). The output

of feature selection methods is a “time-sequence-reduced”

value set, where the temporal dimension is used in a way

that is based on a specific hypothesis, e.g., that the temporal

dimension contains information about functional connectivity.

Most feature selection methods result in functional connectivity

matrices and subject-specific spatial maps (Yan et al., 2019).

Since this type of data consists of multiple arrays but is not

sequential, it can be easily used with CNNs. Many studies have

applied DL to resting state functional connectivity fMRI data

(e.g., Kim et al., 2016; Guo et al., 2017; Heinsfeld et al., 2018;

Shao et al., 2021), usually achieving high levels of success.

Deshpande et al. (2015) compared linear measures of functional

connectivity with non-linear and causal directed measures and

found that the latter did not perform better. Some authors have

also experimented in the frequency domain, such as with ALFF

maps, ReHo maps (Zou et al., 2017), and max-pooling after Fast

Fourier Transform, which is reported to be more informative

(Kuang and He, 2014). Other examples of the use of temporal

data include the task-based fMRI studies mentioned earlier. In

this case, the “task condition” reduces the temporal dimension

by itself.

4.1.2. Multimodality

There are many different modalities of neuroimaging that

differ in terms of the information they carry. So far, we

have looked at studies using a single modality that carries

spatial and temporal information (e.g., fMRI). But what if we

want to combine data from multiple modalities that provide

complementary information (e.g., MRI and PET, or sMRI and

EEG)? This is challenging because neuroimaging modalities

differ in many features and are sometimes incompatible. We

have identified several possible approaches to the modality

problem, which we can broadly divide into two categories:

feature-based and model-based. The goal of both approaches is

the same: to concatenate or fuse different types of data. If the

data are compatible, vectors from different modalities can be

easily merged at the model input stage (e.g., Liu et al., 2017).

However, this largely ignores the complex and highly abstract

relationships between different modalities (Shi et al., 2018). An

alternative is to extract features from each modality separately

and then combine them into a single model, a technique referred

to as “feature-based fusion” (Ulloa et al., 2018). In this approach,

features are extracted from each modality so that the feature

representations of the data are compatible with each other and

can be inserted into a single model.

In comparison, the model-based approach aims to

incorporate different modalities by constructing pipelines in

which multiple models operate in parallel and process different

types of data. The outputs of these models are then fed to

a common module that processes all the information and

makes predictions. Note that the results of these DL models are

extracted features.

The main difference between the feature-based approach

and the model-based approach is the method and stage at which

the features are extracted. While in the feature-based approach

the features are extracted in the preprocessing step and the

fusion step starts early, in the model-based approach the feature

extraction is integrated into the DLmodel and the data is merged

in the deeper parts of the model.

The feature-based approach includes combining ALFF

maps (fMRI) with sMRI data (Ulloa et al., 2018), patch

volumes (sMRI) with mean metabolic activities (FDG-PET)

(Lu et al., 2018), gray matter (GM), white matter (WM),

and cerebrospinal fluid (CSF) (sMRI) with ReHo maps, ALFF

maps and VMH connectivity (Zou et al., 2017), GM and

deformation magnitude with segmentation features (Chen

et al., 2015), GM (sMRI) with CMRIGlc (PET) (Liu et al.,

2014, 2015), GM and CSF (sMRI) with PET intensities (Suk

et al., 2014), GMV (sMRI) with diffusion tensor imaging

(DTI) features and resting-state functional connectivity features

(FA, MD, ReHo, ALFF) (Niu et al., 2020), GMV (sMRI)

with single nucleotide polymorphism (genetic) (Chen et al.,

2021).

In a model-based approach, Shi et al. (2018) used two Deep

Polynomial Networks (DPNs) to extract features from sMRI

and PET, which were then combined in a third DPN to make

predictions for SCZ. Gao andHui (2016) used a 2D and 3DCNN

to extract features from 2D and 3D data from CT, respectively.

These features were then fused to predict AD and lesions. Zhou

et al. (2021) used a CNN to extract features from PET images

and then linked them to clinical parameters to predict AD.

Ren et al. (2022) constructed a multimodal compact bilinear

fusion module to fuse features from sMRI images and blood

parameters in a CNN to predict brain age. Spasov et al. (2019)

constructed a multimodal feature extractor, a model for parallel

processing and concatenation ofMRI and Jacobian Determinant

images and clinical features. Zhou et al. (2019) proposed a three-

stage process for combining sMRI, PET, and genetic modalities.

In the first stage, DL was used to extract features from each

modality separately, while in the second stage, the results from

the first stage were used to combine pairs from the three different
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modalities. In the third stage, predictions were made about

MCI and AD. Akada et al. (2021) found that a multimodal

approach in which EEG and electromyography (EMG) data

were first processed separately and then combined gave better

results than a rule-based integration approach and an ensemble

stacking approach.

4.1.3. Imaging at multiple sites

The small size of many neuroimaging data sets is detrimental

to the statistical power and proper functioning of the DL

methods. The number of subjects may increase greatly when

data collected at different sites are pooled. Data sharing is

promising, but it also comes with limitations. Pooling data

from different imaging sites not only increases biologically

relevant variance, but also magnifies the effect of biologically

irrelevant variance—noise—due to different conditions

and technical characteristics of the equipment at each site.

Dinsdale et al. (2021) proposed a DL-based solution to this

challenge. Their method consists of three steps: (i) extracting

features from the input data and optimizing the classifier for

the target task (classification/regression/segmentation), (ii)

optimizing the domain classifier for scanner classification,

and (iii) using this information to optimize the feature

extractor to confuse the domain classifier to remove

irrelevant variance. The proposed model was able to learn

a scanner-invariant feature representation while successfully

performing the target task. The authors also showed that

the model can be easily adapted to remove continuous

and categorical confounds and can be applied to any

DL architecture.

4.2. Overfitting and regularization

Overfitting, a key challenge in DL, is largely the result

of the dimensionality curse, a property of training data that

typically consists of a large number of dimensions and a

small number of samples. A DL with millions of parameters

can learn to perform almost perfectly on the (small) data

set in question, but is unable to generalize to samples

outside the training data set. Because neuroimaging data

sets are typically small, while inherently complex and high-

dimensional, overfitting is a major challenge to the utility

of DL. Fortunately, many techniques have been developed in

computer science to solve the problem of overfitting. These

strategies, which aim to reduce the generalization error but not

the training error, are collectively referred to as regularization

methods and usually involve a constraint or penalty on

internal parameters of the model (Goodfellow et al., 2016).

In the next sections we present a number of commonly used

regularization approaches.

4.2.1. Parameter norm penalties

Regularization strategies that aim to limit the capacity of

the model by adding a penalty term to the objective function

are called parameter norm penalties. One of the simplest and

most commonly used is the L2 or weight decay penalty, which

constrains the weights closer to the origin by adding a penalty

term to the objective function (see Equations 4 and 5). The L1

norm also adds a penalty term to the objective function, but it

is computed differently. While the L2 norm is calculated as the

square root of the sum of the squared vector values, the L1 norm

is calculated as the sum of the absolute values of the vector. The

L1 is a sparse norm, i.e., it assigns zero values to some parameters

and therefore it also functions as a feature selection mechanism

(Goodfellow et al., 2016).

J(θ) =
1

N

N
∑

i=1

(

hθ (xi) − yi
)2

+ L2 (4)

Equation 4. Loss function with the L2 penalty norm.

L2 = λ

M
∑

j=1

θ2j (5)

Equation 5. L2 penalty norm. The effect of the penalty norm

can be regulated via adjusting the λ.

4.2.2. Data augmentation

The optimal solution to overfitting would simply be

to have more data available. If the data are in a format

where many of their properties can be easily manipulated,

this can be achieved by simply transforming the samples.

Data augmentation is particularly useful for images, for

which numerous transformation tools are available. Data

augmentation can improve generalizability (Goodfellow et al.,

2016), but has limited potential because the distribution of

augmented samples is usually similar to that of the original

samples (Lan et al., 2020). An alternative could be not to apply

simple transformations to images, such as rotating, scaling,

and cropping, but to apply complex transformations by using

DL generative models such as GANs, which are known to

perform very well in data synthesis. Applications of GANs in

neuroimaging are discussed in Generation.

Wang et al. (2018) proposed a DL model to classify patients

with alcoholism based on sMRI. Since only 235 sMRI images

were available, they attempted to improve the generalization

ability by augmentation. Image augmentation resulted in 13100

images for their final training set, which allowed them to achieve

97% accuracy. Data augmentation has also been used by Wang

et al. (2017) to identify MCI based on sMRI images and by

Zou et al. (2017) to diagnose ADHD based on sMRI and fMRI

data. Olawunmi Olaboopo (2021) applied augmentation to EEG

data to decode motor imagery. An interesting application of
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augmentation was also presented by Wang et al. (2020b), who

augmented fMRI time series in the temporal dimension.

4.2.3. Semi-supervised learning

Semi-supervised learning refers to the use of both an

unsupervised model for learning how the data is distributed or

clustered in a low-dimensional space and a supervised model for

classification. The two parts can be done either independently

or together, so that the two models share their parameters. In

this way, it is easier to find the optimal tradeoff between the two

models (Goodfellow et al., 2016).

Semi-supervised learning has been widely used in

neuroimaging research. Examples include the use of AEs

(Guo et al., 2017) and DBNs (Jang et al., 2017) with deep

discriminant models. Guo et al. (2017) found that AEs can

achieve better accuracy than other unsupervised models (t-test

and elasticnet). However, most authors did not compare semi-

supervised learning with supervised learning, which makes it

difficult to draw definitive conclusions.

4.2.4. Multitask learning

In multitask learning, a model consists of a generic part

with shared parameters and task-specific parts with independent

weights that perform the target task. The basic idea is that

sharing input and intermediate representations constrains the

parameters toward better generalization (Goodfellow et al.,

2016). For example, Liu et al. (2017) showed that a DL

model with two tasks, a classification task and a clinical

score regression task, performed better than a model with a

single task.

4.2.5. Early stopping

In DL training, it is common that beyond a certain

point, validation accuracy reaches a plateau or even decreases

while training accuracy continues to improve. The increasing

difference between training and validation accuracy indicates

that the model is starting to overfit. Therefore, the training

should be terminated early. Early stopping is a rule that instructs

the model to stop training if the validation accuracy has not

improved for a certain number of iterations (Goodfellow et al.,

2016).

4.2.6. Parameter sharing

In some tasks, we know that the parameters depend on

each other. For example, in images, pixels that are close to

each other are usually similar. It is possible to enforce equality

of a set of parameters, which has a double advantage: better

generalization and lower computational cost. Parameter sharing

is commonly used in CNNs. CNNs are usually used for visual

tasks, where their training data are natural images that have

many statistical properties that are invariant to translation. This

means that an object is semantically the same regardless of where

on the image it appears. CNNs are robust to object’s position

because they share parameters across different locations in the

image (Goodfellow et al., 2016). Like other natural images, brain

images have translation-invariant statistical properties (e.g., the

hippocampus can be observed at different locations in images

taken from different angles), making parameter sharing an

appropriate strategy.

4.2.7. Sparse representations

Sparse representation penalty is somewhat similar to the L1

norm penalty in that both enforce zero values in the model.

However, while the L1 norm introduces sparse parametrization

by nullifying sets of parameters, sparse representation sets the

elements in the representation vector (Goodfellow et al., 2016)

to zero.

Suk et al. (2017) combined sparse regression models that

learned feature representations with CNN that performed

diagnosis of MCI and AD. The DL solution was able to

outperform linear classifiers. Chen et al. (2021) used a sparse

DNN for better feature interpretability in diagnosing SCZ. The

results showed that the sparse DL method was able to fuse

neuroimaging and genetic features better than the combination

of ICA and SVM.

4.2.8. Ensemble methods

In the ensemble method, several models are trained

independently and then an average is taken over all models.

This method helps with generalization because the models

trained separately do not make the same errors. If the errors

they make are uncorrelated, then the expected squared error

of the ensemble is inversely proportional to the ensemble

size. In theory, the performance of an ensemble is at least

as good as that of a single model. Ensemble training is a

powerful method for overcoming overfitting, but it comes at

a price: it is very computationally intensive (Goodfellow et al.,

2016).

Several authors have proposed ensemble solutions for

neuroimaging analysis. Lu et al. (2018) presented ensemble

training using a multiscale multimodal approach. They trained

six different DNNs with three different scales and twomodalities

(MRI and PET). The features of the DNNs were then fused by

another DNN that performed a three-way classification (healthy

controls, MCI, AD) with higher success than other comparable

models. Hebling Vieira et al. (2021) used an ensemble of RNNs

to limit variance in predicting general intelligence based on

time-series fMRI data.
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FIGURE 8

Dropout. In each sample, a di�erent set of weights are set to

zero. Since each iteration then involves a di�erent subnetwork,

dropout simulates ensemble training.

FIGURE 9

Transfer learning. Part of the model is pretrained on a larger data

set, while the other part is fine-tuned on the target dataset.

4.2.9. Dropout

Dropout (Figure 8) refers to annulling a proportion of the

model parameters by multiplying them with zeros. In each

sample, a different set of parameters is chosen. Dropout thus

represents a computationally inexpensive approximation to

ensemble training, because by annulling different parameter

combinations, an ensemble of subnetworks is essentially created.

Typically, the dropout rate is 0.2 for the visible parameters and

0.5 for the hidden parameters (Goodfellow et al., 2016). Shen

et al. (2020) used the dropout strategy in their deep polynomial

model to increase generalization in PD diagnosis. They were able

to achieve a prediction accuracy of 86%.

4.2.10. Transfer learning

Transfer learning (Figure 9) is based on the hypothesis that

the training data need not be independent and identical to the

test data. Essentially, it refers to the transfer of knowledge from

a source domain to a target domain (Tan et al., 2018). It assumes

that different domains share low-level features, while high-level

features are specific to each domain. Instead of training a model

from scratch, transfer learning proposes to reuse the weights of a

trained model in the lower layers and fine-tune only the weights

in the higher layers with the data from the target domain. This

is particularly useful for tasks where only small amounts of data

are available for the target domain. It also significantly reduces

computational costs.

Numerous authors have suggested using transfer learning

to increase generalization. Heinsfeld et al. (2018) used features

learned from stacked AEs to fine-tune a perceptron for

ASD diagnosis. Hosseini-Asl et al. (2018) used 3D AEs to

learn anatomical variations in the source domain from sMRI

images and then fine-tuned a CNN in the target domain (AD

classification), resulting in over 90% accuracy.

Based on the assumption that MRI images share statistical

features with natural images, Gupta et al. (2013) extracted

features from natural images with AEs and then used the learned

features to refine a CNN for three-way classification (healthy

controls, MCI, AD). The model achieved comparable or better

accuracy than competing models. Ngo et al. (2022) trained a

DLmodel to classify task-based resting-state fMRI activity. They

found that pretraining the model with a larger data set and then

fine-tuning it with a smaller data set led to significantly better

prediction results than training with small data sets from scratch.

They suggest that the success of transfer learning is due in

part to the multitasking nature of their network. By performing

multiple tasks, the model was able to learn representations that

were important for different tasks. Wang et al. (2021) pre-

trained a DNN on a large human data set to perform brain

extraction (skull stripping) on a small sample of non-human

primates. Their model performed better than other comparable

models.

Dehghani et al. (2021) pretrained a model on EEG data from

multiple participants and fine-tuned it to a single participant to

achieve more accurate motor imagery decoding. The method

was superior to models such as SVM in terms of learning and

classification accuracy. Wang et al. (2020b) first trained a 3D

CNN for 7-way classification based on a large task-based fMRI

data set (a HCP data set with 1,034 participants). They then fine-

tuned the model on two data sets with fewer than 50 participants

to distinguish between two working memory and four motor

tasks. The prediction accuracy was 93.7% for the general 7-way

classification task and 89 and 94.7% for the WM and the motor

tasks, respectively.

Jiang et al. (2022) went one step further and evaluated

transferability not only to new data but also to new tasks.

They pre-trained their 4D CNN model for 7-way classification

using the same data set as Wang et al. (2020b). They then

fine-tuned the model with a subset of the WM task and used

it to regress general intelligence (gF). In the second transfer

learning task, the model was fine-tuned with a visual perception

data set consisting of only four participants. The task of the

model was to solve a binary classification problem (object

vs. scene). Their solution showed results superior to those

of similar studies and to those of non-transfer conditions,

with a prediction accuracy of 97.4% for the general 7-way

classification task, a Spearman’s correlation of 0.354 for the
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first transfer task, and a prediction accuracy of 77.6% for the

second task. Furthermore, visualization analysis suggests that

low-level attentional masks (representations) remain the same,

whereas high-level attentional masks adapt to the target task in

the transfer condition.

Wang et al. (2020a) tried to overcome the lack of labeled

EEG data by transfer learning. They trained a CNN with

electrode distribution frequency maps (EDFM) from a larger

data set and then fine-tuned it on a data set with only a few

samples, achieving 90.59 and 82.84% accuracy, respectively.

Bagherzadeh et al. (2022) used classic CNNs (AlexNet, ResNet-

50, Inception-v3, and VGG-19) pre-trained on natural images

from the ImageNet data set (Deng et al., 2009) and adapted

them to decode emotions from EEG data. Similarly, Helaly et al.

(2021) used a pre-trained VGG-19 model and fine-tuned it to

predict MCI and AD based on sMRI data. Both studies report

impressive results with accuracies above 95%. Balboni et al.

(2022) applied transfer learning to a hippocampal segmentation

method, Spatial Warping Network Segmentation (SWANS),

trained on a large AD data set (ADNI) and fine-tuned on data

sets with different acquisition protocols. The transfer method

outperformed the original segmentation method.

4.3. Architecture and hyperparameters

Choosing the architecture and hyperparameters of the

model is not a simple undertaking. It depends largely on

what goal we are pursuing, and usually consists of several

trials with different combinations of hyperparameters until we

find the optimal solution. It is worth noting that by far the

most popular architecture of DL in neuroimaging studies have

been CNNs and their subtypes. This is not very surprising

considering that they excel in visual representation tasks, of

which neuroimaging is essentially one. Vieira et al. (2017)

reported that CNNs (Figure 4A) and combinations of CNNs

with AEs performed better than sole AE applications. Indeed,

CNNs are applicable to a wide range of tasks that are important

in neuroimaging analysis. CNNs can segment and predict.

They also learn representations that are interpretable and can

contribute to the understanding of brain mechanisms. In their

classical form, CNNs are not able to process time series data.

However, several solutions to this problem have been proposed

using either spatiotemporal convolutions (Wang et al., 2020b;

Jiang et al., 2022; Kashef, 2022; Supekar et al., 2022) or RNNs

(Figure 4B) (Dakka et al., 2017; Yan et al., 2019; Wang, 2020).

One thing that CNNs cannot do is generation. The problem of

data generation is the domain of AEs (Figure 4C) and GANs

(Figure 5). Some interesting adaptations of DNNs have been

proposed. Deep polynomial networks that attempt to learn

polynomial predictors within a DL architecture are said to be

particularly suitable for small sample sizes (Shi et al., 2018).

Another promising approach is to extend the model to include

an attentional mechanism that enhances the discriminative

representations of an object, making them more interpretable

(Jiang et al., 2022).

An even more difficult task is the choice of hyperparameters

(hyperparameter optimization—HPO). HPO is largely based on

experience with DL training, which usually leads to a useful but

not optimal choice (Yu and Zhu, 2020). Given the large impact of

hyperparameters on training results, automated HPO strategies

have recently received some attention. These strategies aim to

reduce the manual workload and increase the effectiveness and

reproducibility of training programmes. Essentially, HPO refers

to the process of finding a combination of hyperparameters

that results in the lowest possible loss and the highest possible

accuracy of the network. It can be divided into two categories:

search algorithms and trial schedulers. The former aim to sample

different combinations of hyperparameters, while the latter deal

with early stopping and model evaluation (Yu and Zhu, 2020).

4.4. Computational cost

VGG-16, one of the most successful and widely used

CNN architectures, has about 138 million learnable parameters

(Simonyan and Zisserman, 2014). In practice, this means

that training the mammoth structure requires extensive

computational resources and time. Indeed, convergence of such

a model on a powerful GPU typically takes several hours to

several days. One of the main reasons for the popularity of

DL in recent years has been the development of powerful

computer hardware. Without fast computers, it could take

months for such models to converge. In absence of significant

increase in computational efficiency, further progress of DL is

economically, technically, and environmentally unsustainable.

There is an urgent need to improve computational performance

by either making changes to DL or switching to other machine

learning methods (Thompson et al., 2020). Here we would like

to discuss possible modifications to DL. One possibility is to

use lightweight architectures (Borra et al., 2021), i.e., models

with a smaller number of parameters. This solution seems to

be suitable for neuroimaging applications, since we usually

deal with small data samples where large models can easily

be overfitted. Reducing the number of parameters can also be

achieved by regularization strategies such as dropout (Figure 8)

and sparsity norms. In this way, we can kill two birds with one

stone: the problem of computational cost and overfitting.

5. Discussion

In this review, we examined the most common applications

of DL in neuroimaging data analysis, their challenges, and

possible solutions. Prediction, one of the hallmarks of DL, has

been applied very successfully to neuroimaging data and holds
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great potential for the future. It is worth noting that combining

multiple modalities usually yields better results than using only

a single modality. Certainly, the relationships between different

types of data can be highly complex and abstract, which fits

perfectly with the logic of DL. Moreover, 3D models have been

shown to perform better than models with lower dimensions.

On the one hand, the explanation for the higher performance

is simple: more dimensions mean more relevant information.

On the other hand, this is also indicative of the nature of

the DL models, which seem to be quite capable of processing

data in its rawest form. Based on this observation it would be

counterintuitive to preprocess the data in a way that leads to a

loss of information.

Although the DL models perform well on data from which

features have been extracted prior to training, the preprocessing

step appears to be unnecessary or even potentially harmful.

Indeed, many of the feature extraction techniques impose a

priori hypotheses, which move DL away from a fully data-driven

approach. From this point of view, prior feature extraction

can be seen as a limitation that prevents DL from exploiting

the richness of information in the raw data. On the other

hand, the rawness raises other problems, most notably the high

dimensionality. This is not a problem per se, but becomes a

risk when data is scarce. As mentioned, high dimensional data

combined with few samples are prone to overfitting. In addition,

unprocessed data is much more computationally intensive.

Nonetheless, there have been very successful applications of DL

to raw data. The encouraging results from researchers who have

developed models capable of processing spatial and temporal

data simultaneously are promising for the future. In the study

by Jiang et al. (2022), whose model was able to achieve 97.4%

accuracy on a 7-way classification task, the success of the model

was attributed to 4D (spatiotemporal) kernels that allowed it

to jointly process dynamic changes and integrate them with

interconnected brain regions. In addition, performance was

improved and training time was significantly reduced (from 19

to 12 h) by a 3D attention mechanism that was able to adaptively

allocate processing focus.

Overfitting and computational costs can also be addressed

together with some regularization strategies. Sparsity norms

annihilate parameters or parts of representations, which

simultaneously reduces dimensionality and computational cost.

Dropout (Figure 8) nullifies a random combination of nodes

in each iteration, making the computational process more

time efficient while mimicking ensemble training, which can

improve generalization. Transfer learning (Figure 9) also holds

great potential and has been shown to improve generalizability.

Moreover, it works not only with source data sets that are

semantically related to neuroimaging, but also with other

natural images, such as those in the Imagenet data set

(Deng et al., 2009). Given that DL platforms such as Keras

offer many pre-trained models, this could significantly reduce

training time.

The question remains how far knowledge can be transferred.

Given the strong comorbidity of psychiatric disorders, it has

been argued that a general psychopathology factor (p-factor)

exists that can explain the variance between different disorders

(Gluschkoff et al., 2019). Based on this assumption, new avenues

of research can be proposed for DL. One possible example would

be a learning system in which pretraining would include data

from patients with different disorders, possibly from different

data modalities, while fine-tuning would consist of the target

disorder. While DL has been widely applied in the study

of some disorders such as SCZ, ASD, and AD, some others

such as obsessive-compulsive disorder, depression, and anxiety

disorders have been ignored despite their high prevalence.

Moreover, to support the idea of initiatives such as RDoC (Insel

et al., 2010), the task need not be to diagnose a psychiatric

disorder but to predict a refined (less heterogeneous) criterion

variable, such as symptom, severity, or location on a spectrum.

Indeed, such proposals have already been made (Sheynin et al.,

2021).

In addition to overcoming the problem of overfitting,

generative models offer other interesting possibilities for

scientific work. The presumed ability of GANs to represent

the entire distribution of data could be fruitful in the study

of disorder spectra. Training GAN to generate neuroimaging

data from data of patients with different disorders that

form a spectrum (e.g., SCZ, schizoaffective disorder, and BD)

might allow us to examine in detail the subtle changes in

neuronal structure and/or function by moving through the

latent representational space. External validity of the generated

data is also of great importance. This could be tested by

training a model with synthetic data and testing it on

real data.

The success of neuroscientific research using DL

depends largely on the ability to interpret the internal

mechanism of a model. Therefore, the quality of the

results depends on the level of sophistication of the

interpretative methods. As mentioned earlier, the fusion

of Guided Back-propagation and Grad-CAM provides a

class-discriminative high-resolution method—a perfect match

for DL applications in neuroimaging. Undoubtedly, as Deep

Learning advances, new, increasingly sophisticated methods

of XAI will be developed. Of course, we should only consider

interpretations of models that we trust. That is, models

that score well on an evaluation metric (e.g., have high

test accuracy).

Our decisions about architecture and hyperparameters have

a large impact on the final product. Therefore, our decisions

should be supported by a logical and empirical rationale.

The choice of architecture depends on the task that the

model is intended to perform. As for the hyperparameters,

automated selection procedures have been developed but are

rarely used in neuroimaging applications (e.g., Treacher et al.,

2021).
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Finally, a unified working framework for DL in

neuroimaging could facilitate communication and exchange

of ideas and practical solutions among neuroscientists.

Kuntzelman et al. (2021) have developed a Python software

toolbox, DeLINEATE, that is specifically designed to facilitate

neuroscience research using deep multivariate pattern

analysis (dMVPA). Its main function is to enable scientists

to explore different architectures and hyperparameters and

compare their performance with each other and with other

(non-deep) methods. DeLINEATE is an ongoing project

and we can expect future developments (new architectures,

transfer learning, visualization techniques) that will provide

researchers with even more flexibility and sophistication in DL

neuroimaging applications.
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Despotović, I., Goossens, B., and Philips, W. (2015). MRI segmentation of the
human brain: challenges, methods, and applications. Comput. Math. Methods Med.
2015, 1–23. doi: 10.1155/2015/450341

Dinsdale, N. K., Jenkinson, M., and Namburete, A. I. (2021). Deep learning-
based unlearning of dataset bias for MRI harmonisation and confound removal.
Neuroimage 228, 117689. doi: 10.1016/j.neuroimage.2020.117689

Dong, M., Xie, L., Das, S. R., Wang, J., Wisse, L. E., deFlores, R., et al.
(2021). DeepAtrophy: teaching a neural network to detect progressive changes in
longitudinal MRI of the hippocampal region in Alzheimer’s disease. Neuroimage
243, 118514. doi: 10.1016/j.neuroimage.2021.118514

D’Souza, N., Nebel, M., Crocetti, D., Robinson, J., Wymbs, N., Mostofsky,
S., et al. (2021). Deep sr-DDL: deep structurally regularized dynamic dictionary
learning to integrate multimodal and dynamic functional connectomics data
for multidimensional clinical characterizations. Neuroimage 241, 118388.
doi: 10.1016/j.neuroimage.2021.118388

Durstewitz, D., Koppe, G., and Meyer-Lindenberg, A. (2019).
Deep neural networks in psychiatry. Mol. Psychiatry 24, 1583–1598.
doi: 10.1038/s41380-019-0365-9

Ebbinghaus, H. (1908). Psychology: An Elementary Text-Book. Boston, MA: D C
Heath & Co Publishers. doi: 10.1037/13638-000

Ebrahimi, H., Shalbaf, A., and Jafarnia Dabanloo, N. (2020).
Classification of right and left hand motor imagery using deep learning in
electroencephalography and near-infrared spectroscopy. Adv. Cogn. Sci. 22,
95–104. doi: 10.30699/icss.22.3.95

Fan, C.-C., Yang, H., Hou, Z.-G., Ni, Z.-L., Chen, S., and Fang, Z. (2021).
Bilinear neural network with 3-D attention for brain decoding of motor
imagery movements from the human EEG. Cogn. Neurodyn. 15, 181–189.
doi: 10.1007/s11571-020-09649-8

Fischer, A., and Igel, C. (2012). “An introduction to restricted Boltzmann
machines,” in Progress in Pattern Recognition, Image Analysis, Computer Vision,
and Applications, eds D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F.
Mattern, J. C. Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen,
M. Sudan, D. Terzopoulos, D. Tygar, M. Y. Vardi, G. Weikum, L. Alvarez,
M. Mejail, L. Gomez, and J. Jacobo (Berlin; Heidelberg: Springer), 14–36.
doi: 10.1007/978-3-642-33275-3_2

Gao, X.W., andHui, R. (2016). “A deep learning based approach to classification
of CT brain images,” in 2016 SAI Computing Conference (SAI) (London, UK),
28–31. doi: 10.1109/SAI.2016.7555958

Gluschkoff, K., Jokela, M., and Rosenström, T. (2019). The general
psychopathology factor: structural stability and generalizability to within-
individual changes. Front. Psychiatry 10, 594. doi: 10.3389/fpsyt.2019.00594

Golmohammadi, M., Harati Nejad Torbati, A. H., Lopez de Diego, S.,
Obeid, I., and Picone, J. (2019). Automatic analysis of EEGs using big
data and hybrid deep learning architectures. Front. Hum. Neurosci. 13, 76.
doi: 10.3389/fnhum.2019.00076

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. Cambridge,
MA: MIT Press.

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,
S., et al. (2014). Generative adversarial networks. arXiv [preprint]. arXiv:1406.2661.
doi: 10.48550/arXiv.1406.2661

Guo, X., Dominick, K. C., Minai, A. A., Li, H., Erickson, C. A., and Lu, L. J.
(2017). Diagnosing autism spectrum disorder from brain resting-state functional
connectivity patterns using a deep neural network with a novel feature selection
method. Front. Neurosci. 11, 460. doi: 10.3389/fnins.2017.00460

Gupta, A., Ayhan,M. S., andMaida, A. (2013). “Natural image bases to represent
neuroimaging data,” in ICML (Atlanta, GA).

Han, X., Zhong, Y., He, L., Yu, P. S., and Zhang, L. (2015). “The
unsupervised hierarchical convolutional sparse auto-encoder for neuroimaging

data classification,” in Brain Informatics and Health, eds Y. Guo, K. Friston, F.
Aldo, S. Hill, and H. Peng (Cham: Springer International Publishing), 156–166.
doi: 10.1007/978-3-319-23344-4_16

Hao, A. J., He, B. L., and Yin, C. H. (2015). “Discrimination of ADHD
children based on Deep Bayesian Network,” in 2015 IET International Conference
on Biomedical Image and Signal Processing (ICBISP 2015) (Beijing, China), 1–6.
doi: 10.1049/cp.2015.0764

Hassanpour, A., Moradikia, M., Adeli, H., Khayami, S. R., and
Shamsinejadbabaki, P. (2019). A novel end-to-end deep learning scheme for
classifying multi-class motor imagery electroencephalography signals. Expert Syst.
36, 1–21. doi: 10.1111/exsy.12494

He, C., Liu, J., Zhu, Y., and Du, W. (2021). Data augmentation for deep neural
networks model in EEG classification task: a review. Front. Hum. Neurosci. 15,
765525. doi: 10.3389/fnhum.2021.765525

Hebling Vieira, B., Dubois, J., Calhoun, V. D., and Garrido Salmon, C. E. (2021).
A deep learning based approach identifies regions more relevant than resting-state
networks to the prediction of general intelligence from resting-state FMRI. HUM.
BRAIN. MAPP. 42, 5873–5887. doi: 10.1002/hbm.25656

Heinsfeld, A. S., Franco, A. R., Craddock, R. C., Buchweitz, A., and Meneguzzi,
F. (2018). Identification of autism spectrum disorder using deep learning
and the ABIDE dataset. Neuroimage Clin. 17, 16–23. doi: 10.1016/j.nicl.2017.
08.017

Helaly, H. A., Badawy, M., and Haikal, A. Y. (2021). Deep learning
approach for early detection of Alzheimer’s disease. Cogn. Comput. 14, 1711–1727.
doi: 10.1007/s12559-021-09946-2

Henschel, L., Kügler, D., and Reuter, M. (2022). FastSurferVINN:
Building resolution-independence into deep learning segmentation
methods?a solution for HighRes brain MRI. Neuroimage 251, 118933.
doi: 10.1016/j.neuroimage.2022.118933

Hirte, A. U., Platscher, M., Joyce, T., Heit, J. J., Tranvinh, E., and Federau,
C. (2021). Realistic generation of diffusion-weighted magnetic resonance brain
images with deep generative models. Magnet. Reson. Imaging 81, 60–66.
doi: 10.1016/j.mri.2021.06.001

Hosseini-Asl, E., Ghazal, M., Mahmoud, A., Aslantas, A., Shalaby, A.
M., Casanova, M. F., et al. (2018). Alzheimer’s disease diagnostics by a 3D
deeply supervised adaptable convolutional network. Front. Biosci. 23, 584–596.
doi: 10.2741/4606

Hu, J., Kuang, Y., Liao, B., Cao, L., Dong, S., and Li, P. (2019). A multichannel
2D convolutional neural network model for task-evoked fMRI data classification.
Comput. Intell. Neurosci. 2019, 1–9. doi: 10.1155/2019/5065214

Hu, M., Qian, X., Liu, S., Koh, A. J., Sim, K., Jiang, X., et al. (2022). Structural
and diffusion MRI based schizophrenia classification using 2D pretrained
and 3D naive convolutional neural networks. Schizophr. Res. 243, 330–341.
doi: 10.1016/j.schres.2021.06.011

Insel, T., Cuthbert, B., Garvey, M., Heinssen, R., Pine, D. S., Quinn,
K., et al. (2010). Research domain criteria (RDoC): toward a new
classification framework for research on mental disorders. AJP 167, 748–751.
doi: 10.1176/appi.ajp.2010.09091379

Islam, J., and Zhang, Y. (2020). GAN-based synthetic brain PET image
generation. Brain Inf. 7, 3. doi: 10.1186/s40708-020-00104-2

Jang, H., Plis, S. M., Calhoun, V. D., and Lee, J.-H. (2017). Task-specific
feature extraction and classification of fMRI volumes using a deep neural network
initialized with a deep belief network: evaluation using sensorimotor tasks.
Neuroimage 145, 314–328. doi: 10.1016/j.neuroimage.2016.04.003

Jiang, Z., Wang, Y., Shi, C., Wu, Y., Hu, R., Chen, S., et al. (2022). Attention
module improves both performance and interpretability of four-dimensional
functional magnetic resonance imaging decoding neural network. Hum. Brain
Mapp. 43, 2683–2692. doi: 10.1002/hbm.25813

Jonas, S., Rossetti, A. O., Oddo, M., Jenni, S., Favaro, P., and Zubler, F. (2019).
EEG-based outcome prediction after cardiac arrest with convolutional neural
networks: performance and visualization of discriminative features. Hum. Brain
Mapp. 40, 4606–4617. doi: 10.1002/hbm.24724

Jung, W., Jun, E., and Suk, H.-I. (2021). Deep recurrent model for
individualized prediction of Alzheimer’s disease progression. Neuroimage 237,
118143. doi: 10.1016/j.neuroimage.2021.118143

Kashef, R. (2022). ECNN: enhanced convolutional neural network for
efficient diagnosis of autism spectrum disorder. Cogn. Syst. Res. 71, 41–49.
doi: 10.1016/j.cogsys.2021.10.002

Kassebaum, P. (2022). circularGraph.GitHub. Available online at: https://github.
com/paul-kassebaum-mathworks/circularGraph

Kazuhiro, K., Werner, R. A., Toriumi, F., Javadi, M. S., Pomper, M. G.,
Solnes, L. B., et al. (2018). Generative adversarial networks for the creation

Frontiers inNeuroimaging 20 frontiersin.org

https://doi.org/10.3389/fnimg.2022.981642
https://doi.org/10.48550/arXiv.1712.00512
https://doi.org/10.1080/2326263X.2021.1943955
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/TCYB.2014.2379621
https://doi.org/10.1155/2015/450341
https://doi.org/10.1016/j.neuroimage.2020.117689
https://doi.org/10.1016/j.neuroimage.2021.118514
https://doi.org/10.1016/j.neuroimage.2021.118388
https://doi.org/10.1038/s41380-019-0365-9
https://doi.org/10.1037/13638-000
https://doi.org/10.30699/icss.22.3.95
https://doi.org/10.1007/s11571-020-09649-8
https://doi.org/10.1007/978-3-642-33275-3_2
https://doi.org/10.1109/SAI.2016.7555958
https://doi.org/10.3389/fpsyt.2019.00594
https://doi.org/10.3389/fnhum.2019.00076
https://doi.org/10.48550/arXiv.1406.2661
https://doi.org/10.3389/fnins.2017.00460
https://doi.org/10.1007/978-3-319-23344-4_16
https://doi.org/10.1049/cp.2015.0764
https://doi.org/10.1111/exsy.12494
https://doi.org/10.3389/fnhum.2021.765525
https://doi.org/10.1002/hbm.25656
https://doi.org/10.1016/j.nicl.2017.08.017
https://doi.org/10.1007/s12559-021-09946-2
https://doi.org/10.1016/j.neuroimage.2022.118933
https://doi.org/10.1016/j.mri.2021.06.001
https://doi.org/10.2741/4606
https://doi.org/10.1155/2019/5065214
https://doi.org/10.1016/j.schres.2021.06.011
https://doi.org/10.1176/appi.ajp.2010.09091379
https://doi.org/10.1186/s40708-020-00104-2
https://doi.org/10.1016/j.neuroimage.2016.04.003
https://doi.org/10.1002/hbm.25813
https://doi.org/10.1002/hbm.24724
https://doi.org/10.1016/j.neuroimage.2021.118143
https://doi.org/10.1016/j.cogsys.2021.10.002
https://github.com/paul-kassebaum-mathworks/circularGraph
https://github.com/paul-kassebaum-mathworks/circularGraph
https://www.frontiersin.org/journals/neuroimaging
https://www.frontiersin.org


Avberšek and Repovš 10.3389/fnimg.2022.981642

of realistic artificial brain magnetic resonance images. Tomography 4, 159–163.
doi: 10.18383/j.tom.2018.00042

Kim, J., Calhoun, V. D., Shim, E., and Lee, J.-H. (2016). Deep neural network
with weight sparsity control and pre-training extracts hierarchical features and
enhances classification performance: evidence from whole-brain resting-state
functional connectivity patterns of schizophrenia. Neuroimage 124, 127–146.
doi: 10.1016/j.neuroimage.2015.05.018

Korda, A., Ruef, A., Neufang, S., Davatzikos, C., Borgwardt, S., Meisenzahl,
E., et al. (2021). Identification of voxel-based texture abnormalities as new
biomarkers for schizophrenia and major depressive patients using layer-wise
relevance propagation on deep learning decisions. Psychiatry Res. Neuroimaging
313, 111303. doi: 10.1016/j.pscychresns.2021.111303

Kossen, T., Subramaniam, P., Madai, V. I., Hennemuth, A., Hildebrand, K.,
Hilbert, A., et al. (2021). Synthesizing anonymized and labeled TOF-MRA patches
for brain vessel segmentation using generative adversarial networks. Comput. Biol.
Med. 131, 104254. doi: 10.1016/j.compbiomed.2021.104254

Kriegeskorte, N. (2008). Representational similarity analysis-connecting
the branches of systems neuroscience. Front. Syst. Neurosci. 2, 4
doi: 10.3389/neuro.06.004.2008

Kuang, D., and He, L. (2014). “Classification on ADHD with deep learning,” in
2014 International Conference on Cloud Computing and Big Data (Wuhan: IEEE),
27–32. doi: 10.1109/CCBD.2014.42

Kuntzelman, K. M., Williams, J. M., Lim, P. C., Samal, A., Rao, P. K.,
and Johnson, M. R. (2021). Deep-learning-based multivariate pattern analysis
(dMVPA): a tutorial and a toolbox. Front. Hum. Neurosci. 15, 638052.
doi: 10.3389/fnhum.2021.638052

Laino, M. E., Cancian, P., Politi, L. S., Della Porta, M. G., Saba, L., and Savevski,
V. (2022). Generative adversarial networks in brain imaging: a narrative review. J.
Imaging 8, 83. doi: 10.3390/jimaging8040083

Lan, L., You, L., Zhang, Z., Fan, Z., Zhao, W., Zeng, N., et al. (2020). Generative
adversarial networks and its applications in biomedical informatics. Front. Public
Health 8, 164. doi: 10.3389/fpubh.2020.00164

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature 521,
436–444. doi: 10.1038/nature14539

Levakov, G., Rosenthal, G., Shelef, I., Raviv, T. R., and Avidan, G. (2020). From
a deep learning model back to the brain—Identifying regional predictors and their
relation to aging. Hum. Brain Mapp. 41, 3235–3252. doi: 10.1002/hbm.25011

Li, A., Chen, S., Quan, S. F., Powers, L. S., and Roveda, J. M. (2020a). A deep
learning-based algorithm for detection of cortical arousal during sleep. Sleep 43,
zsaa120. doi: 10.1093/sleep/zsaa120

Li, H., Habes, M., and Fan, Y. (2017). Deep ordinal ranking for multi-category
diagnosis of Alzheimer’s disease using hippocampal MRI data. arXiv [preprint].
arXiv:1709.01599. doi: 10.48550/arXiv.1709.01599

Li, H., Menegaux, A., Schmitz-Koep, B., Neubauer, A., Bäuerlein, F. J. B., Shit, S.,
et al. (2021). Automated claustrum segmentation in human brain MRI using deep
learning. Hum. Brain Mapp. 42, 5862–5872. doi: 10.1002/hbm.25655

Li, Q., Yu, Z., Wang, Y., and Zheng, H. (2020b). TumorGAN: a multi-modal
data augmentation framework for brain tumor segmentation. Sensors 20, 4203.
doi: 10.3390/s20154203

Liu, M., Zhang, J., Adeli, E., and Shen, D. (2017). “Deep multi-
task multi-channel learning for joint classification and regression of brain
status,” in Medical Image Computing and Computer Assisted Intervention -
MICCAI 2017, eds M. Descoteaux, L. Maier-Hein, A. Franz, P. Jannin, D.
L. Collins, and S. Duchesne (Cham: Springer International Publishing), 3–11.
doi: 10.1007/978-3-319-66179-7_1

Liu, S., Liu, S., Cai, W., Che, H., Pujol, S., Kikinis, R., et al. (2015). Multimodal
neuroimaging feature learning formulticlass diagnosis of Alzheimer’s disease. IEEE
Trans. Biomed. Eng. 62, 1132–1140. doi: 10.1109/TBME.2014.2372011

Liu, S., Liu, S., Cai, W., Pujol, S., Kikinis, R., and Feng, D. (2014).
“Early diagnosis of Alzheimer’s disease with deep learning,” in 2014 IEEE 11th
International Symposium on Biomedical Imaging (ISBI) (Beijing: IEEE), 1015–1018.
doi: 10.1109/ISBI.2014.6868045

Liu, S., Utriainen, D., Chai, C., Chen, Y., Wang, L., Sethi, S. K., et al. (2019).
Cerebral microbleed detection using susceptibility weighted imaging and deep
learning. Neuroimage 198, 271–282. doi: 10.1016/j.neuroimage.2019.05.046

Loh, H. W., Ooi, C. P., Aydemir, E., Tuncer, T., Dogan, S., and Acharya,
U. R. (2022). Decision support system for major depression detection using
spectrogram and convolution neural network with EEG signals. Expert Syst. 39,
1–15. doi: 10.1111/exsy.12773

Lu, D., Popuri, K., Ding, G. W., Balachandar, R., and Beg, M. F. (2018).
Multimodal and multiscale deep neural networks for the early diagnosis of

Alzheimer’s disease using structural MR and FDG-PET images. Sci. Rep. 8, 5697.
doi: 10.1038/s41598-018-22871-z

Mamoshina, P., Vieira, A., Putin, E., and Zhavoronkov, A. (2016).
Applications of deep learning in biomedicine. Mol. Pharmaceut. 13, 1445–1454.
doi: 10.1021/acs.molpharmaceut.5b00982

Mao, Z., Su, Y., Xu, G., Wang, X., Huang, Y., Yue, W., et al. (2019). Spatio-
temporal deep learning method for ADHD fMRI classification. Inform. Sci. 499,
1–11. doi: 10.1016/j.ins.2019.05.043

Mojiri Forooshani, P., Biparva, M., Ntiri, E. E., Ramirez, J., Boone, L., Holmes,
M. F., et al. (2022). Deep Bayesian networks for uncertainty estimation and
adversarial resistance of white matter hyperintensity segmentation. Hum. Brain
Mapp. 43, 2089–2108. doi: 10.1002/hbm.25784

Ngo, G. H., Khosla, M., Jamison, K., Kuceyeski, A., and Sabuncu, M.
R. (2022). Predicting individual task contrasts from resting-state functional
connectivity using a surface-based convolutional network. Neuroimage 248,
118849. doi: 10.1016/j.neuroimage.2021.118849

Ning, K., Duffy, B. A., Franklin, M., Matloff, W., Zhao, L., Arzouni, N., et al.
(2021). Improving brain age estimates with deep learning leads to identification of
novel genetic factors associated with brain aging. Neurobiol. Aging 105, 199–204.
doi: 10.1016/j.neurobiolaging.2021.03.014

Niu, X., Zhang, F., Kounios, J., and Liang, H. (2020). Improved prediction of
brain age using multimodal neuroimaging data.Hum. Brain Mapp. 41, 1626–1643.
doi: 10.1002/hbm.24899

Olawunmi Olaboopo, G. (2021). Improved motor imagery decoding using
deep learning techniques (dissertation), Milwaukee, WS: Marquette University.
Retrieved from: https://epublications.marquette.edu/dissertations_mu/1086

Payan, A., and Montana, G. (2015). Predicting Alzheimer’s disease: a
neuroimaging study with 3D convolutional neural networks. arXiv [preprint].
arXiv:1502.02506. doi: 10.48550/arXiv.1502.02506

Petersen, R. C., Aisen, P. S., Beckett, L. A., Donohue, M. C., Gamst,
A. C., Harvey, D. J., et al. (2010). Alzheimer’s Disease Neuroimaging
Initiative (ADNI): clinical characterization. Neurology 74, 201–209.
doi: 10.1212/WNL.0b013e3181cb3e25

Plis, S. M., Hjelm, D. R., Salakhutdinov, R., Allen, E. A., Bockholt, H. J., Long,
J. D., et al. (2014). Deep learning for neuroimaging: a validation study. Front.
Neurosci. 8, 229. doi: 10.3389/fnins.2014.00229

Qureshi, M. N. I., Oh, J., and Lee, B. (2019). 3D-CNN based discrimination
of schizophrenia using resting-state fMRI. Artif. Intell. Med. 98, 10–17.
doi: 10.1016/j.artmed.2019.06.003

Ramzan, M., and Dawn, S. (2021). Fused CNN-LSTM deep learning emotion
recognition model using electroencephalography signals. Int. J. Neurosci. 131,
1–11. doi: 10.1080/00207454.2021.1941947

Ras, G., Xie, N., van Gerven, M., and Doran, D. (2020). Explainable deep
learning: a field guide for the uninitiated. arXiv [preprint]. arXiv:2004.14545.
doi: 10.48550/arXiv.2004.14545

Ren, B., Wu, Y., Huang, L., Zhang, Z., Huang, B., Zhang, H., et al. (2022).
Deep transfer learning of structural magnetic resonance imaging fused with blood
parameters improves brain age prediction. Hum. Brain Mapp. 43, 1640–1656.
doi: 10.1002/hbm.25748

Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., and Batra,
D. (2020). Grad-CAM: visual explanations from deep networks via gradient-
based localization. Int. J. Comput. Vis. 128, 336–359. doi: 10.1007/s11263-019-
01228-7

Shao, L., Fu, C., You, Y., and Fu, D. (2021). Classification of ASD
based on fMRI data with deep learning. Cogn. Neurodyn. 15, 961–974.
doi: 10.1007/s11571-021-09683-0

Shen, L., Shi, J., Dong, Y., Ying, S., Peng, Y., Chen, L., et al. (2020). An
improved deep polynomial network algorithm for transcranial sonography-
based diagnosis of Parkinson’s disease. Cogn. Comput. 12, 553–562.
doi: 10.1007/s12559-019-09691-7

Sheynin, S., Wolf, L., Ben-Zion, Z., Sheynin, J., Reznik, S., Keynan, J.
N., et al. (2021). Deep learning model of fMRI connectivity predicts PTSD
symptom trajectories in recent trauma survivors. Neuroimage 238, 118242.
doi: 10.1016/j.neuroimage.2021.118242

Shi, J., Zheng, X., Li, Y., Zhang, Q., and Ying, S. (2018). Multimodal
neuroimaging feature learning withmultimodal stacked deep polynomial networks
for diagnosis of Alzheimer’s disease. IEEE J. Biomed. Health Inform. 22, 173–183.
doi: 10.1109/JBHI.2017.2655720

Simonyan, K., and Zisserman, A. (2014). Very deep convolutional
networks for large-scale image recognition. arXiv [preprint]. arXiv:1409.1556.
doi: 10.48550/arXiv.1409.1556

Frontiers inNeuroimaging 21 frontiersin.org

https://doi.org/10.3389/fnimg.2022.981642
https://doi.org/10.18383/j.tom.2018.00042
https://doi.org/10.1016/j.neuroimage.2015.05.018
https://doi.org/10.1016/j.pscychresns.2021.111303
https://doi.org/10.1016/j.compbiomed.2021.104254
https://doi.org/10.3389/neuro.06.004.2008
https://doi.org/10.1109/CCBD.2014.42
https://doi.org/10.3389/fnhum.2021.638052
https://doi.org/10.3390/jimaging8040083
https://doi.org/10.3389/fpubh.2020.00164
https://doi.org/10.1038/nature14539
https://doi.org/10.1002/hbm.25011
https://doi.org/10.1093/sleep/zsaa120
https://doi.org/10.48550/arXiv.1709.01599
https://doi.org/10.1002/hbm.25655
https://doi.org/10.3390/s20154203
https://doi.org/10.1007/978-3-319-66179-7_1
https://doi.org/10.1109/TBME.2014.2372011
https://doi.org/10.1109/ISBI.2014.6868045
https://doi.org/10.1016/j.neuroimage.2019.05.046
https://doi.org/10.1111/exsy.12773
https://doi.org/10.1038/s41598-018-22871-z
https://doi.org/10.1021/acs.molpharmaceut.5b00982
https://doi.org/10.1016/j.ins.2019.05.043
https://doi.org/10.1002/hbm.25784
https://doi.org/10.1016/j.neuroimage.2021.118849
https://doi.org/10.1016/j.neurobiolaging.2021.03.014
https://doi.org/10.1002/hbm.24899
https://epublications.marquette.edu/dissertations_mu/1086
https://doi.org/10.48550/arXiv.1502.02506
https://doi.org/10.1212/WNL.0b013e3181cb3e25
https://doi.org/10.3389/fnins.2014.00229
https://doi.org/10.1016/j.artmed.2019.06.003
https://doi.org/10.1080/00207454.2021.1941947
https://doi.org/10.48550/arXiv.2004.14545
https://doi.org/10.1002/hbm.25748
https://doi.org/10.1007/s11263-019-01228-7
https://doi.org/10.1007/s11571-021-09683-0
https://doi.org/10.1007/s12559-019-09691-7
https://doi.org/10.1016/j.neuroimage.2021.118242
https://doi.org/10.1109/JBHI.2017.2655720
https://doi.org/10.48550/arXiv.1409.1556
https://www.frontiersin.org/journals/neuroimaging
https://www.frontiersin.org


Avberšek and Repovš 10.3389/fnimg.2022.981642

Solon, A. J., Lawhern, V. J., Touryan, J., McDaniel, J. R., Ries, A. J., and Gordon,
S. M. (2019). Decoding P300 variability using convolutional neural networks.
Front. Hum. Neurosci. 13, 201. doi: 10.3389/fnhum.2019.00201

Spasov, S., Passamonti, L., Duggento, A., Lió, P., and Toschi, N. (2019).
A parameter-efficient deep learning approach to predict conversion from
mild cognitive impairment to Alzheimer’s disease. Neuroimage 189, 276–287.
doi: 10.1016/j.neuroimage.2019.01.031

Springenberg, J. T., Dosovitskiy, A., Brox, T., and Riedmiller, M. (2014).
Striving for simplicity: the all convolutional net. arXiv [preprint]. arXiv:1412.6806.
doi: 10.48550/arXiv.1412.6806

Sui, J., Jiang, R., Bustillo, J., and Calhoun, V. (2020). Neuroimaging-
based individualized prediction of cognition and behavior for mental
disorders and health: methods and promises. Biol. Psychiatry 88, 818–828.
doi: 10.1016/j.biopsych.2020.02.016

Suk, H.-I., Lee, S.-W., and Shen, D. (2014). Hierarchical feature representation
andmultimodal fusion with deep learning for AD/MCI diagnosis.Neuroimage 101,
569–582. doi: 10.1016/j.neuroimage.2014.06.077

Suk, H.-I., Lee, S.-W., and Shen, D. (2017). Deep ensemble learning of sparse
regression models for brain disease diagnosis. Med. Image Anal. 37, 101–113.
doi: 10.1016/j.media.2017.01.008

Supekar, K., de los Angeles, C., Ryali, S., Cao, K., Ma, T., and Menon, V. (2022).
Deep learning identifies robust gender differences in functional brain organization
and their dissociable links to clinical symptoms in autism. Br. J. Psychiatry 220,
202–209. doi: 10.1192/bjp.2022.13

Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., and Liu, C. (2018).
A survey on deep transfer learning. arXiv preprint arXiv:1808.01974.
doi: 10.1007/978-3-030-01424-7_27

Thanjavur, K., Hristopulos, D. T., Babul, A., Yi, K.M., andVirji-Babul, N. (2021).
Deep learning recurrent neural network for concussion classification in adolescents
using raw electroencephalography signals: toward a minimal number of sensors.
Front. Hum. Neurosci. 15, 734501. doi: 10.3389/fnhum.2021.734501

Thodoroff, P., Pineau, J., and Lim, A. (2016). Learning robust features using
deep learning for automatic seizure detection. arXiv preprint arXiv:1608.00220.
doi: 10.48550/arXiv.1608.00220

Thompson, N. C., Greenewald, K., Lee, K., and Manso, G. F. (2020).
The computational limits of deep learning. arXiv preprint arXiv:2007.05558.
doi: 10.48550/arXiv.2007.05558

Treacher, A. H., Garg, P., Davenport, E., Godwin, R., Proskovec, A., Bezerra,
L. G., et al. (2021). MEGNet: automatic ICA-based artifact removal for MEG
using spatiotemporal convolutional neural networks. Neuroimage 241, 118402.
doi: 10.1016/j.neuroimage.2021.118402

Treder, M. S. (2020). MVPA-light: a classification and regression toolbox for
multi-dimensional data. Front. Neurosci. 14, 289. doi: 10.3389/fnins.2020.00289

Ulloa, A., Plis, S., and Calhoun, V. (2018). Improving classification
rate of schizophrenia using a multimodal multi-layer perceptron model
with structural and functional MR. arXiv preprint arXiv:1804.04591.
doi: 10.48550/arXiv.1804.04591

Ushizima, D., Chen, Y., Alegro, M., Ovando, D., Eser, R., Lee, W., et al.
(2022). Deep learning for Alzheimer’s disease: mapping large-scale histological
tau protein for neuroimaging biomarker validation. Neuroimage 248, 118790.
doi: 10.1016/j.neuroimage.2021.118790

van der Maaten, L., and Hinton, G. (2008). Viualizing data using t-SNE. J. Mach.
Learn. Res. 9, 2579–2605.

Van Essen, D. C., Smith, S. M., Barch, D. M., Behrens, T. E., Yacoub, E.,
and Ugurbil, K. (2013). The WU-Minn human connectome project: an overview.
Neuroimage 80, 62–79. doi: 10.1016/j.neuroimage.2013.05.041

VanHai, P., and Amaechi, S. E. (2021). Convolutional neural network integrated
with fuzzy rules for decision making in brain tumor diagnosis. Int. J. Cogn. Inform.
Nat. Intell. 15, 1–23. doi: 10.4018/IJCINI.20211001.oa47

Vieira, S., Pinaya, W. H., and Mechelli, A. (2017). Using deep learning
to investigate the neuroimaging correlates of psychiatric and neurological
disorders: methods and applications. Neurosci. Biobehav. Rev. 74, 58–75.
doi: 10.1016/j.neubiorev.2017.01.002

Vu, H., Kim, H.-C., Jung, M., and Lee, J.-H. (2020). fMRI volume
classification using a 3D convolutional neural network robust to shifted and scaled
neuronal activations. Neuroimage 223, 117328. doi: 10.1016/j.neuroimage.2020.11
7328

Vyas, T., Yadav, R., Solanki, C., Darji, R., Desai, S., and Tanwar, S. (2022).
Deep learning-based scheme to diagnose Parkinson’s disease. Expert Syst. 39, 1–19.
doi: 10.1111/exsy.12739

Wang, F., Wu, S., Zhang, W., Xu, Z., Zhang, Y., Wu, C., et al. (2020a).
Emotion recognition with convolutional neural network and EEG-based EFDMs.
Neuropsychologia 146, 107506. doi: 10.1016/j.neuropsychologia.2020.107506

Wang, L. (2020). Neural network based analysis of resting-state functional
magnetic resonance imaging data (dissertation), Riverside, CA: University of
California. Retrieved from: https://escholarship.org/uc/item/3sg9r5b0

Wang, S., Shen, Y., Chen, W., Xiao, T., and Hu, J. (2017). “Automatic
recognition of mild cognitive impairment from MRI images using
expedited convolutional neural networks,” in ICANN (Alghero, Italy).
doi: 10.1007/978-3-319-68600-4_43

Wang, S.-H., Lv, Y.-D., Sui, Y., Liu, S., Wang, S.-J., and Zhang, Y.-D. (2018).
Alcoholism detection by data augmentation and convolutional neural network
with stochastic pooling. J. Med. Syst. 42, 2. doi: 10.1007/s10916-017-0845-x

Wang, X., Li, X.-H., Cho, J. W., Russ, B. E., Rajamani, N., Omelchenko, A., et al.
(2021). U-Net model for brain extraction: trained on humans for transfer to non-
human primates.Neuroimage 235, 118001. doi: 10.1016/j.neuroimage.2021.118001

Wang, X., Liang, X., Jiang, Z., Nguchu, B. A., Zhou, Y., Wang, Y., et al. (2020b).
Decoding and mapping task states of the human brain via deep learning. Hum.
Brain Mapp. 41, 1505–1519. doi: 10.1002/hbm.24891

Wolterink, J. M., Mukhopadhyay, A., Leiner, T., Vogl, T. J., Bucher, A. M.,
and Išgum, I. (2021). Generative adversarial networks: a primer for radiologists.
Radiographics 41, 840–857. doi: 10.1148/rg.2021200151

Xia, M., Wang, J., and He, Y. (2013). BrainNet viewer: a network
visualization tool for human brain connectomics. PLoS ONE 8, e68910.
doi: 10.1371/journal.pone.0068910

Xiao, G., Shi, M., Ye, M., Xu, B., Chen, Z., and Ren, Q. (2022). 4D attention-
based neural network for EEG emotion recognition. Cogn. Neurodyn. 16, 805–818.
doi: 10.1007/s11571-021-09751-5

Xu, L., Xu, M., Ke, Y., An, X., Liu, S., and Ming, D. (2020). Cross-dataset
variability problem in EEG decoding with deep learning. Front. Hum. Neurosci.
14, 103. doi: 10.3389/fnhum.2020.00103

Yan, W., Calhoun, V., Song, M., Cui, Y., Yan, H., Liu, S., et al. (2019).
Discriminating schizophrenia using recurrent neural network applied
on time courses of multi-site FMRI data. eBioMedicine 47, 543–552.
doi: 10.1016/j.ebiom.2019.08.023

Yan, W., Plis, S., Calhoun, V. D., Liu, S., Jiang, R., Jiang, T.-Z., et al. (2017).
“Discriminating schizophrenia from normal controls using resting state functional
network connectivity: a deep neural network and layer-wise relevance propagation
method,” in 2017 IEEE 27th InternationalWorkshop onMachine Learning for Signal
Processing (MLSP) (Tokyo: IEEE), 1–6. doi: 10.1109/MLSP.2017.8168179

Yan, W., Zhao, M., Fu, Z., Pearlson, G. D., Sui, J., and Calhoun, V. D. (2022).
Mapping relationships among schizophrenia, bipolar and schizoaffective disorders:
a deep classification and clustering framework using fMRI time series. Schizophr.
Res. 245, 141–150. doi: 10.1016/j.schres.2021.02.007

Yang, D., and Hong, K.-S. (2021). Quantitative assessment of resting-state for
mild cognitive impairment detection: a functional near-infrared spectroscopy and
deep learning approach. J. Alzheimers Dis. 80, 647–663. doi: 10.3233/JAD-201163

Yang, J., Lei, D., Qin, K., Pinaya, W. H. L., Suo, X., Li, W., et al. (2021a). Using
deep learning to classify pediatric posttraumatic stress disorder at the individual
level. BMC Psychiatry 21. 535. doi: 10.1186/s12888-021-03503-9

Yang, M., Cao, M., Chen, Y., Chen, Y., Fan, G., Li, C., et al. (2021b).
Large-scale brain functional network integration for discrimination of autism
using a 3-D deep learning model. Front. Hum. Neurosci. 15, 687288.
doi: 10.3389/fnhum.2021.687288

Yu, T., and Zhu, H. (2020). Hyper-parameter optimization: a
review of algorithms and applications. arXiv preprint arXiv:2003.05689.
doi: 10.48550/arXiv.2003.05689

Zeiler, M. D., and Fergus, R. (2013). Visualizing and
understanding convolutional networks. arXiv preprint arXiv:1311.2901.
doi: 10.48550/arXiv.1311.2901

Zeman, A. A., Ritchie, J. B., Bracci, S., and Op de Beeck, H. (2020). Orthogonal
representations of object shape and category in deep convolutional neural networks
and human visual cortex. Sci. Rep. 10, 2453. doi: 10.1038/s41598-020-59175-0

Zeng, L.-L., Wang, H., Hu, P., Yang, B., Pu, W., Shen, H., et al.
(2018). Multi-site diagnostic classification of schizophrenia using discriminant
deep learning with functional connectivity MRI. eBioMedicine 30, 74–85.
doi: 10.1016/j.ebiom.2018.03.017

Zhang, J., Feng, F., Han, T., Gong, X., and Duan, F. (2022a). Detection of autism
spectrum disorder using fMRI functional connectivity with feature selection and
deep learning. Cogn. Comput. 4, 1–20. doi: 10.1007/s12559-021-09981-z

Frontiers inNeuroimaging 22 frontiersin.org

https://doi.org/10.3389/fnimg.2022.981642
https://doi.org/10.3389/fnhum.2019.00201
https://doi.org/10.1016/j.neuroimage.2019.01.031
https://doi.org/10.48550/arXiv.1412.6806
https://doi.org/10.1016/j.biopsych.2020.02.016
https://doi.org/10.1016/j.neuroimage.2014.06.077
https://doi.org/10.1016/j.media.2017.01.008
https://doi.org/10.1192/bjp.2022.13
https://doi.org/10.1007/978-3-030-01424-7_27
https://doi.org/10.3389/fnhum.2021.734501
https://doi.org/10.48550/arXiv.1608.00220
https://doi.org/10.48550/arXiv.2007.05558
https://doi.org/10.1016/j.neuroimage.2021.118402
https://doi.org/10.3389/fnins.2020.00289
https://doi.org/10.48550/arXiv.1804.04591
https://doi.org/10.1016/j.neuroimage.2021.118790
https://doi.org/10.1016/j.neuroimage.2013.05.041
https://doi.org/10.4018/IJCINI.20211001.oa47
https://doi.org/10.1016/j.neubiorev.2017.01.002
https://doi.org/10.1016/j.neuroimage.2020.117328
https://doi.org/10.1111/exsy.12739
https://doi.org/10.1016/j.neuropsychologia.2020.107506
https://escholarship.org/uc/item/3sg9r5b0
https://doi.org/10.1007/978-3-319-68600-4_43
https://doi.org/10.1007/s10916-017-0845-x
https://doi.org/10.1016/j.neuroimage.2021.118001
https://doi.org/10.1002/hbm.24891
https://doi.org/10.1148/rg.2021200151
https://doi.org/10.1371/journal.pone.0068910
https://doi.org/10.1007/s11571-021-09751-5
https://doi.org/10.3389/fnhum.2020.00103
https://doi.org/10.1016/j.ebiom.2019.08.023
https://doi.org/10.1109/MLSP.2017.8168179
https://doi.org/10.1016/j.schres.2021.02.007
https://doi.org/10.3233/JAD-201163
https://doi.org/10.1186/s12888-021-03503-9
https://doi.org/10.3389/fnhum.2021.687288
https://doi.org/10.48550/arXiv.2003.05689
https://doi.org/10.48550/arXiv.1311.2901
https://doi.org/10.1038/s41598-020-59175-0
https://doi.org/10.1016/j.ebiom.2018.03.017
https://doi.org/10.1007/s12559-021-09981-z
https://www.frontiersin.org/journals/neuroimaging
https://www.frontiersin.org


Avberšek and Repovš 10.3389/fnimg.2022.981642

Zhang, Y., Cai, H., Nie, L., Xu, P., Zhao, S., and Guan, C. (2021). An end-to-end
3D convolutional neural network for decoding attentive mental state.Neural Netw.
144, 129–137. doi: 10.1016/j.neunet.2021.08.019

Zhang, Y., Lu, Q., Monsoor, T., Hussain, S. A., Qiao, J. X., Salamon,
N., et al. (2022b). Refining epileptogenic high-frequency oscillations using
deep learning: a reverse engineering approach. Brain Commun. 4, fcab267.
doi: 10.1093/braincomms/fcab267

Zhao, G. (2019). Developing Deep Learning and Bayesian Deep Learning Based
Models for MR Neuroimaging. Available online at: https://www.proquest.com/
openview/9e379937028054ee808f9c46e5769240/1?pq-origsite=gscholar&cbl=
18750&diss=y

Zhao, K., Duka, B., Xie, H., Oathes, D. J., Calhoun, V., and Zhang, Y.
(2022). A dynamic graph convolutional neural network framework reveals new

insights into connectome dysfunctions in ADHD. Neuroimage 246, 118774.
doi: 10.1016/j.neuroimage.2021.118774

Zhou, P., Zeng, R., Yu, L., Feng, Y., Chen, C., Li, F., et al. (2021). Deep-learning
radiomics for discrimination conversion of Alzheimer’s disease in patients with
mild cognitive impairment: a study based on 18F-FDG PET imaging. Front. Aging
Neurosci. 13, 764872. doi: 10.3389/fnagi.2021.764872

Zhou, T., Thung, K.-H., Zhu, X., and Shen, D. (2019). Effective feature learning
and fusion of multimodality data using stage-wise deep neural network for
dementia diagnosis. Hum. Brain Mapp. 40, 1001–1016. doi: 10.1002/hbm.24428

Zou, L., Zheng, J., Miao, C., Mckeown, M. J., and Wang, Z. J.
(2017). 3D CNN based automatic diagnosis of attention deficit hyperactivity
disorder using functional and structural MRI. IEEE Access 5, 23626–23636.
doi: 10.1109/ACCESS.2017.2762703

Frontiers inNeuroimaging 23 frontiersin.org

https://doi.org/10.3389/fnimg.2022.981642
https://doi.org/10.1016/j.neunet.2021.08.019
https://doi.org/10.1093/braincomms/fcab267
https://www.proquest.com/openview/9e379937028054ee808f9c46e5769240/1?pq-origsite=gscholar&cbl=18750&diss=y
https://www.proquest.com/openview/9e379937028054ee808f9c46e5769240/1?pq-origsite=gscholar&cbl=18750&diss=y
https://www.proquest.com/openview/9e379937028054ee808f9c46e5769240/1?pq-origsite=gscholar&cbl=18750&diss=y
https://doi.org/10.1016/j.neuroimage.2021.118774
https://doi.org/10.3389/fnagi.2021.764872
https://doi.org/10.1002/hbm.24428
https://doi.org/10.1109/ACCESS.2017.2762703
https://www.frontiersin.org/journals/neuroimaging
https://www.frontiersin.org

	Deep learning in neuroimaging data analysis: Applications, challenges, and solutions
	1. Introduction
	2. Deep learning
	2.1. Convolutional neural network—CNN
	2.2. Recurrent neural network—RNN
	2.3. Autoencoder—AE
	2.4. Restricted Bolzmann machine—RBM
	2.5. Generative adversarial networks—GANs

	3. Deep learning applications in neuroimaging
	3.1. Prediction
	3.2. Interpretation
	3.3. Generation
	3.4. Segmentation

	4. Challenges and solutions
	4.1. Data
	4.1.1. Multidimensionality—space and time
	4.1.2. Multimodality
	4.1.3. Imaging at multiple sites

	4.2. Overfitting and regularization
	4.2.1. Parameter norm penalties
	4.2.2. Data augmentation
	4.2.3. Semi-supervised learning
	4.2.4. Multitask learning
	4.2.5. Early stopping
	4.2.6. Parameter sharing
	4.2.7. Sparse representations
	4.2.8. Ensemble methods
	4.2.9. Dropout
	4.2.10. Transfer learning

	4.3. Architecture and hyperparameters
	4.4. Computational cost

	5. Discussion
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References


