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Introduction: There are growing concerns about commonly inflated e�ect
sizes in small neuroimaging studies, yet no study has addressed recalibrating
e�ect size estimates for small samples. To tackle this issue, we propose
a hierarchical Bayesian model to adjust the magnitude of single-study
e�ect sizes while incorporating a tailored estimation of sampling variance.
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Methods: We estimated the e�ect sizes of case-control di�erences on brain
structural features between individuals who were dependent on alcohol, nicotine,
cocaine, methamphetamine, or cannabis and non-dependent participants for
21 individual studies (Total cases: 903; Total controls: 996). Then, the study-
specific e�ect sizes were modeled using a hierarchical Bayesian approach in
which the parameters of the study-specific e�ect size distributions were sampled
from a higher-order overarching distribution. The posterior distribution of the
overarching and study-specific parameters was approximated using the Gibbs
sampling method.

Results: The results showed shrinkage of the posterior distribution of the study-
specific estimates toward the overarching estimates given the original e�ect sizes
observed in individual studies. Di�erences between the original e�ect sizes (i.e.,
Cohen’s d) and the point estimate of the posterior distribution ranged from 0 to
0.97. The magnitude of adjustment was negatively correlated with the sample size
(r =−0.27, p< 0.001) and positively correlatedwith empirically estimated sampling
variance (r = 0.40, p < 0.001), suggesting studies with smaller samples and larger
sampling variance tended to have greater adjustments.

Discussion: Our findings demonstrate the utility of the hierarchical Bayesian
model in recalibrating single-study e�ect sizes using information from similar
studies. This suggests that Bayesian utilization of existing knowledge can be an
e�ective alternative approach to improve the e�ect size estimation in individual
studies, particularly for those with smaller samples.

KEYWORDS

e�ect size recalibration, hierarchical Bayesianmodel, case-control di�erences, substance

dependence, small sample size, inflated e�ect size

Introduction

Neuroimaging is a primary tool to study neural phenotypes

of human health and disease. However, neuroimaging studies are

often conducted on small samples (Poldrack et al., 2017; Turner

et al., 2018; Szucs and Ioannidis, 2020). For example, the median

participant numbers in groups were 24 for the 163 most-cited

clinical MRI studies between 1990 and 2012 (Szucs and Ioannidis,

2020). Coupled with growing concerns about inflated effect sizes

and low reproducibility in neuroimaging studies with small samples

(Button et al., 2013; Poldrack et al., 2017; Turner et al., 2018; Marek

et al., 2022), the field faces a crisis of relevance if published studies

cannot be replicated.

Obtaining accurate (reproducible) effect sizes is essential

to establishing a reliable empirical database of neuroimaging

findings. Multisite large-scale neuroimaging consortia, such

as the Enhancing Neuroimaging Genetics through Meta-

Analysis (ENIGMA) project and the Adolescent Brain Cognitive

Development (ABCD) study, have been established to address

concerns over the rigor and reproducibility of many neuroimaging

and genomic findings. The ENIGMA Addiction working group

leverages the statistical power of the combined yield of existing

datasets pooled using the ENIGMA protocols to examine the

neural and genetic bases of addiction (Mackey et al., 2016). The

ABCD project is generating a comprehensive dataset on almost

12,000 adolescents with neuroimaging data obtained every 2

years over 10 years (Casey et al., 2018; Garavan et al., 2018).

The availability of these large samples has facilitated a shift in

analytic focus away from statistical significance testing toward the

potentially more informative comparison of effect sizes (Etkin,

2019).

Empirically determined effect sizes from large-scale

neuroimaging studies are smaller than expected by traditional

standards (Owens et al., 2021; Marek et al., 2022). A previous

study based on ABCD data (N = 11,878) revealed that the

largest observed univariate correlation between behavioral

phenotypes (e.g., cognition and mental health) and brain

structure/function was 0.14 (Marek et al., 2022). Owens and

colleagues further calculated the Pearson’s correlation among

hundreds of questionnaire and task measures from the ABCD

study and showed that the median in-sample correlation was

0.03 (Owens et al., 2021). A large-scale, case-control comparison

study by the ENIGMA Addiction working group revealed smaller

volume or cortical thickness in addiction samples (N = 2,140)

compared with healthy controls (N = 1,100), with the largest

Cohen’s d effect size of −0.087 observed in the left hippocampus

(Mackey et al., 2019). A separate analysis showed that the largest

observed Cohen’s d effect size of substance dependence in

structural asymmetries was 0.15 in the nucleus accumbens (Cao

et al., 2021). These findings not only underscore the importance

of large samples for detecting subtle effects but also should

trigger a recalibration in researchers’ expectations of the true

effect sizes in neuroimaging studies. No study has yet addressed

how effect sizes in neuroimaging studies with small samples

could be adjusted on the basis of a pooled database of already

completed studies.
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Here, we used a collection of 21 separate structural brain

MRI studies from the ENIGMA Addiction Working Group

with data from individuals who were dependent on alcohol,

nicotine, cocaine, methamphetamine, or cannabis (n = 903)

and non-dependent participants (n = 996). The effect sizes

of case-control differences in brain structural features were

estimated using Cohen’s d for each study and then modeled

using a hierarchical Bayesian approach. In a typical hierarchical

Bayesian model, low-level parameters (e.g., parameters for a

study-specific distribution) are sampled from a higher-level

parameter distribution (e.g., the overarching distribution of the

study-specific parameters). The estimated study-specific sampling

variance was incorporated into the hierarchical model to modulate

the estimation of study-specific parameters. As a property of

the hierarchical Bayesian model, we expected the shrinkage of

the posterior distribution of the study-specific estimates toward

the overarching estimates based on the original effect sizes

observed in individual studies. In addition, we anticipated that

smaller studies would have a larger estimated sampling variance.

Consequently, when the point estimate of the study-specific

posterior distribution was used as the Bayesian adjusted effect size,

greater adjustments from the original effect sizes to the Bayesian

adjusted effect sizes would be observed in smaller studies than in

larger studies.

Methods

Behavioral phenotyping

Data were contributed from 27 laboratories on 3,046

individuals, including 1,932 who were diagnosed with current

dependence on at least one of the five substances of interest:

alcohol, nicotine, cocaine, methamphetamine, and cannabis. The

data used in the present study was a subset of data described

previously (Mackey et al., 2019; Cao et al., 2021). Individuals

were excluded if they had a lifetime history of neurological

diseases, a current DSM-IV axis I diagnosis other than depressive

and anxiety disorders, or any contraindication for MRI. Non-

dependent participants may have used psychoactive substances

recreationally but did not meet DSM-IV criteria for substance

dependence. After the quality control steps described below,

2,792 participants remained, including 1,792 participants with

dependence. Then, six studies that had only dependent or non-

dependent participants were excluded, resulting in 21 studies with

1,899 participants including 903 participants with dependence

included in the present analysis. Study-specific summary

demographic statistics for these participants are provided in

Supplementary Table 1.

Preparation of structural MRI data

The volumes of seven bilateral subcortical regions and

thicknesses and surface areas of 34 bilateral cortical regions from

both hemispheres were extracted from structural T1-weightedMRI

brain scans using FreeSurfer (version 5.3) (18). A standardized

protocol of quality control procedures was performed at each site

(http://enigma.ini.usc.edu/protocols/imaging-protocols/), which

includes detection of outliers and visual inspection of all data in

a series of standard planes. An additional visual inspection was

performed at the University of Vermont on a randomly selected

subsample of participants to ensure uniformity of quality control

across sites. Scanner and acquisition details at each site have been

published (Mackey et al., 2019; Cao et al., 2021).

Data harmonization

To address the potential differences between sites, a

harmonization technique ComBat, was applied to remove

unwanted study effects while preserving between-subject biological

variability (i.e., diagnosis of dependence, age, and sex; Fortin

et al., 2017, 2018; Radua et al., 2020). ComBat was originally

proposed for gene expression microarray data (Johnson et al.,

2007), and proved to be effective in neuroimaging studies

(Fortin et al., 2017, 2018; Radua et al., 2020). The study-

harmonized data were used to estimate the study-specific

sampling variance while considering the sample profiles as

described below. We have performed a sensitivity analysis using

unharmonized data to explore the impact of ComBat on the

adjusted effect sizes. To simplify the analysis, these sensitivity

analyses were only performed on regional CT. As shown in

Supplementary Figures 6, 7, analyses using non-ComBat-adjusted

data revealed no substantial differences compared to the main

results with ComBat harmonization, suggesting the application

of ComBat had inconsequential effects on both overarching and

study-specific effect size estimations.

E�ect size estimation

For each study, the association between substance use and

the ROI-level structural measure was modeled by a series of

linear regressions. Diagnosis (dependent vs. non-dependent), age,

sex (male vs. females), and ICV were included as predictors.

An effect size of diagnosis was calculated for each ROI

and each site using the following formula (Rosenthal et al.,

1994):

Cohen′s d =
t × (n1+ n2)

√
(n1× n2) ×

√

df

Where n1 and n2 represent the numbers of cases and controls,

respectively, t is the test statistic associated with diagnosis and df is

degrees of freedom. The Cohen’s d effect sizes in each study were

included as the observations in the following hierarchical Bayesian

model. As our primary aim was to showcase the effectiveness of

hierarchical Bayesian models in effect size calibration, we did not

include interaction terms in the case-control comparison models.

This approach is consistent with our previous studies (Mackey

et al., 2019; Cao et al., 2021, 2023) as well as with the models used

in studies from other ENIGMA working groups (Schmaal et al.,

2017; Boedhoe et al., 2018; Van Erp et al., 2018; Whelan et al.,

2018).
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Hierarchical Bayesian model

Bayesian inference tempers observed effects on the basis of

prior expectations (Kruschke, 2014). In a typical hierarchical

Bayesian model, low-level parameters (e.g., parameters for a study-

specific distribution of effect size) are sampled from a higher-

level parameter distribution (e.g., the overarching distribution

of the study-specific parameters). Adjusting low-level parameters

toward the overarching parameters is referred to as shrinkage of

the parameter.

A hierarchical Bayesian model was used to model the

overarching and study-specific distribution of effect sizes for

substance dependence associations with cortical thickness, cortical

surface area and subcortical volumes. As shown in Figure 1, the

observed effect size for the ith study was sampled from a study-

specific normal distribution N(µi, ωiσ ). The study-specific µi was

assumed to be sampled from a higher-order normal distribution

N(M, Σ). The common part of the variance of the study-specific

distribution σ was sampled from a higher-order Gamma(a, b)

distribution and weighted by the study-specific sampling variance

ωi. The study-specific sampling variance ωi for the ith study

was estimated as follows: a sample with the same sample size

and the same ratios of diagnosis and sex was drawn from the

harmonized data. Then, a linear regression was performed on

the drawn sample and the Cohen’s d effect size was calculated.

After repeating this procedure 1,000 times, a distribution of 1,000

simulated effect sizes based on the same diagnosis and sex ratio

was created for the ith study. The study-specific sampling variance

ωi was calculated as the standard deviation of the simulated effect

sizes, which was incorporated into the study-specific model. This

strategy allowed the model to accommodate differences in sample

size as well as the potential impact of sample profiles (e.g., sample

size, diagnosis, and sex ratios) on the sampling variance when

estimating the study-specific parameters. That is, if an individual

study had a low estimated sampling variance, it would have a

small weight (ω) on the common part of the variance (σ ) in the

study-specific distribution.

Gibbs sampling, a Markov chain Monte Carlo (MCMC)

algorithm, was employed to approximate the posterior distribution

of parameters of interest (i.e., µ and M) conditioned on the

observed data. JAGS along with R packages coda and rjags were

used to implement the Gibbs sampling (Plummer, 2003, 2016;

Plummer et al., 2006). Mild informative prior distributions were set

for the M, σ and Σ parameters. Specifically, M was sampled from

a prior distribution of N(0,10), and σ and Σ were sampled from

a Gamma distribution with a mode of 1 and standard deviation

of 10 (Kruschke, 2014). Per JAGS convention, the precision of

the distribution (i.e., the reciprocal of the variance: 1/σ or 1/ε)

was modeled in the JAGS. Four sampling chains with random

initial values were generated based on 100,000 iterations for

the parameters. Gelman-Rubin statistic was used to examine the

representativeness of the MCMC sampling, with a value of 1

indicating the chains were fully converged. Effective sample size

(ESS) was estimated to assess the stability and accuracy of the

sampling chains. For each parameter of interest, a minimum ESS of

10,000 was obtained as recommended previously (Kruschke, 2014).

To justify the assumption that the study-specific distributions

of effect sizes were normal, we simulated 1,000 effect sizes for each

regional measurement by performing case-control comparisons

with the same number of participants, maintaining the same sex

and diagnostic ratios from the ComBat-harmonized datasets. We

then applied the Kolmogorov-Smirnov (KS) test to assess the

normality of the simulated effect sizes for each region (Lilliefors,

1967). A p-value of < 0.05 indicated statistically significant

evidence to reject the null hypothesis (i.e., the simulated effect

sizes were drawn from a normal distribution), suggesting that the

distribution of effect sizes deviated from normality. As shown in

Supplementary Figure 5, only one out of 150×21 = 3,150 data

points showed an uncorrected p-value < 0.05. Therefore, it was

appropriate to assume that the study-specific distribution of effect

sizes was normal.

Additional sensitivity analyses were performed to explore

the potential impact of the choices of Gamma priors on the

results using two extreme Gamma priors: a less informative prior

with a mode of 1 and an SD of 100, and a more informative

prior with a mode of 1 and an SD of 0.1. The distributions

for these Gamma priors are shown in Supplementary Figure 8.

To simplify the analysis, the sensitivity was only performed on

regional CT. As shown in Supplementary results, the sensitivity

analyses with two extreme Gamma priors revealed the potential

impacts of different Gamma priors on results, which highlights

the importance of choosing appropriate priors for the variance

parameters. In line with previous recommendations (Kruschke,

2014), our study used the mild informative Gamma prior, which

we contend was appropriate given the effect sizes of case-

control comparison on imaging phenotypes typically ranged

from −1 to 1 (Schmaal et al., 2017; Boedhoe et al., 2018;

Van Erp et al., 2018; Whelan et al., 2018; Cao et al., 2021,

2023).

To summarize the resulting posterior distributions of the

parameters of interest (i.e., µ and M), the highest density value

(i.e., posterior mode) was derived as the point estimate of the

posterior distribution and the 95% highest density interval (HDI)

was reported to indicate the 95% credibility interval of the

posterior distributions. The posterior mode of the overarching

parameter M and the study-specific parameter µ represented

the estimate of the overall effect size across studies and the

study-specific Bayesian adjusted effect size, respectively, given

the original effect sizes. To quantify the performance of the

posterior mode in recalibrating the effect sizes of individual studies,

the distances between the original and Bayesian adjusted effect

sizes were calculated. Then, the magnitude of adjustment was

tested against a null hypothesis of zero adjustment using one-

sided t-tests. Pearson’s correlation was performed to examine the

relations among the magnitude of adjustment, sample size and

sampling variance. In the supplementary analysis, we examined

the performance of an alternative point estimate (i.e., posterior

mean) in recalibrating the effect sizes of individual studies.

The ggplot2, ggseg (Mowinckel and Vidal-Piñeiro, 2020) and

ggridges packages were used to visualize results. Computations

were performed, in part, on the Vermont Advanced Computing

Core. The data that support the findings of this study are

available from the ENIGMA Addiction Working Group (https://

www.enigmaaddictionconsortium.com/). The code used for the

analysis is available on GitHub (https://github.com/zh1peng/

paper_code).
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FIGURE 1

Diagram illustrates the hierarchical Bayesian model used to model the study-specific e�ect size. The observed e�ect size for the ith study was
sampled from a study-specific normal distribution N(µi, ωiσ ). The study-specific µi was assumed to be sampled from a higher-order normal
distribution N(M, Σ ). The common part of the variance of the study-specific distribution σ was sampled from a higher-order Gamma(a, b) distribution
and weighted by the study-specific sampling variance ωi. The study-specific sampling variance ωi for the ith study was estimated as follows: a sample
with the same sample size and the same ratios of diagnosis and sex was drawn from the harmonized data. Then, a linear regression was performed
on the drawn sample and the Cohen’s d e�ect size was calculated. After repeating this procedure 1,000 times, a distribution of 1,000 simulated e�ect
sizes based on the same diagnosis and sex ratio was created for the ith study. The study-specific sampling variance ωi was calculated as the standard
deviation of the simulated e�ect sizes, which was incorporated into the study-specific model. This strategy allowed the model to accommodate
di�erences in sample size as well as the potential impact of sample profiles (e.g., sample size, diagnosis, and sex ratios) on the sampling variance
when estimating the study-specific parameters. That is, if an individual study had a low estimated sampling variance, it would have a small weight (ω)
on the common part of the variance (σ ) in the study-specific distribution. Per JAGS convention, the precision of the distribution (i.e., the reciprocal of
the variance: 1/σ or 1/ε) was modeled in the JAGS.

Results

Sample characteristics of individual studies are shown in

Supplementary Table 1. Figure 2 shows the posterior mode, and

the 95% HDI of the overarching parameter M for the regional

cortical thickness. Supplementary Figures 1, 2 show the results

of the regional surface area and subcortical volume. The

descriptive summaries of the posterior distribution are reported in

Supplementary Table 2. Most regions had negative posterior mode

values, suggesting widespread lower cortical thickness, surface

area, and subcortical volume in substance-dependent participants

compared to controls. The posterior distribution of the study-

specific parameter µ exhibited shrinkage toward the posterior

distribution of the overarching parameter M. Examples for the left

caudal middle frontal cortex and right lateral orbitofrontal cortex

that showed largest point estimates ofM are illustrated in Figure 3.

Two additional examples are shown in Supplementary Figure 4.

When the posterior mode of parameter µ was used as the

Bayesian adjusted estimate of the study-specific effect size, lower

Bayesian adjusted effect sizes were found when compared to

the original effect sizes (see Supplementary Table 3). The negative

correlation (r = −0.27, p < 0.001) between the magnitude of

adjustment and sample size indicated smaller studies tended to

have greater adjustments. As expected, smaller studies also showed

larger estimated sampling variance across regions, where the study

size explained 67% of the variance in the sampling variance

across regions. Moreover, the magnitude of the adjustment was

positively correlated with the sampling variance (r = 0.40, p <

0.001), meaning studies with large sampling variance had a greater

magnitude of adjustment compared to those with small sampling

variance. This proved the effectiveness of incorporating sampling

variance in the model.

As shown in Supplementary results, similar results were found

when the posterior mean was used as the point estimate of the

posterior distribution of the parameter µ. The posterior mean as

point estimates for study-specific posterior distribution resulted

in more shrinkage toward the overarching distribution across

regions and thus led to greater adjustments from the original

to the Bayesian adjusted effect sizes when compared to the

posterior mode.
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FIGURE 2

Posterior distributions of the overarching parameter M for cortical thickness. (A) Posterior mode for each region mapped onto the brain. (B) The
posterior distribution for cortical regions. The dashed line indicates the posterior mode and the light blue area denotes the 95% highest density
interval (HDI). Regions are sorted by the mode value of the distribution.

Discussion

In the present study, we proposed a hierarchical Bayesian

model to estimate an overarching effect size derived from

multiple individual case-control comparison studies and employed

it to recalibrate the observed study-specific effect sizes. To

demonstrate the effectiveness of the framework, 21 individual

studies with varied sample sizes from different collection sites

were analyzed. The results indicated that the posterior mode of

the overarching parameter M was negative across most brain

structural features, which is consistent with previous findings

suggesting widespread lower cortical thickness, surface area and

subcortical volumes in participants with substance dependence

compared to non-dependent participants (Mackey et al., 2019).

Notably, the posterior mode of the overarching parameter M was

generally small, with a maximum estimate being −0.244 in the

left hippocampus. This supports previous findings based on large-

scale data (Mackey et al., 2019; Cao et al., 2021; Owens et al., 2021;

Marek et al., 2022). Therefore, the effect sizes in neuroimaging

studies may be relatively subtle and require large samples

to detect.

For individual studies, smaller studies showed greater sampling

variance across brain measures and tended to yield larger original

effect sizes. This observation is consistent with previous findings

demonstrating the overestimation of effect sizes in small studies

(Poldrack et al., 2017). By modeling the study-specific original

effect sizes with the hierarchical Bayesian approach, we found

that the posterior distribution of the study-specific parameter µ

exhibited shrinkage toward that of the overarching parameter M.

This was mainly attributed to the hierarchical Bayesian model

where the estimation of low-level parameters was governed by

the overarching parameters. Notably, the hierarchical Bayesian

approach has been usefully adopted for random-effects meta-

analysis of existing studies to derive overall effects across studies

(Röver, 2020). By contrast, we were more interested in the posterior

distribution of the study-specific parameter µ, since the point

estimate of the posterior distribution (i.e., posterior mode) can be

used as the Bayesian adjusted effect size for an individual study.
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FIGURE 3

(A) The posterior distribution of the study-specific parameter µ and the overarching parameter M (top line) for the cortical thickness of the left caudal
middle frontal cortex and right lateral orbitofrontal cortex. The dashed line indicates the posterior mode of the parameters and the light blue, as well
as the gray shaded area, denotes the 95% highest density interval (HDI). (B) The original e�ect size (blue) and Bayesian adjusted e�ect size (red; i.e.,
the posterior mode of the study-specific parameter µ) for the cortical thickness of the left caudal middle frontal cortex and right lateral orbitofrontal
cortex. The horizontal arrow indicates the adjustment from the original e�ect size toward the Bayesian adjusted e�ect size. The dashed line and the
gray shaded area denote the posterior mode and the 95% HDI of the overarching parameter M, respectively.

We found that the individually estimated effect sizes could be

calibrated by the “peer-effect” in a collection of similar studies. In

the supplementary analysis, the posterior mean of the posterior

distribution of the study-specific parameter µ was used as the

Bayesian adjusted effect size. This alternate approach resulted in

greater adjustments in the magnitude of the original effect sizes

compared to that of the posterior mode, indicating that the choice

of the point estimates (e.g., posterior mean) can impact on the size

of the posterior adjustment.

The study-specific sampling variance was incorporated into

the hierarchical Bayesian model to modulate the estimation of

the study-specific distribution. This strategy was proven effective

as the sampling variances were correlated with the magnitude of

adjustment from the original effect sizes to the Bayesian adjusted

effect sizes. In the present framework, the study-specific sampling

variance was estimated by simulating “a similar study” from the

study-harmonized datasets while preserving the sex and diagnostic

ratios of the specific study. Compared to directly using the sample

size as the weight (ω) to modulate the study-specific estimation,

the potential impacts of both sample size and the sample profiles

(e.g., diagnostic or sex ratio) could be accommodated using the

simulated samples. This strategy to utilize large-scale datasets to

obtain the tailored sampling variance could be adopted to other

publicly available datasets (e.g., UK biobank and ABCD) and

extended to other potential sample characteristics of interest (e.g.,

socioeconomic and ethnicity).

Gratton et al. (2022) have proposed that increasing sample

sizes and maximizing effect sizes of interest are two paths toward

reliability in brain-behavior association studies (Gratton et al.,

2022). As an alternative to improve the reliability of the observed

effects in a single study, the Bayesian method described in this

work could be used to remedy the effect size estimates that can be

inflated in small studies. Similarly, it has been proposed that a large

collection of studies that are similar to the study of interest can be

used as a default prior (Zwet and Gelman, 2022). The full posterior

distribution of the effect sizes from these studies can be used as

a prior distribution for new studies. For instance, the posterior

distribution for a new study can be directly derived by updating

the prior via a closed-form solution (assuming the posterior and

prior distribution are conjugated) or approximated using the Gibbs

sampling approach by re-running the hierarchical Bayesian model

with the observations of new studies.

Another possible implication of the current work is that the

posterior of overarching parameter M together with the tailored

estimation of the sampling variance could be used in a sample size

planning analysis. The Bayesian sample size planning framework
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allows one to incorporate one’s goals, desired precision, and belief

regarding the sampled population distribution (Kruschke, 2014).

There are also a few limitations that may curtail the generalizability

of the current work. For instance, we grouped participants as

dependent or non-dependent in the current analysis, but the

heterogeneity of the participants, type of the substance and co-use

of substance were not addressed.

The ComBat harmonization method was applied to minimize

non-biological variability between studies that could arise from

different imaging protocols, scanners, or other technical factors.

However, it should be noted that the harmonization of multisite

MRI data is still an active research area (Bayer et al., 2022).

Supplementary analysis suggested that the application of ComBat

did not substantially impact the adjusted effect sizes. This absence

of consequential effects was likely due to the simulated study-

specific standard deviation (i.e., the scale factor) having been

derived from 1,000 subsampled effect sizes. Repeat sampling may

have alleviated any potential effect of non-biological variabilities

between studies on the estimation of the study-specific standard

deviation. Although not immediately apparent, we contend that

the ComBat harmonization is essential to ensure that subsequent

subsampling is not confounded by any non-biological variability

between studies. This would allow the subsampling and the

derived standard deviation to better mimic the effect sizes

taken from a single study without between-study confounders.

While incorporating ComBat into our proposed framework is

appealing and could potentially enhance the model’s flexibility,

direct integration into a hierarchical Bayesian model may pose

methodological challenges and increase complexity. Therefore, in

our approach, we utilized the ComBat method as a stand-alone

preprocessing step, followed by the estimation of study-specific

scale factor based on harmonized data, which ensured optimal

performance of both processes within its designated scopes.

Collectively, we demonstrate the utility of hierarchical Bayesian

models in recalibrating single-study effect sizes using information

obtained from similar studies. Thus, Bayesian utilization of existing

knowledge can be an alternative approach to improve the effect size

estimation of individual studies.
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