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Previous work in incarcerated boys and adult men and women suggest

that individuals scoring high on psychopathic traits show altered resting-state

limbic/paralimbic, and default mode functional network properties. However,

it is unclear whether similar results extend to high-risk adolescent girls with

elevated psychopathic traits. This study examined whether psychopathic traits

[assessed via the Hare Psychopathy Checklist: Youth Version (PCL:YV)] were

associated with altered inter-network connectivity, intra-network connectivity

(i.e., functional coherence within a network), and amplitude of low-frequency

fluctuations (ALFFs) across resting-state networks among high-risk incarcerated

adolescent girls (n = 40). Resting-state networks were identified by applying

group independent component analysis (ICA) to resting-state fMRI scans,

and a priori regions of interest included limbic, paralimbic, and default

mode network components. We tested the association of psychopathic traits

(PCL:YV Factor 1 measuring a�ective/interpersonal traits and PCL:YV Factor

2 assessing antisocial/lifestyle traits) to these three resting-state measures.

PCL:YV Factor 1 scores were associated with increased low-frequency and

decreased high-frequency fluctuations in components corresponding to the

default mode network, as well as increased intra-network FNC in components

corresponding to cognitive control networks. PCL:YV Factor 2 scores were

associated with increased low-frequency fluctuations in sensorimotor networks

and decreased high-frequency fluctuations in default mode, sensorimotor,

and visual networks. Consistent with previous analyses in incarcerated adult

women, our results suggest that psychopathic traits among incarcerated

adolescent girls are associated with altered intra-network ALFFs—primarily that

of increased low-frequency and decreased high-frequency fluctuations—and

connectivity across multiple networks including paralimbic regions. These results

suggest stable neurobiological correlates of psychopathic traits among women

across development.
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1. Introduction

The construct of psychopathy is characterized as an array of

traits, including callousness, impulsivity, poor decision-making,

and a lack of empathy. These traits, alone, and in combination, have

been found to be associated with poor interpersonal relationship

success and treatment outcomes, and increased rates of substance

use and rearrest (Taylor and Lang, 2006; Reidy et al., 2013; Mooney

et al., 2019; Sohn et al., 2020; Allen et al., 2022a; Edwards et al.,

2023). The societal cost of psychopathy to taxpayers is estimated to

be nearly $460 billion per year, with $56.7 billion being accounted

for by juveniles (Anderson, 1999; Caldwell et al., 2006; Kiehl

and Hoffman, 2011; Cope et al., 2014; Reidy and Holland, 2018).

Successful interventions for altering antisocial trajectories depend

on gaining a better understanding of the underpinnings of such

traits (Caldwell et al., 2006, 2007; Caldwell, 2011).

Research has identified a variety of causes and contributing

conditions for psychopathic traits. Some of these include parenting

style, childhood trauma, environmental exposures, and genetic

make-up (Fergusson et al., 2008; Krischer and Sevecke, 2008;

Wright et al., 2008; Marcus et al., 2010; Waller et al., 2012; Beckley

et al., 2018; Sampson and Winter, 2018; Reuben et al., 2019).

Brain imaging has shown that these traits are associated with

altered functioning, primarily in limbic and paralimbic regions

(e.g., insulae, temporal poles, posterior and anterior cingulate

cortex, ventral striatum, and amygdalae) but also across the default

mode network more generally [DM: e.g., precuneus and medial

prefrontal cortex (mPFC): Chen et al., 2015; Cohn et al., 2015;

Thijssen and Kiehl, 2017; Dugré and Potvin, 2021; Thijssen et al.,

2021; Umbach and Tottenham, 2021;Werhahn et al., 2021;Winters

et al., 2021]. While the literature investigating the relationship

between functional connectivity and antisocial traits in adolescents

is growing, there is an absence of research focusing specifically

on high-risk adolescent girls with established poor behavioral

outcomes (i.e., arrests and convictions). Prior studies have focused

mainly on boys, leaving potential sex-specific developmental

differences corresponding to psychopathic traits unexplored. With

rates of incarceration of adolescent girls declining more slowly

than those of boys (U.S. Department of Justice, Office of Justice

Programs, 2021), and rates of incarceration of girls generally

increasing on a global scale (Reynolds, 2008; Harmon and Boppre,

2018), the impetus to fill this gap is evident.

Because of the relatively sparse literature concerning resting-

state alterations in adolescent girls relating to psychopathic traits,

it is unclear whether alterations are stable from adolescence

to adulthood, or rather, present differently in younger samples.

Our research group recently explored resting-state alterations in

adult women scoring high on psychopathic traits. We found

that interpersonal/affective psychopathic traits (e.g., deficient

empathy, a lack of remorse, and manipulativeness) were associated

with increased amplitude of low-frequency fluctuations (ALFFs)

in executive control and attentional networks, decreased high-

frequency ALFFs in executive control and visual networks,

and decreased intra-network connectivity in the default mode

network. Lifestyle/antisocial psychopathic traits were associated

with decreased high-frequency ALFFs in executive control and

default mode networks, and both increased and decreased intra-

network functional connectivity in visual networks (Allen et al.,

2022b), diverging from similar analyses conducted in adult men

scoring high on psychopathic traits which found no effects for

the same measure (Espinoza et al., 2018). These results suggest

potentially sex-specific neurobiological correlates of high-risk

phenotypes, primarily occurring across regions and networks

involved in socioemotional processing. Identifying stable or

divergent neurobiological alterations in adolescent girls compared

to those in adult women may inform our understanding of possible

intervention targets designed to reduce psychopathic traits.

The relationship of psychopathic traits to other resting-state

activational measures in incarcerated adolescent girls, including

ALFFs, has been left unexplored. Due to their demonstrated

association with functional connectivity more generally, and

psychiatric disorders and behavioral characteristics, ALFFs may be

a useful mode of investigation in relation to psychopathic traits

(Guo et al., 2013; Yue et al., 2015; Wielaard et al., 2018; Eggart

et al., 2019; Weightman et al., 2019; Zamani Esfahlani et al., 2020;

Allen et al., 2022b; Gazula et al., 2022). By assessing the relationship

of psychopathic traits to measures previously examined in

the literature—such as altered inter-network and intra-network

functional connectivity—as well as those unexamined in the

literature (ALFFs), a more thorough picture of how these traits

relate to altered functional brain connectivity on a local and global

scale in relation to adolescent girls can be offered.

Here we examine resting-state metrics and their relationships

to psychopathic traits [assessed via the Hare Psychopathy Checklist:

Youth Version (PCL:YV)] (Forth et al., 2003) in a sample of

incarcerated adolescent girls (n = 40). Resting networks were

assessed using three different metrics [static functional network

connectivity (sFNC: inter-network connectivity), ALFFs, and

intra-network connectivity], to comprehensively evaluate local

and global associations with psychopathic traits in incarcerated

adolescent girls. We hypothesized that abnormalities in functional

network connectivity related to psychopathic traits would occur

primarily in limbic, paralimbic, and default mode network

related regions of the brain (i.e., temporal poles, amygdalae,

caudate/putamen, orbitofrontal cortex, dorsomedial prefrontal

cortex, posterior cingulate cortex, and precunei). These regions

span multiple cognitive domains, are involved in higher-order

cognitive processes, such as emotion regulation, and are consistent

with previously published studies in adolescent boys and adult

men and women (Kiehl, 2006; Cope et al., 2014; Fairchild et al.,

2014; Chen et al., 2015; Cohn et al., 2015; Philippi et al., 2015;

Thijssen and Kiehl, 2017; Lindner et al., 2018; Dugré and Potvin,

2021; Thijssen et al., 2021; Umbach and Tottenham, 2021;Werhahn

et al., 2021; Winters et al., 2021; Allen et al., 2022b). Parallel

to analyses by our research group in incarcerated adult women

and adolescent boys scoring high on psychopathic traits, this

study serves an important role in assessing whether psychopathy-

related neural alterations are consistent from adolescence to

adulthood, or rather, present differently in younger samples

of women.
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TABLE 1 Participant demographics and assessment scores.

Mean SD Min. Max. Overall
sample
(%)

Age (years) 17.4 1.0 14.8 20.0

IQ 98.1 11.3 66 126

PCL:YV total

scores

23.0 6.1 11.0 36.0

Factor 1 scores 7.2 3.3 1.0 13.0

Factor 2 scores 14.4 3.0 6.0 19.0

SUD 2.6 1.6 0 7 92.3

Mood 38.5

Anxiety 12.8

PTSD 28.2

ADHD 15.4

Endorsement of psychiatric disorder reflects a participant meeting past or present criteria for

any mood or anxiety disorder, and PTSD/ADHD singularly (n= 39).

2. Methods

2.1. Participants

Participants included adolescent girls from the National

Institute of Mental Health (NIMH)-funded SouthWest Advanced

Neuroimaging Cohort, Youth sample (SWANC-Y), at a maximum-

security juvenile correctional facility in New Mexico, collected

between June 2007 and March 2011. With an initial sample of

n = 78, exclusions included participants that did not have a

resting-state scan (n = 27), or PCL:YV administered (n = 7),

and poor brain masks during scan (n = 4), leaving complete

data sets from 40 incarcerated adolescent girls, ranging from

14 to 20 years of age.1 The average age of participants was

17.4 years (SD = 1.0: see Table 1). Using National Institutes of

Health racial and ethnic classification, 45.0% of the sample self-

identified as white, 7.5% as black/African American, 25.0% as

American Indian or Alaskan Native, 22.5% as multiracial/other,

and, ethnically, 60% as Hispanic or Latina. 97.5% participants

were right-handed.

Participants provided written informed consent (if ≥18

years or age) or written informed assent and parent/guardian

written informed consent (if <18 years of age), in protocols

approved by the Institutional Review Board of the University

of New Mexico and were paid at a rate commensurate

with institution compensation for work assignments at the

correctional facility.

1 Previous analyses in a subset of the present sample demonstrate

demographic similarity to adolescent boys scanned at the same facility in

terms of age, IQ, substance dependence, psychopathic traits, and criminal

convictions (Ermer et al., 2013; Cope et al., 2014).

2.2. Assessments and measures

2.2.1. Psychopathic traits
Psychopathic traits were assessed using the Psychopathy

Checklist: Youth Version (PCL:YV; Forth et al., 2003). The

assessment includes a semi-structured interview covering

individuals’ school, family, work, and antisocial histories, as

well as their interpersonal and emotional skills and a review of

institutional records. Individuals are scored from zero to two on

20 different items that measure traits and behavioral characteristics

of psychopathy, with total scores ranging from zero to 40 (see

Kosson et al., 2002, 2013 for further assessment information).

Interviews were conducted by trained researchers and videotaped

for reliability assessment. Consistent with the literature (Thijssen

and Kiehl, 2017), and in addition to PCL:YV Total scores, we

examined a two-factor model of psychopathic traits (Harpur et al.,

1989; Hare, 2003; Kennealy et al., 2007). The two-factor model of

psychopathic traits was originally constructed via factor analysis

(Harpur et al., 1989; Hare, 1991). Two correlated overarching

factors that held explanatory value for the underlying individual

items. Subsequent confirmatory factor analyses suggest each

of these factors can be further explained by two underlying

facets (Vitacco et al., 2005; Kosson et al., 2013). Specifically,

Factor 1 is composed of interpersonal and affective facets (e.g.,

grandiosity and a lack of empathy), whereas Factor 2 is composed

of antisocial and developmental facets (e.g., impulsivity and early

behavioral problems). While the number of factors to extract for

the PCL:YV is an open debate (Kosson et al., 2013), we chose to

focus on the two-factor model for a more direct comparison to

previous analyses in adult women and adolescent boy samples (see

Thijssen and Kiehl, 2017; Allen et al., 2022b). An analysis of all

PCL:YV items within this sample suggest high internal reliability

(Cronbach’s alpha= 0.82).

2.2.2. IQ
Participants’ IQs were estimated from theWechsler Intelligence

Scale for Children-Fourth Edition (WISC-IV; Wechsler, 2003;

Sattler and Dumont, 2004) for those younger than 16 years of

age and from the Vocabulary and Matrix Reasoning subtests of

the Wechsler Adult Intelligence Scale (WAIS-III; Wechsler, 1997;

Ryan and Ward, 1999) for those older than 16 years of age. The

mean full-scale IQ estimate in this sample was 98.1 (SD= 11.3: see

Table 1); IQ scores were unavailable for eight participants and were

subsequently mean replaced for inclusion in imaging analyses.

2.2.3. Diagnosis of psychiatric disorders
To assess whether or not participants met criteria for

various forms of psychopathology, including mood disorders,

anxiety disorders, post-traumatic stress disorder (PTSD), and

attention-deficit/hyperactivity disorder (ADHD), we utilized

the Kiddie Schedule for Affective Disorders and Schizophrenia

(KSADS; scoring and criteria explained in Kaufman et al.,

1997). Categorization of potential mood disorders included

major depressive disorder (with and without psychotic features),

melancholic depression, dysthymia, adjustment disorder with

depressed mood, depressive disorder NOS, schizoaffective disorder
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(depressed and manic types), mania, hypomania, cyclothymia,

or bipolar disorder NOS. Anxiety disorders included obsessive

compulsive disorder, generalized anxiety disorder, acute stress

disorder, panic disorder (with and without agoraphobia),

separation anxiety, phobias (i.e., social phobia and/or specific

phobias), agoraphobia, or an anxiety disorder not otherwise

specified (NOS). Based on this criteria, and out of the 39

participants that were administered the KSADS, 15 participants

met criteria for any mood disorder, five participants met criteria

for any anxiety disorder, six met criteria for ADHD, and 11

participants met criteria for PTSD (see Table 1).

2.2.4. Substance use
For descriptive purposes, and similarly to other

published methods (Cope et al., 2014; Edwards et al.,

2023), we assessed substance use history using the KSADS,

summing the total number of substances (alcohol, cannabis,

sedatives/hypnotics/anxiolytics, cocaine, opioids, hallucinogens,

stimulants, and solvents/inhalants/other) for which an individual

met the lifetime dependence diagnostic criteria was calculated

[substance dependence (SUD); theoretical range: 0–8, M = 2.6, SD

= 1.6]. A dimensional score for SUD was used to provide a more

meaningful and representative measure of substance use for the

sample, as ∼92% of participants met criteria for at least one SUD

(see Table 1).

2.3. Imaging parameters

Resting-state functional magnetic resonance images were

collected at the correctional facility where participants were housed,

using the Mind Research Network’s mobile Siemens 1.5T Avanto

with advanced SQ gradients (max slew rate 200T/m/s, 346T/m/s

vector summation, rise time 200 µs) equipped with a 12-element

head coil. The EPI gradient echo pulse sequence (TR = 2,000ms,

TE = 39ms, flip angle = 75, FOV = 24 × 24 cm, 64 × 64 matrix,

3.75 × 3.75mm in-plane resolution, 4mm slice thickness, 1mm

gap, 27 slices) effectively covered the entire brain (150mm) in 2.0 s.

Head motion was minimized using padding and restraint. The

participants were asked to lay still, look at the fixation cross, and

keep eyes open during the 5-min rsfMRI scanning.

2.4. EPI preprocessing

Data were preprocessed using statistical parametric mapping

(SPM12) (Friston et al., 1994) (http://www.fil.ion.ucl.ac.uk/

spm) including image reorientation, realignment [motion

estimation using INRialign (Freire and Mangin, 2001)], and

spatial normalization to the Montreal Neurological Institute

standard space at a resolution of a 3 × 3 × 3 mm3. A full

width half maximum Gaussian kernel of 6mm was then used

for spatial smoothing. Framewise displacement (FD) was used

to assess motion quality control. For FD, the translation and

rotation parameters were computed as the mean of the sums

of the absolute translation and rotation frame displacements.

Following the removal of participants with scans resulting

in inadequate brain masks (i.e., those missing large areas of

brain), all participants demonstrated a mean FD < 0.3mm,

and therefore, none were removed due to excessive motion

(Stout et al., 2021). Additionally, ArtRepair was used to

remove noise spikes larger than 4% of the global signal

(Mazaika et al., 2007), further addressing the management of

subject motion.

2.5. Independent component analysis

We applied group ICA (gICA) on the preprocessed rsfMRI data

using the Group ICA of fMRI Toolbox (GIFT: http://trendscenter.

org/software/gift) (Calhoun et al., 2001). The rsfMRI data was

compressed using two stages of principal component analysis

(PCA) (Rachakonda et al., 2016). Consistent with previously

published studies, in the first step of data reduction, we retained

100 principal components (PCs), and 75 independent components

(ICs) for group data reduction, (Kiviniemi et al., 2009; Smith

et al., 2009; Ystad et al., 2010; Abou Elseoud et al., 2011; Allen

et al., 2011a; Erhardt et al., 2011). High-model order ICA (i.e.,

75 components) yields more refined components that correspond

more closely to known functional and anatomical segmentations in

comparison to low-model order ICA (i.e., 25 or 50 components)

(Allen et al., 2011a; Hu et al., 2020). Participant specific spatial

maps and their corresponding time-courses were obtained using

gICA. Out of the 75 ICs that were estimated, 39 components

were identified as components of RSNs by evaluating whether peak

network activation occurred in gray matter and whether the peak

ALFFs occurred in the low-frequency power portion of the spectra

of components (see Figure 1 for whole-brain component solution:

Meda et al., 2008; Robinson et al., 2009; Allen et al., 2011b).

The other 36 components were excluded, as they appeared to be

related to motion artifacts, the ventricular system, or cerebrospinal

fluid, spatial maps including white matter, or having irregular

time-course spectra power or low stability (Allen et al., 2011b).

The reliability and stability of these extracted networks were

evaluated via ICASSO (Himberg and Hyvarinen, 2003), a process

that iteratively re-runs component estimations with alternatively

bootstrapped datasets. This analysis suggested high stability across

the selected 39 components (mean stability index = 0.94), well

above the threshold of 0.80 established in the literature (Ma et al.,

2011). Within GIFT, the time-courses of the RSNs underwent

despiking and bandpass filtering with (0.01–0.15) Hz cutoffs. From

the 39 extracted components, 10 components of interest were

selected for the primary analyses based on relevant literature (see

Figure 2 for a priori components of interest: Kiehl, 2006; Cope

et al., 2014; Fairchild et al., 2014; Chen et al., 2015; Cohn et al.,

2015; Philippi et al., 2015; Thijssen and Kiehl, 2017; Lindner et al.,

2018; Dugré and Potvin, 2021; Thijssen et al., 2021; Umbach and

Tottenham, 2021; Werhahn et al., 2021; Winters et al., 2021; Allen

et al., 2022b).

2.6. Resting-state measures

In order to assess various types of resting-state functional

connectivity and activational measures, using the GIFT toolbox
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FIGURE 1

Spatial maps of the 39 independent components identified as RSNs categorized by domain [auditory (AU), cerebellar (CB), cognitive control (CC),

default mode (DM), subcortical (SC), sensorimotor (SM), and visual (VI)] and component number.

and its suggested default parameters (http://trendscenter.

org/software/gift) (Calhoun et al., 2001), we calculated the

sFNC between the selected RSNs as pairwise correlations

between the RSNs’ time-courses for each individual (inter-

network connectivity), pairwise correlations between individual

voxels within the RSN to the overall RSN’s time-course

(intra-network connectivity), and the Fourier transform

of individual RSN time-courses (ALFFs: decompositions

of the time-course into the frequencies of activation and

their amplitudes).

2.7. Statistical analyses

We performed regression analysis to identify associations

between sFNC values (inter-network connectivity), spatial maps

(intra-network connectivity), and ALFFs with psychopathy

measures: PCL:YV Factor 1, Factor 2, and Total scores, which were

included as continuous variables. The analyses were corrected for

“nuisance” covariates (age at scan and IQ). Univariate associations

between psychopathic traits and a priori networks of interest

were first examined. For these region of interest analyses, we

report both uncorrected and false discovery rate (FDR) corrected

results, at an alpha level of 0.05 (Genovese et al., 2002; Thijssen

and Kiehl, 2017). Additionally, we performed exploratory

whole-brain analyses (i.e., tested all extracted components rather

than solely a priori networks of interest) using FDR multiple

comparison correction.

3. Results

3.1. Psychopathic traits

The PCL:YV total scores for this sample ranged from

11.0 to 36.0 (M = 23.0, SD = 6.1), the PCL:YV Factor

1 scores ranged from 1.0 to 13.0 (M = 7.2, SD = 3.3),

and the PCL:YV Factor 2 scores ranged from 6.0 to 19.0

(M = 14.4, SD = 3.0; see Table 1 for descriptive statistics

and Supplementary Table S1 for correlations with other

psychiatric data).

3.2. Group independent component
analysis and a priori component selection

Figure 1 shows the spatial maps of the 39 RSNs across the

whole brain. The 39 RSNs listed in Supplementary Table S2 were

grouped into seven domains: auditory (AU), cerebellar (CB),

cognitive control (CC), default mode network (DM), subcortical

(SC), sensorimotor (SM), and visual (VI) based on their peak

coordinate, functional properties, the automatic labeling tool in

GIFT (see Supplementary Figure S1 for average sFNC across all

components and domains, suggesting high intra-domain sFNC: Du

et al., 2020; Salman et al., 2022), and confirmed by visual inspection.

From these 39 components, 10 components were selected as a priori

Frontiers inNeuroimaging 05 frontiersin.org

https://doi.org/10.3389/fnimg.2023.1216494
http://trendscenter.org/software/gift
http://trendscenter.org/software/gift
https://www.frontiersin.org/journals/neuroimaging
https://www.frontiersin.org


Allen et al. 10.3389/fnimg.2023.1216494

FIGURE 2

Spatial maps of the 10 RSNs identified as a priori networks of interest, labeled by component number. Broadly, the networks of interest include the

temporal pole (ICs 6 and 31), the dmPFC (IC12), the pars orbitalis (IC17), the amygdalae (IC21), the precuneus (IC37), the aPFC (IC42), the OFC (IC11),

the PCC (IC43), and the caudate/putamen (IC33).

candidates for analysis (see Figure 2: Philippi et al., 2015; Thijssen

and Kiehl, 2017; Espinoza et al., 2018; Lindner et al., 2018; Allen

et al., 2022b).

3.3. Time-course power spectra

3.3.1. PCL:YV Factor 1 scores
PCL:YV Factor 1 scores were associated with increased ALFF at

low-frequency bands (0–0.05Hz) in the aPFC (IC 42, CC) and PCC

(IC43, DM), decreased ALFF at mid/high-frequency bands (0.10–

0.20Hz) in the dmPFC (IC12, CC), aPFC (IC 42, CC), and PCC

(IC43, DM), and increased ALFF at high-frequency bands (0.20–

0.25Hz) in the precuneus (IC37, CC: see Figure 3A). Effects of

increased ALFF at low-frequency bands (0–0.05Hz) and decreased

ALFF at mid-frequency bands (0.10–0.15Hz) in the PCC (IC43,

DM) remain following FDR correction and also emerge in the

exploratory whole-brain analysis (see Figures 3B, C).

3.3.2. PCL:YV Factor 2 scores
PCL:YV Factor 2 scores were associated with increased ALFF

at low-frequency bands (0–0.05Hz) in the dmPFC (IC12, CC),

amygdalae (IC21, CC), and PCC (IC43, DM), and decreased ALFF

at mid/high-frequency bands (0.10–0.25Hz) in the temporal pole

(IC6 and IC31, CC), dmPFC (IC12, CC), pars orbitalis (IC17, CC),

amygdalae (IC21, CC), precuneus (IC37, CC), aPFC (IC 42, CC),

OFC (IC11, DM), PCC (IC43, DM), and caudate/putamen (IC33,

SC: see Figure 3D). Effects of decreased ALFFs at mid-frequency

bands in the PCC (IC43, DM) remain following FDR correction

and also emerge in the exploratory whole-brain analysis (see

Figures 3E, F). Additionally, the whole-brain analysis also suggests

a relationship between PCL:YV Factor 2 scores and decreased

ALFFs at mid-frequency bands (0.05–0.20Hz) in the primary

motor cortex (IC15, SM) and secondary visual cortex (IC18, VI),

and increased ALFFs at low-frequency bands (0–0.01Hz) in the

primary motor cortex (IC15, SM: see Figure 3F).

3.3.3. PCL:YV Total scores
PCL:YV Total scores were associated with increased ALFF

at low-frequency bands (0–0.05Hz) in the PCC (IC43, DM),

decreased ALFF at mid/high-frequency bands (0.10–0.25Hz) in the

temporal pole (IC31, CC), dmPFC (IC12, CC), pars orbitalis (IC17,

CC), aPFC (IC 42, CC), and PCC (IC43, DM), and increased ALFF
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FIGURE 3

Univariate associations between psychopathic traits [(A–C): PCL:YV Factor 1, (D–F): PCL:YV Factor 2, (G–I): PCL:YV Total] and power spectra (ALFFs)

of the significant components. Panel depicts the significance and direction of e�ects as a function of frequency for the significant components,

displayed as–sign(t) log10(p), at an (A, D, G) uncorrected threshold of p < 0.05 and (B, E, H) FDR corrected p < 0.05 for a priori networks of interest,

and (C, F, I) FDR corrected p < 0.05 for the exploratory whole-brain analysis.

at high-frequency bands (0.20–0.25Hz) in the precuneus (IC37,

CC: see Figure 3G). Effects of increased ALFFs in low-frequency

and decreased ALFFs at mid-frequency bands in the PCC (IC43,

DM) remain following FDR correction and also emerge in the

exploratory whole-brain analysis (see Figures 3H, I).

3.4. Intra-network connectivity

3.4.1. PCL:YV Factor 1 scores
PCL:YV Factor 1 scores were associated with altered intra-

network connectivity in regions within all a priori networks

of interest (see Table 2). Specifically, Factor 1 related increases

of intra-network connectivity were found in the middle, and

superior temporal gyrus, middle, medial, and inferior frontal

gyrus, caudate, insula, parahippocampal gyrus, and lentiform

nucleus. Factor 1 related decreases of intra-network connectivity

were found in the superior temporal gyrus, parahippocampal

gyrus, medial and inferior frontal gyrus, insula, caudate, anterior

cingulate, and the precuneus (see Table 2). Effects of increased

intra-network connectivity in the medial frontal gyrus relative

to the dmPFC (IC12, CC) remain following FDR correction

and also emerge in the exploratory whole-brain analysis (see

Figure 4A, Table 2). Additionally, the whole-brain analysis also

suggests a relationship between PCL:YV Factor 1 scores and

increased intra-network connectivity in the middle temporal

gyrus relative to the inferior temporal gyrus (see Figure 4B,

Table 2).
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TABLE 2 E�ects of psychopathic traits on intra-network connectivity.

Region Hemisphere Max
T-

value

MNI
coordinates

x, y, z

PCL:YV Factor 1 intra-network connectivity e�ects: positive

Middle temporal gyrus L 4.3† −51,−16,−17

Medial frontal gyrus L 2.8 −9, 56,−2

R 3.9†∗ 3, 29, 49

Caudate R 3.5 21, 20, 7

R 2.4 18, 17, 7

Inferior frontal gyrus L 3.5 −30, 26,−14

Superior temporal

gyrus

L 2.8 −51, 11,−20

Insula L 2.4 −42,−13,−8

R 2.0 36,−7,−14

Parahippocampal

gyrus

R 2.2 24,−19,−17

Middle frontal gyrus R 2.1 39, 44,−8

Lentiform nucleus R 2.1 27,−7,−8

PCL:YV Factor 1 intra-network connectivity e�ects: negative

Superior temporal

gyrus

L 3.5 −30, 11,−41

R 2.2 51,−10,−2

L 2.3 −51,−7,−11

Parahippocampal

gyrus

L 3.1 −21,−7,−29

Medial frontal gyrus L 2.5 −9, 38, 40

R 2.9 9, 38, 43

Insula L 2.5 −39, 11,−8

Caudate R 2.8 15, 5, 7

Anterior cingulate L 2.5 −6, 44,−5

Inferior frontal gyrus L 2.2 −42, 14,−5

R 2.2 30, 17,−23

Precuneus R 2.1 3,−64, 31

PCL:YV Factor 2 intra-network connectivity e�ects: positive

Medial frontal gyrus L 4.3 −9,−1, 70

R 2.0 6, 29, 52

Inferior temporal

gyrus

L 3.3 −48,−1,−38

Culmen L 3.2 −6,−46,−2

Inferior frontal gyrus L 3.1 −33, 14,−17

Caudate R 2.6 15, 14, 13

L 2.5 −15, 26,−8

Middle temporal gyrus L 2.5 −51,−25,−14

Parahippocampal

gyrus

L 2.4 −9,−46, 1

(Continued)

TABLE 2 (Continued)

Region Hemisphere Max
T-

value

MNI
coordinates

x, y, z

Postcentral gyrus R 2.3 48,−34, 37

Supramarginal gyrus L 2.2 −42,−49, 37

Medial frontal gyrus R 2.2 6, 26, 49

Extra-nuclear L 2.1 −9,−4,−11

Uncus R 2.1 36,−7,−35

Inferior parietal lobule R 2.0 48,−43, 46

Middle frontal gyrus R 2.0 42, 50, 10

PCL:YV Factor 2 intra-network connectivity e�ects: negative

Caudate L 2.9 −18, 8, 13

Anterior cingulate L 2.6 −3, 5,−11

Superior temporal

gyrus

L 2.5 −33, 11,−41

Middle temporal gyrus L 2.5 −48, 2,−20

Supramarginal gyrus L 2.1 −57,−43, 37

R 2.5 54,−46, 34

Postcentral gyrus L 2.0 −63,−28, 37

R 2.4 60,−19, 31

Temporal pole L 2.1 −45, 2,−23

Parahippocampal

gyrus

L 2.1 −24,−10,−26

Medial frontal gyrus L 2.0 −9, 62,−2

Inferior parietal lobule R 2.0 60,−49, 43

PCL:YV Total intra-network connectivity e�ects: positive

Middle temporal gyrus L 3.5 −48, 2,−38

Superior frontal gyrus R 3.2 3, 29, 49

Caudate R 3.2 21, 20, 7

R 3.2 18, 17, 7

L 2.7 −15, 26,−8

Inferior frontal gyrus L 3.1 −33, 14,−17

Inferior temporal

gyrus

L 2.8 −45,−1,−41

Superior temporal

gyrus

L 2.7 −51, 11,−20

Middle frontal gyrus R 2.5 42, 47,−8

Lentiform nucleus R 2.5 27,−7,−8

Medial frontal gyrus L 2.1 −9, 56,−2

R 2.2 6, 26, 49

Supramarginal gyrus L 2.0 −42,−49, 37

PCL:YV Total intra-network connectivity e�ects: negative

Superior temporal

gyrus

L 3.3 −33, 11,−41

R 2.1 51,−1,−11

(Continued)
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TABLE 2 (Continued)

Region Hemisphere Max
T-

value

MNI
coordinates

x, y, z

Parahippocampal

gyrus

L 3.0 −24,−10,−29

Inferior frontal gyrus R 2.7 30, 17,−23

Lentiform nucleus R 2.7 18, 11,−8

Superior frontal gyrus R 2.6 9, 41, 49

Temporal pole L 2.5 −30, 8,−41

Caudate L 2.5 −21, 8, 16

Medial frontal gyrus L 2.5 −6, 38, 40

Middle frontal gyrus R 2.3 33, 53,−11

Anterior cingulate L 2.3 −3, 44, 4

Postcentral gyrus L 2.2 −60,−28, 37

Precuneus R 2.1 3,−67, 31

Table shows all significant clusters with a T > 2 that emerge at a p < 0.05 level.
∗Survive FDR correction at a p < 0.05 level out of networks of interest.
†Survive FDR correction at a p < 0.05 level in a whole-brain analysis.

3.4.2. PCL:YV Factor 2 scores
PCL:YV Factor 2 scores were associated with altered intra-

network connectivity in regions within all a priori networks of

interest (see Table 2). Specifically, Factor 2 related increases of

intra-network connectivity were found in the medial, middle, and

inferior frontal gyrus, middle and inferior temporal gyrus, culmen,

caudate, parahippocampal gyrus, postcentral gyrus, supramarginal

gyrus, uncus, extra-nuclear regions, and the inferior parietal

lobule. Factor 2 related decreases of intra-network connectivity

were found in the caudate, anterior cingulate, superior and

middle temporal gyrus, supramarginal gyrus, postcentral gyrus,

temporal pole, parahippocampal gyrus, medial frontal gyrus, and

the inferior parietal lobule (see Table 2). After correction for FDR

and controlling for age and IQ, neither a priori nor whole brain

results emerged for PCL:YV Factor 2 scores.

3.4.3. PCL:YV Total scores
PCL:YV Total scores were associated with altered intra-

network connectivity in regions within all a priori networks of

interest (see Table 2). Specifically, PCL:YV Total score related

increases of intra-network connectivity were found in the middle,

inferior, and superior temporal gyrus, superior, inferior, middle,

and medial frontal gyrus, extra-nuclear and sub-gyral regions,

caudate, lentiform nucleus, and supramarginal gyrus. PCL:YV

Total score related decreases of intra-network connectivity were

found in the superior temporal gyrus, parahippocampal gyrus,

inferior, superior, medial, and middle frontal gyrus, lentiform

nucleus, temporal pole, anterior cingulate, postcentral gyrus, and

precuneus (see Table 2). After correction for FDR and controlling

for age and IQ, neither a priori nor whole brain results emerged for

PCL:YV Total scores.

3.5. Inter-network connectivity

PCL:YV Factor 1 scores were associated with decreased sFNC

between the pars orbitalis (IC17, CC) and both the precuneus

(IC37, CC) and temporal pole (IC6, CC: see Figure 5A). PCL:YV

Factor 2 scores were associated with decreased sFNC between the

aPFC (IC42, CC) and the amygdalae (IC21, CC), and increased

sFNC between the OFC (IC11, DM) and the pars orbitalis (IC17,

CC: see Figure 5B). PCL:YV Total scores were associated with

decreased sFNC between the pars orbitalis (IC17, CC) and the

precuneus (IC37, CC: see Figure 5C). There were no significant a

priori nor whole-brain associations between PCL:YV scores and

sFNC that survived FDR correction while controlling for age

and IQ.

4. Discussion

The purpose of this study was to assess abnormalities in

resting-state measures related to psychopathic traits in a sample

of high-risk adolescent girls. We found that psychopathic traits

(assessed via the PCL:YV) were associated with altered functional

connectivity and ALFF during a resting-state fMRI experimental

paradigm. Consistent with previous research performed in high-

risk adolescent boys and adult men and women, PCL:YV scores

were associated with altered ALFFs, and inter-/intra-network

connectivity across multiple domains, with the majority of effects

occurring in limbic, paralimbic, and default mode network regions

(i.e., temporal poles, amygdalae, caudate/putamen, orbitofrontal

cortex, dorsomedial prefrontal cortex, posterior cingulate cortex,

and precunei: Thijssen and Kiehl, 2017; Allen et al., 2022b).

PCL:YV scores were associated with increased ALFFs in low-

and high-frequency bands and reduced ALFFs in mid- frequency

bands across regions in the CC, DM, SC, SM, and VI domains,

with the most robust effects occurring in the PCC, primary

motor cortex, and secondary visual cortex. These regions have

been commonly implicated in previously published studies relating

psychopathic traits to altered resting-state FNC in incarcerated

adolescent boys (Cohn et al., 2015; Thijssen and Kiehl, 2017) and

community adolescent boy and girl samples (Dugré and Potvin,

2021; Umbach and Tottenham, 2021;Werhahn et al., 2021;Winters

et al., 2021). Likewise, the sparse literature investigating resting-

state ALFFs and psychopathic traits in incarcerated adolescents

have reported largely consistent findings with those obtained in

the current study. Specifically, Thijssen and Kiehl (2017) observed

that adolescent males scoring high on PCL:YV Factor 1 and Total

scores were characterized by increased low-frequency (0–0.01Hz),

decreased low- to mid-frequency (0.05–0.07Hz), and increased

high-frequency (0.20–0.25Hz) ALFFs in the DM, aligning with

the above results: psychopathy-related increased ALFFs at low-

frequency bands (0–0.05Hz) and decreased ALFF at mid/high-

frequency bands (0.10–0.15Hz) in the PCC, and increased ALFFs

at high-frequency bands (0.20–0.25Hz) in the precuneus (see

Figures 3A, G: Thijssen and Kiehl, 2017). Importantly, across

both studies, these DM effects are accounted by variance in

PCL:YV Factor 1, rather than Factor 2. These regions, more

generally, are involved in higher-order cognitive processes, such as

emotion regulation, movement and action coding/regulation, and
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FIGURE 4

Regions of intra-network connectivity e�ects for visualization purposes. (A) Association between PCL:YV Factor 1 score and intra-network

connectivity within component 12 and (B) component 46, FDR corrected p < 0.05. Blue mapping corresponds to component 12 and 46’s spatial

maps and orange reflects regions of increased intra-network connectivity, with the color bar indicating T-values ranging from 0 to 4.3.

FIGURE 5

The significant associations between FNC values and PCL:YV Factor 1, Factor 2, and Total scores are shown with connecting curves between

networks displayed as –sign(t) log10(p), color bars ranging from −1.4 to 1.4, −1.8 to 1.8, and −1.5 to 1.5, respectively. Red and orange colors

correspond to positive correlations; and dark and light blue colors correspond to negative correlations. (A) Factor 1 e�ects showing negative

associations between the pars orbitalis (IC17, CC) and both the precuneus (IC37, CC) and temporal pole (IC6, CC). (B) Factor 2 e�ects showing

negative associations between the aPFC (IC42, CC) and the amygdalae (IC21, CC), and positive associations between the OFC (IC11, DM) and the

pars orbitalis (IC17, CC). (C) PCL:YV Total e�ects showing negative associations between pars orbitalis (IC17, CC) and the precuneus (IC37, CC).

attentional modulation (Leech and Sharp, 2014; Kreiman and Serre,

2020; Bhattacharjee et al., 2021).

Accordingly, research suggests that relatively higher-frequency

ALFFs, compared to lower-frequency ALFFs, contribute to

cognitive processes of higher-order nature (Baria et al., 2011;

Craig et al., 2018; though see Biswal et al., 1995). Consistent with

similar findings in incarcerated adult women scoring high on

psychopathic traits (Allen et al., 2022b), reduced high-frequency

ALFFs (e.g., in the PCC) may relate to previously observed deficits

characteristic of youth scoring high on psychopathy, such as

error-related processing deficits (Maurer et al., 2016). Successful

error-related processing depends on the coordination of several

brain regions, including psychopathy-related regions as identified

above—the primary motor cortex and PCC (Steele et al., 2014).

Furthermore, adolescent girls scoring high on psychopathic traits

have been previously characterized by altered BOLD reactivity to

stimuli featuring facial expressions in the secondary visual cortex,

a region also showcasing altered mid- to high-frequency ALFFs

related to psychopathic traits within our sample (Fairchild et al.,

2014). Finally, and opposite to the deficit hypothesis, some research

suggests that increased low-frequency ALFFs may correspond

to refined neural efficiency (Biswal et al., 1995). Given findings

suggesting that adolescent girls and adult women scoring high on

psychopathic traits do not exhibit the same response perseveration

deficits as comparable men (Vitale and Newman, 2001; Vitale et al.,

2005), the increase in low-frequency ALFFs in regions implicated
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in response perseveration (i.e., the PCC), may reflect markers of

increased neural efficiency (Ersche et al., 2011; Yang et al., 2011).

One mechanism that may be giving rise to the observed ALFF

effects is altered brain structure. Given that ALFF has been found

to vary based on underlying structural differences (Qing and Gong,

2016), the observed effects (e.g., psychopathy related altered ALFF

in the OFC) may be related to previously observed structural

deficits in the majority of the present sample (Cope et al., 2014).

We also observed that adolescent girls scoring high on

psychopathy were characterized by altered inter- and intra-

network connectivity in CC and DM networks, with effects in

the PFC, precuneus, temporal poles, amygdalae, dmPFC, and left

ITG, with the most robust effects occurring in the latter two

regions. Specifically, adolescent girls scoring high on psychopathic

traits were characterized by increased intra-network functional

connectivity within Component 12 (dmPFC) and Component 46

(left ITG), regions consistent with previous analyses in incarcerated

adolescents (Chen et al., 2015; Cohn et al., 2015; Thijssen and

Kiehl, 2017) and community adolescents (Dugré and Potvin, 2021;

Thijssen et al., 2021; Umbach and Tottenham, 2021;Werhahn et al.,

2021; Winters et al., 2021). Likewise, consistent with the present

analyses and Thijssen and Kiehl (2017), psychopathy-related

intra-network connectivity effects that survived FDR correction

were constrained to PCL:YV Factor 1, but did not extend to

PCL:YV Factor 2 or Total scores. Due to the important role

that prefrontal and temporal regions play in emotional regulation,

the altered intra-network effects observed in the dmPFC may

indicate delayed—or altered—maturation between these circuits

and subcortical regions involved in emotional processing (Rubia,

2013; Chen et al., 2015; Morawetz et al., 2016; Dugré and Potvin,

2022), potentially leading to the higher occurrence of antisocial

actions associated with psychopathy.

Broadly, our investigation into the relationship between

resting-state neurobiological alterations and psychopathic traits

in incarcerated adolescent girls underscores two points. First,

our results highlight the importance of considering multiple

approaches to estimating resting-state alterations on a local (i.e.,

ALFFs and intra-network connectivity) and global (inter-network

connectivity) scale, as these complimentary neurobiological

measures are likely to account for alternative types of variance

in explaining behavioral traits (see Thijssen and Kiehl, 2017).

Second, our results suggest that altered resting-state functional

connectivities associated with psychopathic traits present similarly

in incarcerated adolescent girls and incarcerated adult women and

adolescent boys (Allen et al., 2022b), potentially identifying stable

markers for work seeking to predict subsequent antisocial actions

utilizing brain-based metrics (Aharoni et al., 2013, 2022; Allen

et al., 2022a). More specifically, psychopathy related paralimbic and

default mode network alterations in the form of increased low-

frequency ALFFs, decreased mid-frequency ALFFs, and increased

high-frequency ALFFs were identified across adolescent and adult

samples, suggesting that these neurobiological/trait correlates may

be stable across development (Thijssen and Kiehl, 2017; Allen

et al., 2022b). While the present work adds to a growing literature

showcasing consistency in neurobiological alterations from youth

to adulthood, future research stands to further explore how these

neurobiological correlates may remain or differ from adolescence

to adulthood in longitudinal samples of high-risk women.

4.1. Study limitations and future research

A number of limitations must be considered alongside the

results presented. It is worth noting the small sample size (n

= 40) compared to other similar analyses (Cohn et al., 2015;

Thijssen and Kiehl, 2017; Espinoza et al., 2018; Allen et al.,

2022b), potentially casting concerns on the reliability of the results

presented. While this shortcoming is likely a side-effect of the

low base rate of incarcerated adolescent girls compared to boys in

forensic institutions, future studies could consider collaborative

efforts that span multiple institutions and samples in order to

strengthen the conclusions that can be drawn from the analyses.

Additionally, another potential limitation of this study is the length

of resting-state scan for the FNC measures being investigated

(i.e., static FNC vs. dynamic FNC). While some research suggests

that resting-state scans longer than 5-min are necessary to ensure

high stability RSNs (Birn et al., 2013), other research finds shorter

length scans adequate (Allen et al., 2011a; Espinoza et al., 2018,

2019; Duda et al., 2023). Static FNC, as compared to dynamic FNC,

entails a number of assumptions regarding the coherence of the

RSN relationships across the 5-min scan, thus, future work should

consider exploring variable sliding window dFNC approaches in

investigating the stability of resting-state alterations associated with

psychopathic traits in incarcerated samples. Likewise, combined

analysis of resting-state alterations with task-based scans (such

as impulsivity or socioemotional processing tasks) should be

considered in future work to not only test the generalizability

of neurobiological correlates associated with psychopathic

traits, but also corresponding functional and behavioral

deficits that may differ during and through development.

Thus, more work, and larger samples, are needed to probe the

relationships between various functional activity and connectivity

measures as they relate to psychopathic traits in incarcerated

adolescent women.

4.2. Conclusion

Our results suggest that psychopathic traits among incarcerated

adolescent girls are associated most robustly with altered intra-

network amplitude of low-frequency fluctuations—primarily that

of increased low-frequency and decreased mid- to high-frequency

fluctuations—and connectivity across multiple networks including

paralimbic and default mode network regions, including the PCC.

These results, and their relative consistency to similar findings

in incarcerated adult women and adolescent boys scoring high

on psychopathy (Thijssen and Kiehl, 2017; Allen et al., 2022b),

suggest stable neurobiological correlates of psychopathic traits

across development. To our knowledge, this is the first study to

date on the association of psychopathic traits and intrinsic RSN

alterations in incarcerated high-risk adolescent girls.
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