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Traumatic brain injury (TBI) often results in heterogenous lesions that can be

visualized through various neuroimaging techniques, such as magnetic resonance

imaging (MRI). However, injury burden varies greatly between patients and

structural deformations often impact usability of available analytic algorithms.

Therefore, it is di�cult to segment lesions automatically and accurately in TBI

cohorts. Mislabeled lesions will ultimately lead to inaccurate findings regarding

imaging biomarkers. Therefore, manual segmentation is currently considered the

gold standard as this produces more accurate masks than existing automated

algorithms. These masks can provide important lesion phenotype data including

location, volume, and intensity, among others. There has been a recent push to

investigate the correlation between these characteristics and the onset of post

traumatic epilepsy (PTE), a disabling consequence of TBI. One motivation of the

Epilepsy Bioinformatics Study for Antiepileptogenic Therapy (EpiBioS4Rx) is to

identify reliable imaging biomarkers of PTE. Here, we report the protocol and

importance of ourmanual segmentation process in patientswithmoderate-severe

TBI enrolled in EpiBioS4Rx. Through these methods, we have generated a dataset

of 127 validated lesion segmentation masks for TBI patients. These ground-truths

can be used for robust PTE biomarker analyses, including optimization of

multimodal MRI analysis via inclusion of lesioned tissue labels. Moreover, our

protocol allows for analysis of the refinement process. Though tedious, the

methods reported in this work are necessary to create reliable data for e�ective

training of future machine-learning based lesion segmentation methods in TBI

patients and subsequent PTE analyses.
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1. Introduction

Post traumatic epilepsy (PTE), which is defined as recurring

seizures more than 1-week post-injury, can occur in up to 50%

of patients with traumatic brain injury (TBI; Lowenstein, 2009).

Despite the high incidence of PTE, the precise mechanisms which

induce seizures are unknown due to the heterogenous nature of

the disorder (Agrawal et al., 2006; Mukherjee et al., 2020). The

onset of PTE is often preceded by a latency period, which can

last up to several years (Garner et al., 2019). Currently, there are

no effective interventions to prevent seizure development during

this latency period. Therefore, identification of biomarkers to help

predict PTE prior to seizure development is of great importance for

early identification of at-risk patients. The Epilepsy Bioinformatics

Study for Antiepileptogenic Therapy (EpiBioS4Rx) is a multi-

center, international project which aims to identify biomarkers

of PTE and utilize these biomarkers to develop effective and

large-scale clinical trials for seizure prevention in TBI patients

(Vespa et al., 2019). The characterization of injury burden, or

size, location, and number of contusions, will facilitate biomarker

identification. For example, recent studies have identified lesion

characteristics such as lesion core and edema volumes, number of

lesions, and lesion location in TBI patients as promising biomarkers

for the development of PTE (Tubi et al., 2019; La Rocca et al.,

2021).

Medical image segmentation is a useful tool for image

processing, disease diagnosis, and prognosis (Patil and Deore,

2013; Norouzi et al., 2014). Specifically, lesion segmentation

helps visualize and quantify injury burden. Accurate results

from segmentation methods are necessary for robust analyses,

especially in identifying reliable imaging biomarkers. Moreover,

interpretation of automated medical image segmentation results

can lead to biased downstream analyses, especially for smaller

ROIs such as lesions (Müller et al., 2022). Manual segmentation

methods, though tedious, allow for domain experts to accurately

identify lesioned regions. In EpiBioS4Rx, we have designed

a manual lesion segmentation process and performed it on

structural MRI for 127 TBI patients to better characterize

injury burden in a large sample size. Segmentations were

performed on 3D T2 fluid attenuated inversion recovery (T2-

FLAIR) images because the increased sensitivity to signal intensity

often results with lesions presenting as hyperintense regions.

A previous study noted the significance of hemorrhagic injury

in the temporal lobe in seizure development after TBI. Other

lesion types such as subdural hematoma, however, were not

found to be associated with PTE (Tubi et al., 2019). Therefore,

we segmented hemorrhagic, parenchymal contusions in this

work. These gold standard ground-truths are important for

training of automated segmentation methods and downstream

PTE analyses.

Several automated segmentation methods for biomedical

applications have been developed; however, TBI-induced

deformations produce unexpected inconsistencies that can

reduce accuracy in landmark-based segmentation algorithms

(Irimia et al., 2012; Selvaganesan et al., 2019). Section

1.1, including advantages, limitations, and suggestions for

future direction.

1.1. Review of automated segmentation
methods

There has been a recent push in the development of methods

to automatically segment lesions in TBI patients. These methods

have the potential to alleviate the burden of manual segmentations,

which are tedious, time consuming, and require neuroimaging

expertise. Unsupervised segmentation will be very useful in

the analysis of large datasets, which is necessary to generalize

findings in a population. However, more reliable methods must be

developed and validated to maximize clinical relevancy.

Toolboxes such as the Lesion Segmentation Tool (LST) have

been used for an array of biomedical applications for its ability to

segment hyperintense lesions in FLAIR images of multiple sclerosis

patients (Schmidt and Wink, 2017). However, this is not optimized

for the complexities present in TBI patients such as lesion size,

location, and intensity differences. Therefore, popular toolboxes

fail when tasked with segmenting TBI-induced lesions. FreeSurfer

is another commonly used tool for automated medical image

segmentation (Fischl et al., 2002). Similarly, this tool becomes less

reliable in lesioned brains as it is based on a T1-weighted structural

image (Selvaganesan et al., 2019). While it is important to note

T2 or FLAIR images can be added in FreeSurfer for improved

pial surface reconstruction, both focal and global lesion-induced

error can still greatly impact brain morphometry measurements

(King et al., 2020). Therefore, some studies have proposed post-

processing methods to account for lesion induced errors. For

example, Diamond et al. (2020) described a lesion correction

method used to correct cortical volume measurements in patients

with traumatic brain injury. Other methods exclude lesioned ROIs

from FreeSurfer segmentation methods (Drijkoningen et al., 2017).

However, such methods still have limitations, including the need

for manual editing and the assumption of only focal lesion-

induced errors.

Due to the limitations of using these popular segmentation

algorithms, several recent studies have proposed novel machine

learning methods specific to TBI populations. Many of these works

have focused on lesion segmentation of computed tomography

(CT) scans of TBI patients. For instance, a 2D deep learning

architecture was utilized for CT images from 45 TBI patients which

resulted in a dice similarity coefficient (DSC) value of 64% when

outputted masks were compared to manually segmented ground-

truths (Remedios et al., 2019). DSC has been used throughout

literature as a method to statistically validate medical image

segmentations based on spatial overlap (Zou et al., 2004). DSC

values can range from 0 (no spatial overlap) to 1 (complete

spatial overlap). While DSC is a commonly used metric for binary

segmentation validation, there are limitations. For example, it

is not robust in smaller regions (Zou et al., 2004), which may

affect analyses of small brain lesions. Until recently, lesion type

has also rarely been accounted for in automated frameworks

(Phaphuangwittayakul et al., 2022); however, subtypes of lesion

may provide invaluable information in the characterization of PTE.

Inkeaw et al. (2022) used a CT scan integrated with bone window as

an input to a deep learningmodel for segmenting three hemorrhage

subtypes in TBI patients. However, sensitivities for each subtype

ranged only from 35 to 58% (Inkeaw et al., 2022). In a different
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study, Phaphuangwittayakul et al. (2022) proposed a fine-tuned

EfficientNet-B2 model for CT scans that outperformed baseline

models in detecting lesion subtypes.

While several proposed methods have been applied to CT, MRI

offers better tissue resolution and is suggested to be more accurate

for PTE characterization (Garner et al., 2019). This is an important

consideration when developing machine learning models, as it

may improve accuracy. Kamnitsas et al. (2017) proposed a 3D

convolutional neural network (CNN) for segmentation of TBI

lesions, brain tumors, and ischemic stroke lesions from MRI. The

model outperforms state-of-the-art architectures on brain tumors

and ischemic stroke lesions, with DSC values of 89.8 and 66%,

respectively. However, the results were lowest for TBI lesions,

with a DSC value of 63% when compared to manually segmented

ground-truths (Kamnitsas et al., 2017). Similarly, a random forest

framework for contusion segmentation of MR images reached a

mean DSC value of 60% (Rao et al., 2014). This captures the

particularly difficult nature of developing automated methods in

TBI patients.

Further, current methods in literature do not focus on the

separation of lesion core to edema volumes, and instead segment

total lesion volumes. While total volume is of great importance,

subtle differences between lesion core and edema volumes may

provide a better characterization of PTE as we previously reported

a statistically significant difference in the ratio of lesion core-

to-edema volume in seizure and non-seizure groups (Bennett

et al., 2022a,b). Therefore, future works investigating lesion

characteristics as PTE biomarkers should consider automated

methods with the ability to segment each region of interest

separately. One recent study presented the first neural network

to distinguish between blood, core, and edema during automated

segmentation, but reached a maximum DSC value of 53.9%

(Rosnati et al., 2022). Another study derives lesion volumes

for multiclass hemorrhagic lesions and edema using a deep

learning model on CT scans (Monteiro et al., 2020). After

exclusion of small lesions (<1ml), the median DSC value for

intraparenchymal hemorrhage and perilesional edema were 65.2

and 44.8%, respectively (Monteiro et al., 2020). These studies

highlight the need for further work in the development of accurate

models with the capability of separating lesion core and edema

volumes, as this multiclass segmentation may allow for better

prognostication. Here, we generate a gold-standard ground-truth

dataset of lesion segmentation masks with binarized labels for

lesion core and edema, which can be used to improve automated

multiclass segmentation methods in future works.

2. Materials

2.1. Participants

This study was approved by the University of California,

Los Angeles Institutional Review Board and the local review

boards at each EpiBioS4Rx Study Group institution. At the

time of writing, there are 250 subjects currently enrolled in

EpiBioS4Rx from 13 international sites. Patient demographics for

the EpiBioS4Rx cohort and the subset of patients with available

lesion segmentations are detailed in Table 1. All patients have

TABLE 1 Demographics for entire EpiBioS4Rx cohort and subset of

patients with completed lesion segmentations.

EpiBioS4Rx cohort Completed lesion
segmentation cohort

Variable Value Variable Value

Age 44.28, SD= 21.2 Age 43.27, SD= 20.18

Sex 192 male/58 female Sex 98 male/29 female

Arrival GCS 7.89, SD= 3.91 Arrival GCS 8.03, SD= 3.98

MRI

post-injury

date

12.16, SD= 12.54 MRI

post-injury

date

11.81, SD= 7.74

TABLE 2 Enrollment criteria for EpiBioS4Rx.

Inclusion criteria Exclusion criteria

Acute traumatic brain injury Diffuse axonal injury without

hemorrhagic contusions

Intracranial, cortical, and/or

subcortical bleed on CT imaging

Known HIV/AIDS, Hepatitis B or C

Age 6–100 Pregnancy

Glasgow coma score 3–13 Pre-existing neurologic disease, CNS

malignancy, epilepsy/seizure disorder,

or dementia

Enrollment within 72 h of injury Isolated anoxic brain injury

Ability to undergo continuous EEG

monitoring 7 days post injury

Devastating cervical spine injury

Ability to undergo MRI within 18

days post injury

Brain death

Ability to remain in study for 2

years

Present or pending incarceration

Positive COVID-19 test

been admitted within 72 h of sustaining a moderate-severe TBI.

Additional enrollment criteria for the study are outlined in Table 2.

Eleven subjects withdrew from the study and 42 died prior to the

2-year follow up. Of these 53 subjects, quality was deemed usable

in 17 patients, and lesion segmentation masks are still available for

these subjects for ground-truths in TBI patients; however, they are

excluded from any seizure analyses.

In this work, we report methods validated on 133 patients

enrolled in EpiBioS4Rx, 6 of which had no visible lesions.

Therefore, 127 validated lesion segmentation masks are currently

available (Figure 1). The remaining subjects were not included in

this work due to poor quality data or if a T2-FLAIR sequence was

not acquired or uploaded to the central repository at USC.

2.2. Data acquisition

Structural MRI volumes were acquired on 3-Tesla or 1.5 Tesla

scanners according to the EpiBioS4Rx protocol outlined in Vespa

et al. (2019). 3D T2-FLAIR volumes were acquired ∼2 weeks post-

injury (mean = 11.81, SD = 7.74). The following parameters were

used: slice thickness= 1mm, field of view= 256mm, frequency=

Frontiers inNeuroimaging 03 frontiersin.org

https://doi.org/10.3389/fnimg.2023.1068591
https://www.frontiersin.org/journals/neuroimaging
https://www.frontiersin.org


Bennett et al. 10.3389/fnimg.2023.1068591

FIGURE 1

Flowchart outlining the amount of data from EpiBioS4Rx used at the time of writing.

256Hz, flip angle = 90◦/≥ 120◦, TR > 5,000ms, TE = 80–140ms,

TI= 2,000–2,500ms, gap = 0 gap, isotropic = 1mm, NEX ≥ 1, up

to 2x parallel imaging.

3D T1-weighted volumes were acquired using a magnetization

prepared rapid acquisition gradient echo (MPRAGE) sequence.

The following parameters were used: slice thickness = 1mm, field

of view = 256mm, frequency = 256Hz, flip angle = 8–15◦, TR=

1,500–2,500ms, TE= Min, TI = 1,100–1,500ms, gap = 0 gap,

isotropic= 1mm, NEX ≥ 1, up to 2x parallel imaging.

3. Methods

3.1. Manual lesion segmentation using
ITK-SNAP

Anonymized MRI scans were examined both through visual

inspection and the Laboratory of Neuro Imaging (LONI) quality

control (QC) system to ensure high quality data were being used

(Kim et al., 2019). After QC, T2-FLAIR volumes were uploaded

into ITK-SNAP, a software used for medical image segmentation

(Yushkevich et al., 2006). Image heterogeneity and noise can

sometimes render it difficult to visualize contusions. In these

cases, T1-MPRAGE sequences were uploaded as an additional

reference image.

Manual delineations were completed for parenchymal

hemorrhagic contusions, with two independent labels for lesion

core and surrounding edema (Figure 2). The labels were defined

using the following guidelines: lesion core is a region with

abnormal signal intensity and >1ml of hemorrhagic volume and

edema is the surrounding area of hyperintense signal (Chang et al.,

2006; Iaccarino et al., 2014; La Rocca et al., 2021). Manual traces

were completed on each lesioned slice of the T2-FLAIR in the axial

plane to remain consistent across raters and produce a smoother

3D mask. Finally, we used label thresholding using FMRIB

Software Library (FSL; Jenkinson et al., 2012) to generate binarized

masks of lesion core, edema, and total lesion volume (lesion core+

edema), allowing for future analyses of specific ROIs.

3.2. Training protocols

Segmentations were initially performed by five student

researchers with minimal neuroimaging or segmentation

experience. Our preliminary work which defines lesion and

edema guidelines for this study (La Rocca et al., 2021) was sent to

students as part of an initial onboarding process. A segmentation

demonstration using ITK-SNAP exposed students to MRI, lesion

visualization, and the software. Additionally, a comprehensive

lesion segmentation guide was distributed for future reference

(Supplementary material). To enforce guidelines on a practical

level, biweekly check-ins with senior staff researchers with 3+

years of neuroimaging and segmentation experience were held for

consistent feedback.

3.3. Dataset validation

All segmentation masks were first reviewed and edited as

needed by either senior staff researchers with 3+ years of

neuroimaging experience or medical doctors. To validate these

data, a final review was completed by another physician with

neuroradiology expertise. More specifically, the reviewer had

domain expertise in neurocritical care. These double-reviewed

segmentations are then used for ground-truths in all subsequent

analyses and algorithm training. We calculated DSC values at each

step of the review process, which can be visualized in Figure 3.

Using DSC values for voxel overlap between the first and second

reviews, we established that majority of change occurs during the

first review.

4. Results

4.1. Dice similarity comparisons of
refinement process

For lesion core volume, edema volume and total lesion

volume, the average DSC value between the first and second
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FIGURE 2

Example of double-reviewed completed parenchymal lesion segmentation on T2-FLAIR. Lesion core is depicted by the red label and surrounding

edema is depicted by the green label.

FIGURE 3

Examples of manual segmentation process for three subjects at each step of our manual review process with varying levels of DSC values.

review was 0.86, 0.86, and 0.91, respectively. DSC values at

different steps in the review process were tested using a one-

way ANOVA test, and Tukey’s HSD test was used for post-hoc

analysis. We compared DSC values for the following steps: (1)

initial segmentation to first review, (2) first review to second

review, and (3) initial segmentation to second review. For lesion

core volume, edema volume and total lesion volume, the average

DSC value between the initial segmentation and first review was

0.77, 0.74, and 0.74, respectively. For lesion core volume, edema

volume and total lesion volume, the average DSC value between

the first and second review was 0.86, 0.86, and 0.91, respectively.

DSC values were found to be significantly lower for the initial

segmentation to first review than the first review to the second

review for all ROIs (p < 0.05; Figure 4). Further, DSC values for

the initial segmentation to the second review were significantly

different between lesion core and total lesion (p < 0.05; Figure 5).

However, there was no significant difference between lesion core

and total lesion for the other review steps. Moreover, there was

no significant difference between lesion core and edema at any

review step.
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FIGURE 4

DSC values comparing the review steps in a manual lesion segmentation process for (A) total lesion, (B) core, and (C) edema. The di�erence between

initial segmentation to first review (blue) and first review to second review (red) were significantly di�erent for all ROIs (p < 0.05). The di�erence

between initial segmentation to second review (green) and first review to second review (red) were also significantly di�erent for all ROIs (p < 0.01).

FIGURE 5

DSC values for (A) initial segmentation to the first review and (B) first review to the second review were not significantly di�erent between any ROIs (p

> 0.05). DSC values for (C) initial segmentation to the second review were significantly di�erent between lesion core (red) and total lesion (blue; p <

0.05).

4.2. Expected outcome of manual
segmentation protocol

Using FSL, we can extract lesion characteristics from manually

generated masks that can be used for downstream analyses

(Figure 6). From the available 127 lesion masks, the average lesion

core volume was 23304.8mm3(SD= 31703.52). The average edema

volume was 35726.38 mm3 (SD = 41375.71). The average total

pathological lesion volume across all subjects was 59031.18 mm3

(SD= 62726.89).

This dataset captures the heterogeneity associated with

TBI-induced lesions. Figure 7 displays core, edema, and total

pathological lesion volumes for each number of independent

lesions found in this cohort. Through visual inspection, we

found a range of 0–20 independent lesions (average = 4.32,

SD = 2.92) in this cohort. However, there is large variability

in volumes across patients. For instance, in patients with 1

lesion, total pathological lesion volumes range from 308.98 to

251777 mm3, with an average volume of 51298.16 mm3 (SD

= 76047.66).

5. Discussion

5.1. Advantages of manual lesion
segmentation

Importantly, lesion segmentation ground-truths for a large

population of patients with TBI have been generated through

this work. Many models in literature are trained on limited

sample sizes, which can be attributed to difficulties in acquiring

ground-truths. However, the substantial sample size of ground-

truth segmentations we have generated for TBI subjects will

help to improve upon current methods. In this heterogeneous

dataset, there are subtle differences that can reduce accuracy in

automated methods. For instance, the lesion core can most often

be visualized as a hyperintense region on a T2-FLAIR volume.

However, Figure 8 shows that in some patients, the lesion core can

appear as a hypointense region, or it can be difficult to distinguish

the border between core and edema. Differences due to injury,

noise, and acquisition techniques can play a large role in inter-

subject variation. Moreover, deformations can cause preprocessing
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FIGURE 6

Total volumes of lesion core (red), edema (green), and total

pathological lesion (blue) for 127 EpiBioS4Rx subjects used in this

study.

techniques to fail in TBI cohorts. Therefore, capturing more of the

potential heterogeneity of injuries in our broad, multi-site dataset is

ideal for the development of a pipeline that does not require robust

preprocessing. Through manual segmentation, we have curated

labels to account for injury complexities and improve the learning

of lesion features in automated methods.

5.2. Limitations, possible pitfalls, and
associated solutions

The described manual lesion segmentation process is very time

intensive, which is a major limitation. The potential lifecycle of

the review process for one complete segmentation mask can range

from hours to weeks, especially for patients with extensive injuries.

The length of this process is dependent on student experience,

lesion volumes, and availability of domain experts. As a result,

it can be difficult to recruit qualified personnel to annotate and

review MRI scans. Even still, the manual work performed is

necessary to lay groundwork for robust MRI analysis with accurate

tissue segmentation as well as future PTE studies relating to

lesion characteristics. We trained and supervised high school and

undergraduate students to perform lesion segmentations. This

alleviates the time commitments of field experts, which makes

the generation of such a dataset more accessible. However, for

those with minimal experience in neuroimaging and medical

image segmentation, there is of course a steep learning curve

for interpreting MRI scans, especially in TBI cohorts due to

lesion heterogeneity. Distinguishing lesion core from edema in

some images can be difficult. Moreover, this work describes a

protocol for the segmentation of parenchymal contusions. Subdural

hematomas can also appear as hyperintense regions on T2-FLAIR

images (Oshida et al., 2019) and were commonly segmented as

parenchymal lesion core by students at first (Figure 9). Learning a

new software for image segmentation can also hinder performance.

However, to account for this we have an initial onboarding

session to provide an overview of ITK-SNAP, MRI, and lesion

segmentation. We also provide a comprehensive tutorial document

with examples of routine and complex cases to each student

afterwards for future reference (Supplementary material).

Additionally, this study focuses on the segmentation of

only intraparenchymal hemorrhagic lesions and the associated

perilesional edema. Other lesion types, such as traumatic

subarachnoid hemorrhage, were not included in this study due to

the time-consuming and difficult nature of manually segmenting

these lesion types, especially in cases with extensive subarachnoid

hemorrhage. Moreover, EpiBioS4Rx aims to identify reliable

imaging biomarkers from multiple modalities (Vespa et al., 2019).

The segmentation masks generated in this study allow for more

accurate analyses of fMRI and diffusion-derived maps as these

parametric maps are typically from intraparenchymal regions.

However, the future addition of extraparenchymal lesions may

help identify additional biomarkers of PTE, especially as traumatic

subarachnoid hemorrhage has been identified as a potential

contributor to seizure development after TBI (Fordington and

Manford, 2020; Laing et al., 2022).

5.3. Analytical methods derived from data

From this rich dataset, we can investigate these lesion

characteristics on individual and group levels for in-depth analyses

FIGURE 7

Total volumes for lesion core (left), edema (middle), and total pathological lesion (right) for each lesion number found in the cohort.
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FIGURE 8

Visualization of lesion heterogeneity in axial slice of 3 TBI subjects.

FIGURE 9

Example of subject with subdural hematoma presenting as a hyperintense region in the outlined area on a T2-FLAIR (left). The initial segmentation

includes this as lesion core (middle). The reviewed ground-truth (right) excludes this region from the parenchymal lesion segmentation.

for PTE biomarker identification and validation. For instance, a

preliminary report of manually segmented lesion masks from 32

subjects enrolled in EpiBioS4Rx revealed a relationship between

lesion volume and the onset of seizures after TBI (La Rocca

et al., 2021). Moreover, there was a correlation between positive

seizure outcomes and lesions in the limbic parahippocampal gyrus

and sub-lobar regions (La Rocca et al., 2021), highlighting the

importance of manual lesion segmentation in PTE biomarker

identification. Subtle lesion differences, such as number of

independent lesions and ratio of lesion core to edema, have also

been identified as potential indicators of seizure onset (Bennett

et al., 2022a,b). These statistical analyses offer great insight into

lesion characteristics of interest.

Most importantly, the methods outlined provide a large dataset

of ground-truth manual segmentations, which is important to

increase statistical power in PTE analyses and increase sample

size for training machine learning models for segmentation tasks.

Training and validating machine learning models with the data

is an overarching goal. Another major pursuit includes novel

automated lesion segmentation methods for approved clinical

use without necessary manual intervention. Recently, the first

automated segmentation method using 67 segmentation masks

from EpiBioS4Rx achieved 61% precision (Yildiz et al., 2022).

Incremental improvements in automated methods can provide a

starting point for students, which can greatly decrease the length

of time needed for students to complete the initial segmentation.

In this context, students would not need to start with a blank

lesion mask and can use the generated masks as a guide for

ROI identification.

Through the study of the described double review process,

inter-rater reliability between the first and second reviewers was

established (Bennett et al., 2022a,b). Moreover, the lesion core

was identified as a more complex label to segment as DSC values

for the initial segmentation to second review were significantly

different between lesion core (62.54%) and total lesion volume

(73.02%), which should be taken into consideration during manual
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segmentation and in the development of automated methods

(Bennett et al., 2022a,b). Finally, it was suggested that our

segmentation methods are robust between seizure and non-seizure

groups as DSC values were not found to be significantly different

between the two groups using a Mann–Whitney U-test (Bennett

et al., 2022a,b).

5.4. Future works

With 127 segmentations now complete we intend to utilize the

increased training set to maximize accuracy of machine learning

models for segmentation tasks in TBI cohorts. Importantly, the

development of a precise automated segmentation method using

our gold-standard ground-truths will facilitate multiple avenues

of PTE analysis, including unsupervised seizure classification and

biomarker identification. However, supervised classification of PTE

by applying machine learning models to the manually annotated

MRI scans is also of clinical relevance. EpiBioS4Rx is an ongoing

study, and we will acquire additional segmentation masks using

the outlined methods in the future. Moreover, subjects enrolled

in EpiBioS4Rx are in the process of PTE adjudication to confirm

diagnosis, which will allow for robust lesion phenotyping for PTE

biomarker identification.

6. Conclusion

PTE is a highly heterogenous disorder, and the underlying

mechanisms are difficult to study. Lesion segmentations are a

useful tool to characterize injury burden and identify potential

imaging biomarkers of PTE. Automated segmentation methods

have been shown to perform well in healthy subjects and in subjects

with certain neurologic disorders. However, TBI-induced lesions

are especially complex to segment without manual intervention.

The protocol outlined in this work is necessary to create a

robust dataset of hemorrhagic lesion segmentations in moderate-

severe TBI patients. From this large dataset, we can better

study PTE biomarkers, analyze inter- and intra- rater variability,

and develop reliable automated segmentation techniques for

clinical use.
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