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Neuroimaging plays a crucial role in enabling a surgeon’s proficiency and

achieving optimal outcomes across various subspecialties of neurosurgery.

Since Wilhelm Roentgen’s groundbreaking discovery of the radiograph in

1895, imaging capabilities have advanced astronomically, significantly benefiting

the field of neurosurgery. In this review, we aim to provide a concise

overview of neuroimaging in four specific subspecialties: neuro-oncology,

cerebrovascular, spine, and functional neurosurgery. Although the diseases and

procedures mentioned are not exhaustive, they are illustrative examples of how

neuroimaging has contributed to advancements in neurosurgery. Our intention is

to emphasize the critical role of neuroimaging in pre-operative, intra-operative,

and post-operative settings, while also highlighting its potential to drive research

to further enhance existing neurosurgical technologies and ultimately better

patient outcomes.
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1. Introduction

Neurological conditions evaluated by neurosurgeons affect over 22 million people
globally each year, with nearly 14 million individuals requiring neurosurgical intervention
(Dewan et al., 2018). Neurosurgeons’ skills are complimented by neuroimaging before,
during, and after surgery. In the last century there have been many technological
advancements in neurosurgery, arguably none larger than those in neuroimaging. Notably,
between 1960 and 2010 whenmeasuring top performing technology by patent codes (Marcus
et al., 2015), 37.9% of neurosurgery patents were associated with image guidance. Further,
from 2005–2010 almost half of the patents in neurosurgery were related to image guidance
46.0% (Marcus et al., 2015).

The earliest neuroimaging began with skull radiographs when Wilhelm Roentgen
discovered x-rays in 1895 (Enchev, 2009). In 1918 Walter Dandy discovered
ventriculography and pneumoencephalography (Figure 1) when performing radiography in
a patient with an open penetrating head injury (Dandy, 1918, 1919). Portuguese neurologist
Egas Moniz debuted carotid artery imaging with sodium iodide contrast in 1927 (Enchev,
2009). The vast impact of early neuroimaging, though revolutionary at the time, pales in
comparison to contemporary imaging techniques including computed tomography (CT),
magnetic resonance imaging (MRI), single-photon emission computerized tomography
(SPECT), and positron emission tomography (PET).
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FIGURE 1

Pneumocephalogram, published by Dandy (1919) Open domain use.

FIGURE 2

(A) 3D reconstruction of CT angiogram. (B) T1 sagittal MRI of lumbar

spine. (C) Axial gadolinium contrast enhanced MRI of the brain

showing multiple metastatic tumors. (D) Reconstructed di�usion

tractography imaging superimposed upon T1 anatomical MRI.

This review examines neuroimaging applications in
four neurosurgical domains: neuro-oncology (Barbaro
et al., 2021), cerebrovascular (Heros and Morcos,
2000), spine (Walker et al., 2019), and functional
neurosurgery (Ryvlin et al., 2014; Lewis et al., 2016).
While providing examples of diseases and surgeries, it
aims to demonstrate how neuroimaging contributes to
diagnosis and treatment. These examples illustrate significant
contributions of neuroimaging to neurosurgery, covering
a range of diseases and surgeries without including
every possibility. Furthermore, this review highlights the
current impact of neuroimaging in neurosurgery and its
future potential.

2. Neuro-oncology surgery

2.1. Current uses

Neuroimaging in neuro-oncology includes diagnosis,
neuronavigation, and monitoring treatment response (Nandu
et al., 2018). Preoperative MRI localizes tumor(s), neighboring
anatomy, assists in tumor grading and prognosis by revealing
tumor properties like edema (Figure 2C) (Nandu et al., 2018;
Barbaro et al., 2021). For instance, low-grade gliomas are usually
non-enhancing on T1 weighted MRI and hyperintense on T2 MRI
(Barbaro et al., 2021). Another modality, 18-flurodeoxyglucose
(18F-FDG) PET, may reveal metastases indicated by areas of
elevated metabolic activity.

Surgeons employ neuroimaging based surgical planning to
maximize tumor removal while minimizing damage to healthy
parenchyma. Preoperative imaging assists with intraoperative
positioning, craniotomy size and location, and surgical trajectory
(Yang et al., 2019). Beyond identifying tumor’s location,
neuroimaging can determine areas to avoid. For example,
functional MRI (fMRI) can find eloquent areas, such as the motor
cortex, and plan resection to limit/avoid postoperative deficits
(Azad and Duffau, 2020).

Intraoperatively, neuroimaging is used for neuronavigation.
Preoperative neuroimaging is incorporated to determine location
in surgical space relative to patient’s neuroimaging and anatomy.
In an example tracking system, a fixed reference frame is
attached to the operating bed and infrared cameras track
surgical probes while displaying their location overlaid onto
the patient’s neuroimaging, allowing real-time intraoperative
guidance (Orringer et al., 2012). Limitations of intraoperative
neuronavigation include image registration techniques used to
align imaging and patient space, and accuracy of the preoperative
imaging relative to changes intraoperatively (Narasimhan et al.,
2020a). Postoperatively neuroimaging is used to assess treatment
response by monitoring tumor recurrence or identifying new
tumors (Nandu et al., 2018). Continued follow up in patients with
brain metastases is crucial; for example in patients who receive
stereotactic radiosurgery alone for brain metastases exhibit rates
as high as 40–70% of new intracranial metastases remote from
original sites at 1 year (Shultz et al., 2015). Serial neuroimaging,
for tumor recurrence and new tumors guides treatment response
and planning.

2.2. Emerging research

A limitation to intraoperative guidance is brain shift which
can invalidate intraoperative guidance systems (Sun et al., 2014).
Causes of brain shift include swelling, tumor cavity collapse,
and gravity (Narasimhan et al., 2020a). Ongoing research to
minimize the impact of brain shift on neuronavigation includes
biomechanical brain models to actively update preoperative
neuroimaging into intraoperative space (Sun et al., 2014;
Narasimhan et al., 2020a). These biomechanical models can correct
for movements of brain tissue as tumor is resected and update
intraoperative guidance in real time. Another novel solution to
address intraoperative navigation mismatch is intraoperative MRI

Frontiers inNeuroimaging 02 frontiersin.org

https://doi.org/10.3389/fnimg.2023.1022680
https://www.frontiersin.org/journals/neuroimaging
https://www.frontiersin.org


Narasimhan and González 10.3389/fnimg.2023.1022680

(iMRI) which enables active updating of intraoperative guidance
(Albayrak et al., 2004).

There are also a variety of neuroimaging techniques with
potential to improve patient care preoperatively. Diffusion-
weighted MRI (DW-MRI) can be used to calculate apparent
diffusion coefficient, enabling identification of tumor grades and
subtypes, as well as distinguishing healthy tissue from tumor
(Nandu et al., 2018). Brain tumors can alter vascularity based
on tumor-induced angiogenesis, and this can be measured
using imaging techniques including perfusion-weighted MRI,
dynamic contrast enhanced MRI, and dynamic susceptibility
contrast MRI (Nandu et al., 2018). Furthermore, computational
model neuroimaging-based techniques can help perform non-
invasive diagnostics (Narasimhan et al., 2019). Limitations in
standardization across image acquisition and processing currently
impair clinical implementation of these techniques (Nandu et al.,
2018). Diffusion tensor imaging (DTI), allows for non-invasive
identification neural tracts such as corticospinal tract or Meyer’s
loop to avoid postoperative motor and visual field deficits
(Essayed et al., 2017; Henderson et al., 2020). Novel tractography
algorithms allow for localization of eloquent white matter tracts
despite traditionally confounding effects of localized tumor
edema (Henderson et al., 2021). One randomized controlled trial
using tractography for high grade glioma resection demonstrated
improved resection extent and Karnofsky performance scale (Wu
et al., 2007).

Functional neuroimaging guidance of tumor resection such
as resting-state fMRI, is increasingly used for language mapping
preoperatively (Sair et al., 2016; Gross et al., 2022). One study of 40
glioma patients showed task-based fMRI demonstrated a sensitivity
of 37.1% and specificity of 83.4%. Other studies comparing fMRI
for motor mapping vs. language mapping have shown higher
sensitivity and specificity for motor mapping (Azad and Duffau,
2020). Generally, neuroimaging is essential in neuro-oncology and
further incorporation of advanced neuroimaging into standard
oncological neurosurgical care may improve resection extent and
reduce risk to eloquent cortex.

3. Cerebrovascular surgery

3.1. Current uses

Cerebrovascular surgery includes treatment of arteriovenous
malformations, intracranial hemorrhages (ICH), strokes,
aneurysms, and other vascular lesions with high rates of
mortality and morbidity (Michalak et al., 2016). Successful
cerebrovascular neurosurgery is highly dependent upon timing,
i.e., “time is brain” (Saver, 2006); therefore preoperatively, the
most frequently used modality is CT. CT quickly allows physicians
to evaluate size and location of ICH, presence of intraventricular
hemorrhage, hydrocephalus, and edema. Clinical evaluation
and ICH score (calculated from neuroimaging) are used for
predicting 30-day mortality after hemorrhage (Hemphill et al.,
2001). CT angiography (CTA) can localize pathology and may
aid prognostication (Figure 2A). One study showed the spot sign
score could predict hematoma expansion in ICH as it represents
focal pooling or extravasation of contrast within a hematoma.
Presence of spot sign increased in hospital mortality risk (55.6%)

and poor outcome among survivors at 3-month follow-up (50.8%)
(Delgado Almandoz et al., 2010). Three neuroimaging methods for
preoperative subarachnoid hemorrhage (SAH) diagnosis are non-
contrast computed tomography (NCCT) with lumbar puncture,
NCCT followed by CTA, and magnetic resonance angiography
(MRA) (de Oliveira Manoel et al., 2014). For SAH, NCCT is very
sensitive in acute detection of bleed (<6 h), however, lumbar
puncture showing xanthocromia is the traditional gold standard
for presence of blood in CSF (de Oliveira Manoel et al., 2014).
Neuroimaging is employed postoperatively to assess treatment
efficacy and determine next steps.

With emergence of the coronavirus pandemic, there has
been an increase in acute cerebrovascular disease (Hernández-
Fernández et al., 2020). A study performed in Spain over 50 days,
showed 23 1,683 COVID admissions developed cerebrovascular
disease (Hernández-Fernández et al., 2020). As the COVID-19
pandemic continues, neuroimaging may better characterization
cerebrovascular sequelae in COVID.

3.2. Emerging research

Imaging modalities that traditionally treatment of
cerebrovascular disease, evaluate the lumen of blood vessels.
Cerebrovascular disease often begins as inflammatory changes in
the vessel wall preceding luminal/perfusion changes, therefore
intracranial vessel wall imaging may allow earlier detection and
intervention for cerebrovascular disease by screening patients with
established risk factors thereby allowing for early intervention
(Young et al., 2019).

For SAH and other cerebrovascular diseases ongoing research
includes use of structural MRI, DW-MRI, MRI morphometry,
and fMRI to improve patient care (de Oliveira Manoel et al.,
2014). ICH volume changes assessed with structural MRI correlate
with patient performance on neuropsychological performances (de
Oliveira Manoel et al., 2014). Additionally, DWI can categorize
brain tissue at risk for ischemia and help predict poor outcomes
(de Oliveira Manoel et al., 2014).

Intraoperative digital subtraction angiography (iDSA) is not
frequently applied in open cerebrovascular surgery, but has been
shown to alter treatment in 12% of patients (Fandino et al.,
2013). iDSA may reduce excessive surgical steps/intraoperative
time in cerebrovascular surgery. Combining iDSA with near-
infrared indocyanine green video angiography helps assess vascular
flow during resection of vascular lesions like cavernomas or
arteriovenous malformations and improve patient outcomes
(Fandino et al., 2013). Overall, imaging is fundamental for
cerebrovascular surgery and improvements in neuroimaging
techniques can facilitate improved outcomes.

4. Spine surgery

4.1. Current uses

Patient selection in spine surgery is primarily guided by clinical
exams and imaging which are key factors in successful surgical
outcomes (Ahn et al., 2016; Mundell et al., 2018; Letchuman
et al., 2022). Preoperatively, plain radiograph (x-ray) is quick and
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inexpensive; and, despite low resolution, is the initial imaging
modality to evaluate spinal pathologies (Harada et al., 2020).
Furthermore, by obtaining multiple view x-rays spinal stability can
be evaluated under different loading conditions (Harada et al.,
2020). X-rays are fundamental to preoperative measurements
including Cobb angles, lordosis, and kyphosis (Harada et al., 2020).

Advanced spinal imaging, including MRI and CT, provide
additional preoperative information (Figure 2B). For example,
preoperative CT allows assessment of pedicle anatomy for planning
of screw placement during instrumented fusions (Harada et al.,
2020). CT myelography evaluates spinal cord, nerve roots, and
spinal lining by injecting contrast into the thecal sac. Although
largely supplanted by MRI, it is still used in those who cannot
undergo MRI, and some argue it is superior to MRI in evaluation
of foraminal/lateral recess stenosis (Harada et al., 2020) [with MRI
missing lateral recess nerve root compression in 30% of cases
(Bartynski and Lin, 2003)]. Some have shown using advanced
spinal imaging increases rates of spine surgery, however, their
contributions to spine surgery are immeasurable (Lurie et al., 2003).

Intraoperatively visualizing anatomy through x-ray has
decreased reliance on anatomic landmarks and allows surgeons to
directly verify spinal level and decreased incidence of wrong-level
surgery while improving pedicle screw placement accuracy (Mao
et al., 2021). Most spinal surgeries now employ fluoroscopic
imaging for level localization and hardware placement (Harada
et al., 2020). Surgical image guidance was originally developed for
intracranial surgery; however, these have recently been translated
into systems for spine surgery (Mao et al., 2021). Systems like
StealthStation (Medtronic, Memphis, TN, USA), use a reference
arc attached to fixed spinous process to register 3D data with
intraoperative patient position (Girardi et al., 1999). This allows
surgeons to use preoperative image data fused with intraoperative
3D data for patient-specific surgical guidance. Intraoperative
imaging, such as O-arm (Medtronic, Dublin, Ireland) and Airo
(Brainlab, Feldkirchen, Germany), allow imaging in operative
position, increasing safety and accuracy (Sembrano et al., 2012;
Scarone et al., 2018). These modern intraoperative neuroimaging
systems have revolutionized spine surgery and patient care.

4.2. Emerging research

Some surgeons argue future of spine surgery lies in combining
image guidance technology and robotic surgery, including systems
like augmented reality (Ahern et al., 2020; Pham et al., 2020). Image
guided robotic surgery may mitigate surgeon fatigue and improve
precision of movements in long procedures. A recent multicentre
study comparing navigated and non-navigated robot-assisted spine
surgery showed that combining image navigation with robotics
reduced fluoroscopic radiation time per screw, decreased robot
abandonment rate, and resulted in lower blood transfusion rate
compared to system without navigation (Lee et al., 2021). Many
believe that the next generation of image guided robotics will begin
to include artificial intelligence and machine learning techniques
to predict surgical movements and cut down on response time
(D’Souza et al., 2019).

In efforts to improve upon qualitative assessments of cord
change, a marker of injury, techniques like sodium MRI have been

developed to characterize viability of tissues by indirectly assessing
active membrane sodium-potassium pumps (Madelin et al., 2014).
Negative charge of glycosaminoglycan side chains in intravertebral
disk are balanced by sodium concentration in intervertebral
disks, therefore sodium MRI has potential to help detect early
degeneration of intravertebral disks by assessing concentration
of sodium (Madelin et al., 2014). Generally, combining novel
neuroimaging with advances in robotics may allow improved
patient selection and improved surgical accuracy.

5. Functional surgery

The World Society for Stereotactic and Functional
Neurosurgery (WSSFN) states that neuroimaging is inherent
to the definition of this neurosurgical field: “Stereotactic and
Functional Neurosurgery is a branch of neurosurgery that utilizes
dedicated structural and functional neuroimaging to identify
and target discrete areas of the brain and to perform specific
interventions to relieve a variety of symptoms of neurological and
other disorders and to improve function of both the structurally
normal and abnormal nervous system.” This area of neurosurgery
includes but is not limited to treatment of movement disorders,
epilepsy, and psychiatric disorders (Ryvlin et al., 2014).

5.1. Current uses

5.1.1. Movement disorders
While diagnosis for movement disorders is often clinical,

neuroimaging is vital in patient evaluation and diagnosis
(Mascalchi et al., 2012). Characteristic patterns of atrophy
visualized on T1-weighted MRI are pathognomonic for various
forms of Parkinsonism, for example the hummingbird sign of
progressive supranuclear palsy (PSP) or hot cross bun sign of
multisystem atrophy (MSA) (Mascalchi et al., 2012). SPECT, using
dopamine transporter (DAT) labeling, shows asymmetric decreases
in uptake in putamen and caudate in even early Parkinson’s
disease (Mascalchi et al., 2012). In PSP and MSA, SPECT shows
decreased uptake of tracers and dopamine D2 receptors in striata,
not observed early in Parkinson’s disease (Mascalchi et al., 2012).

Preoperative neuroimaging in movement disorders is
most helpful in enhancing accuracy when planning surgical
interventions (Ben-Haim et al., 2011). Traditionally interventions
for movement disorders utilize stereotaxic techniques, such as
Leksell frame with intraoperative x-ray, to pass an electrode
to target (Zrinzo, 2010). Historically, DBS (deep brain
stimulation) targeting was accomplished during awake surgery
and accuracy/efficacy of implantation could be evaluated with
microelectrode recordings, known neurophysiology, and test
stimulations. Recently, systems like STarFix have combined
preoperative neuroimaging and surgery planning software to 3-D
print custom stereotactic frames for intraoperative use (Konrad
et al., 2011; D’Haese et al., 2012). These “frameless” methods
of DBS implantation are based on preoperative high-resolution
imaging combined with minimally invasive fiducial markers placed
before imaging acquisition.
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5.1.2. Epilepsy
Epilepsy surgery, for individuals with drug-resistant epilepsy,

includes neuromodulation, resection, and ablation (Kwan et al.,
2010; Englot, 2018; Gonzalez et al., 2019a). Neuroimaging for
epilepsy includes scalp EEG and high-quality 3T MRI, confident
localization is key to surgical planning (Deblaere and Achten,
2008; Zijlmans et al., 2009). PET may show focal region(s)
of hypometabolism indicating seizure onset zone. In patients
without structural evidence, MRI-negative, FDG-PET may provide
evidence to guide surgical planning (Wong et al., 2012; Capraz
et al., 2015). In a study of 141 patients who underwent anterior
temporal lobectomy for TLE 24 patients, with MRI negative but
FDG-PET hypometabolism, were seizure free at a rate of 79.2%,
while those with mesial temporal sclerosis onMRI were seizure free
at a rate of 82% (Capraz et al., 2015; Shin et al., 2018). Conversely,
hyperperfusion on ictal SPECT may correspond with focal seizure
onset. Sensitivity of SPECT is enhanced when subtracting interictal
SPECT from ictal SPECT and registering to anatomical MRI
(SISCOM) (Desai et al., 2013; Sulc et al., 2014). Interictal
magnetoencephalography (MEG) may help identify epileptogenic
activity between seizures (Englot et al., 2015). Just as in neuro-
oncological surgery, either fMRI or MEG can be used for non-
invasive localization of eloquent cortex. This facilitates preoperative
surgical planning, including quantifying risk to motor, sensory,
and language cortices (Szaflarski et al., 2017). Other neuroimaging
techniques, Wada (intracarotid sodium amobarbital) and fMRI,
can be used to preoperatively lateralize verbal/visuospatial memory
(Abou-Khalil, 2007).

5.2. Emerging research

Structural MRI is needed for accurate DBS implantation,
but employing connectome framework with MRI can be used
to evaluate and optimize efficacy of DBS. Horn and Fox
outline how connectomics neuromodulation will soon provide
opportunities to guide neuromodulation (Horn and Fox, 2020).
Recent studies using fMRI have shown subcortical arousal
structures have abnormal functional connectivity proportional to
disease severity, and some of these connectivity abnormalities
resolve after successful epilepsy surgery. These subcortical arousal
structures may represent future targets for neuromodulation
to treat consciousness impairment during seizures (Kundu
et al., 2018; Gonzalez et al., 2019b, 2020, 2021). SEEG based
connectomics studies have shown that seizure onset zone may
be identified using directional functional connectivity without
requiring ictal recordings (Narasimhan et al., 2020b; Paulo et al.,
2022).

Novel neuroimaging techniques now allow for asleep DBS
placement. The advent of asleep DBS has led to a contentious
discussion of asleep vs. awake DBS surgery. Some argue that awake
surgeries may present a greater risk to the patient due to multiple
electrode(s) passes during intraoperative testing relative to asleep
placement. The counter argument is in asleep patient efficacy of
electrode placement cannot be evaluated until weeks later. Asleep
targeting for DBS and other neuromodulation truly opens the
possibility of treatment of non-motor diseases. For example, when
treating depression or obsessive-compulsive disorder, targets do
not always display an acute response to stimulation.

FMRI may soon be an invaluable tool for functional
neurosurgery. A group used fMRI in patients with Parkinson’s
Disease to identify DBS stimulation frequency associated with
clinically optimized settings (DiMarzio et al., 2021). In this
preliminary study, 2 of 14 patients experienced sustained symptom
improvement after fMRI-guided programming. As noted in their
study, traditional programming techniques can take up to 6months
with multiple return neurologist visits, and neuroimaging guided
DBS programming could decrease burden of system optimization.
Overall, neuroimaging is already fundamental for functional
neurosurgery and will play a growing role.

Directional leads in deep brain stimulation (DBS) offer selective
stimulation of specific brain regions, providing more control
over direction/spread of stimulation. Unlike conventional DBS
electrodes, directional leads have multiple independent contacts
that can be programmed individually. Computational modeling
based on neuroimaging, such as tractography of deep brain white
matter tracts (Figure 2D), can aid in planning and identifying DBS
targets (Howell and McIntyre, 2016). Recent studies have shown
that patient-specific white matter connectivity and electrical field
modeling can help predict clinical benefits in Parkinson’s disease
(PD) (DiRisio et al., 2023).

Imaging-negative epilepsy and movement disorders are
surgically challenging. For example, some patients with clinical
features of Parkinson’s disease have scans without evidence of
dopaminergic deficit (SWEDD) (Nicastro et al., 2018). Recent
advents such as quantitative andmachine learning based processing
of SPECT have identified cases of PD previously thought to be
imaging SWEDD PD, suggesting others may be misdiagnosis of PD
(Erro et al., 2016). MRI negative epilepsy, such as TLE traditionally
has lower rates of successful surgical treatment. We know that up
to 30% of patients with TLE have MRI negative scans (Muhlhofer
et al., 2017). In patients with refractory unilateral TLE, there
exist abnormal cortical and subcortical resting-state fMRI-based
connectivity which lateralize ipsilateral to the epileptogenic zone
(Vaughan et al., 2016; González et al., 2022). Additionally, modern
neuroimaging techniques are beginning to guide surgical treatment
of diseases for which we have no reliable structural correlates,
such as neuropsychiatric disorders and pain. These connectivity
abnormalities may be used clinically to help guide surgical plans.

6. Conclusion

Neuroimaging and neurosurgery go hand in hand and there are
seemingly endless possibilities to better leverage current imaging
techniques as well as incorporate emerging technologies. There is
a large disparity in surgical care globally, with approximately 5
million people annually not receiving necessary surgery (Dewan
et al., 2018). While neuroimaging cannot fully address this
disparity, improvements in neuroimaging technology with a
focus on accessibility have the potential to bridge the gap in
patient care globally. Another emerging and rapidly growing
area of research is the combination of machine learning with
neuroimaging for neurosurgical care (Kamal et al., 2018; Senders
et al., 2018; Davatzikos, 2019). For example, with respect to
navigation, machine learning has been incorporated into guidance
for autonomous surgical robots (Senders et al., 2018). However,
incorporation of all novel neuroimaging techniques is limited by
standardization of acquisition and processing techniques.

Frontiers inNeuroimaging 05 frontiersin.org

https://doi.org/10.3389/fnimg.2023.1022680
https://www.frontiersin.org/journals/neuroimaging
https://www.frontiersin.org


Narasimhan and González 10.3389/fnimg.2023.1022680

As evident here and in other existing material, there is an
ever-increasing abundance of neuroimaging techniques and new
methods to utilize it. Neuroimaging has developed boundlessly,
and modern techniques have surpassed its humble beginnings
(Figure 2). Both from the perspective of researchers and clinicians,
it is crucial for the improvement of patient care in neurosurgery
that scientist developing novel neuroimaging techniques and
neurosurgeons employing clinical neuroimaging continue to
collaborate to leverage our existing and emerging methodologies
to further patient care.
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