
TYPE Original Research

PUBLISHED 04 August 2023

DOI 10.3389/fnimg.2023.1228255

OPEN ACCESS

EDITED BY

Mario Sansone,

University of Naples Federico II, Italy

REVIEWED BY

Nitish Katal,

Indian Institute of Information Technology Una

(IIITU), India

Andreas Husch,

University of Luxembourg, Luxembourg

*CORRESPONDENCE

Annika Gerken

annika.gerken@mevis.fraunhofer.de

RECEIVED 24 May 2023

ACCEPTED 18 July 2023

PUBLISHED 04 August 2023

CITATION

Gerken A, Walluscheck S, Kohlmann P,

Galinovic I, Villringer K, Fiebach JB, Klein J and

Heldmann S (2023) Deep learning-based

segmentation of brain parenchyma and

ventricular system in CT scans in the presence

of anomalies. Front. Neuroimaging 2:1228255.

doi: 10.3389/fnimg.2023.1228255

COPYRIGHT

© 2023 Gerken, Walluscheck, Kohlmann,

Galinovic, Villringer, Fiebach, Klein and

Heldmann. This is an open-access article

distributed under the terms of the Creative

Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is

permitted, provided the original author(s) and

the copyright owner(s) are credited and that

the original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Deep learning-based
segmentation of brain
parenchyma and ventricular
system in CT scans in the
presence of anomalies

Annika Gerken1*, Sina Walluscheck2, Peter Kohlmann3,

Ivana Galinovic4, Kersten Villringer4, Jochen B. Fiebach4,

Jan Klein1 and Stefan Heldmann2

1Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany, 2Fraunhofer Institute for Digital

Medicine MEVIS, Lübeck, Germany, 3Fraunhofer Institute for Digital Medicine MEVIS, Berlin, Germany,
4Center for Stroke Research Berlin (CSB) Charité, Universitätsmedizin, Berlin, Berlin, Germany

Introduction: The automatic segmentation of brain parenchyma and

cerebrospinal fluid-filled spaces such as the ventricular system is the first step

for quantitative and qualitative analysis of brain CT data. For clinical practice and

especially for diagnostics, it is crucial that such a method is robust to anatomical

variability and pathological changes such as (hemorrhagic or neoplastic) lesions

and chronic defects. This study investigates the increase in overall robustness of

a deep learning algorithm that is gained by adding hemorrhage training data to

an otherwise normal training cohort.

Methods: A 2DU-Net is trained on subjects with normal appearing brain anatomy.

In a second experiment the training data includes additional subjects with brain

hemorrhage on image data of the RSNA Brain CT Hemorrhage Challenge with

custom reference segmentations. The resulting networks are evaluated on normal

and hemorrhage test casesseparately, and on an independent test set of patients

with brain tumors of the publicly available GLIS-RT dataset.

Results: Adding data with hemorrhage to the training set significantly improves

the segmentation performance over an algorithm trained exclusively on normally

appearing data, not only in the hemorrhage test set but also in the tumor test

set. The performance on normally appearing data is stable. Overall, the improved

algorithm achieves median Dice scores of 0.98 (parenchyma), 0.91 (left ventricle),

0.90 (right ventricle), 0.81 (third ventricle), and 0.80 (fourth ventricle) on the

hemorrhage test set. On the tumor test set, the median Dice scores are 0.96

(parenchyma), 0.90 (left ventricle), 0.90 (right ventricle), 0.75 (third ventricle), and

0.73 (fourth ventricle).

Conclusion: Training on an extended data set that includes pathologies is crucial

and significantly increases the overall robustness of a segmentation algorithm

for brain parenchyma and ventricular system in CT data, also for anomalies

completely unseen during training. Extension of the training set to include other

diseases may further improve the generalizability of the algorithm.
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1. Introduction

Computed tomography (CT) is a common radiological

diagnostic tool to assess the brain for anomalies such as

stroke, hemorrhagic or neoplastic lesions as well as other

structural changes, as it combines high spatial resolution

with good image contrast to surrounding tissue. Moreover,

changes in the general brain anatomy such as shape or

volume of the brain parenchyma and ventricular system are

often hints to an underlying pathological condition. After

preprocessing of data (conversion of DICOM to other formats,

brain extraction and image registration), successful segmentation

of basic structures such as brain parenchyma and spaces

filled with cerebrospinal fluid (CSF), including the ventricular

system, constitutes the base prerequisite for further tasks

of identifying and correctly classifying particular intracranial

pathologies. Here it is of singular importance that the algorithm

be attuned to “real world” data, which incorporates the wide

spectrum of anatomical variants as well as frequently encountered

pathological conditions such as chronic defects and hemorrhagic or

neoplastic lesions.

Due to the very high contrast of the ventricles to surrounding

brain tissue, a number of automatic segmentation methods of

ventricles in CT data have been proposed that rely on prior

anatomical knowledge or explicit modeling. This includes solutions

using template or atlas matching (Chen et al., 2009; Poh et al.,

2012; Vos et al., 2013), threshold optimization (Qian et al., 2017),

or level set methods (Jayaraman et al., 2020). However, unless

explicitly modeled, such handcrafted solutions may fail in the

presence of anomalies that lead to intensity or morphological

changes within or adjacent to the ventricles such as hemorrhage or

stroke lesions.

Through the implementation of deep learning (DL)

technologies, society hopes to improve the accuracy, speed,

and standardization of neuroimaging diagnosis (Yeo et al., 2021),

thus supporting the physician, particularly in low throughput

centers and during nights or weekends when there might be

reduced availability of on-call radiologists. Multiple DL-based

methods for segmentation of brain parenchyma and ventricles

have been proposed: either for direct quantification (Huff et al.,

2019; Zhou et al., 2020) or as a pre-processing step for registration

purposes (Dubost et al., 2020; Walluscheck et al., 2023). In further

studies, substructures of the brain parenchyma are segmented (Cai

et al., 2020; Zopes et al., 2021) or a cross-modality approach for

CT and MRI is proposed (Zopes et al., 2021; Zhou et al., 2022).

However, these studies often focus on specific diseases such as

hydrocephalus or are evaluated only on data of healthy or elderly

patients. Under these circumstances, a good generalization and

high robustness to brain changes in patients with other diseases

and comorbidities cannot be assumed.

In this work, we show that a DL-based solution for the

segmentation of brain parenchyma and ventricular system, trained

exclusively on patients with normal anatomy (i.e. no apparent

structural changes or lesions), does not generalize robustly to

patients with brain anomalies, and that extending the training

set to a specific type of anomaly (hemorrhage) also improves the

robustness in the case of other anomalies (tumors).

2. Methods

In this section we will give details on the used training and

test data (Section 2.1 as well as the training process and model

(see Section 2.2). We will shortly introduce how our model was

evaluated in section Section 2.3.

2.1. Data

For this study, only publicly available CT data was used, some

with custom reference segmentations as described below.

2.1.1. RSNA 2019 brain CT hemorrhage challenge
We use different subsets of the RSNA 2019 Brain CT

Hemorrhage Challenge (Flanders et al., 2020) to create multiple

test and training data sets. First, we divided the whole data set

into: (1) a “normal” cohort of 220 subjects without hemorrhage

or other obvious anomalies and (2) an “anomaly” cohort of 426

subjects, all with brain hemorrhage (epidural, intraparenchymal,

intraventricular, subarachnoid or subdural).

In the normal cohort, five target structures were annotated

fully manually by radiographers and verified by a radiologist: brain

parenchyma and ventricular system composed of left ventricle,

right ventricle, third and fourth ventricle. These data were split

into 158 cases for training, 40 cases for validation during training,

and 22 cases for testing. We refer to this data as “normal”

test/training data.

To generate training/testing segmentation mask for the

anomaly cohort, an nnU-Net (Isensee et al., 2021) was trained

on the normal image cohort, generating pre-segmentations for

the anomaly cohort. The total number of pre-segmentations was

split between two radiologists (IG, KV; each well over a decade

of experience in neuroimaging) who manually corrected their

cases respectively. In cases of uncertainty, a neuroradiologist (JF)

was consulted. A subset of 124 cases was annotated by both

readers, resulting in two structure contours per case. If assigned

to the training or validation set, both contour variants were

used separately. If assigned to the test set, the two individual

segmentations were merged by union to simplify the evaluation. In

some cases where the pre-segmentation was of very poor quality,

only a subset of the five target structures was segmented. Only

in the test set, all structures were corrected in all cases. The data

were split into 334 individual subjects for training, 22 subjects for

validation, and 70 subjects for testing. Table 1 gives an overview of

the number of annotated structures per data subset. All uncorrected

structures were excluded from training and validation as described

in Section 2.2. In the course of this paper we refer to the anomaly

cohort of the RSNA data as “hemorrhage data.”

2.1.2. Glioma Image Segmentation for
Radiotherapy

For additional validation on independent data with a different

kind of anomaly than hemorrhage, a subset of the Glioma Image

Segmentation for Radiotherapy (GLIS-RT) collection (Shusharina
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and Bortfeld, 2021; Shusharina et al., 2021) was used, available

via The Cancer Imaging Archive (TCIA) (Clark et al., 2013). The

dataset contains patients with glioblastoma or low-grade glioma,

with CT scans acquired for radiotherapy planning after diagnostic

imaging. Not all cases contain reference contours of all structures

of interest, therefore only a subset of 106 patients with contours

of the brain parenchyma and individual ventricular structures was

used for testing. To differentiate between this anomalous test set

and the previously described “hemorrhage data” we will refer to the

GLIS-RT test set as “glioma data”.

2.1.3. Data pre-processing
The images were resampled in the axial plane only to a range

of 0.4–0.6 mm, without resampling between the individual (thick)

slices. Any images with lower/higher resolution were resampled

to the upper/lower bound of this range, all other images were

not resampled. The Hounsfield units were clipped to a subdural

window range of (–n20 HU, 180 HU). For data augmentation,

flipping of left and right body side was applied during training,

where reference labels for left and right ventricle were swapped

whenever an image was flipped.

2.2. Automatic segmentation

Segmentation is performed by deep Learning using a common

U-Net architecture (Ronneberger et al., 2015). Our 3D training

data consists mostly of axial slices with fine in-plane resolution

below 1 mm and 5mm thickness. For this reason, we conducted

preliminary experiments using a 3D and a 2D segmentation model,

specifically the 3D aU-Net (Chlebus et al., 2022) designed to

process anisotropic data. In our experiments, we compared the

performance of the 2D and 3D approaches on normal data. The

results are shown in Table 2. The accuracy of the two approaches is

essentially identical, which is most likely due to the very high slice

TABLE 1 Number of annotated structures in normal and hemorrhage data

sets for parenchyma (P), left ventricle (LV), right ventricle (RV), third

ventricle (3rdV), and fourth ventricle (4thV).

Normal
cohort

Anomaly cohort

Structures All P LV RV 3rdV 4thV

Training 158 289 261 268 337 362

Validation 40 27 20 20 30 30

Test 22 70 70 70 70 70

thickness of 5 mm in the RSNA dataset. However, the runtime of

the 3D approach was significantly longer, so we decided to use the

2D U-Net as the basis for our work.

For regularization, dropout (p = 0.25) (Srivastava et al., 2014)

and batch normalization (Ioffe and Szegedy, 2015) were used.

PReLU (He et al., 2015) was chosen as activation function. The

loss function and optimization were chosen following the nnU-

Net framework: the combined Dice and categorical crossentropy

loss were optimized using stochastic gradient descent withNesterov

momentum 0.99 with a polynomial learning rate decay scheme. The

training ran for 125,000 iterations with batch size 10 and patch size

260 × 260 at the model output, with a validation step each 500

iterations. The final model was chosen based on the highest mean

validation Jaccard score across all five target structures.

For training with incomplete annotations in the case of

the hemorrhage data, a weighting scheme was implemented

that excludes all missing structures (and in case of incomplete

annotation also the background channel) from the loss calculation

(Petit et al., 2018).

The 2D U-Net was trained twice: (1) on the normal cohort only

and (2) on the joint normal and hemorrhage data. In both trainings,

the sampling of patches was adjusted so that all five structures of

interest were sampled with similar frequencies, to account for large

size differences and class imbalance of parenchyma and ventricular

structures. In training (1), patches including foreground voxels

of any of the five structures vs. pure background patches were

sampled in a ratio of 4:1. In training (2), the ratio was 9:1, with four

foreground patches from the normal cohort and five foreground

patches from the hemorrhage data with one patch from each

of the available hemorrhage classes (epidural, intraparenchymal,

intraventricular, subarachnoid, subdural) to enable learning of the

different anomalies.

For post-processing, the largest connected component of

the predicted parenchyma mask was extracted. The ventricular

structures were then restricted to the convex hull of the

parenchyma mask, to remove any false positives outside the brain

region. No further connected component analysis was performed

for the ventricles, due to the high slice thickness. In cases with

fine connections of the ventricle’s body to the temporal horn, or

separate annotated components of the third ventricle, this would

remove part of the valid predicted structure. However, in few cases

this might lead to small, distant false positives and therefore outliers

in calculation of the Hausdorff distance metric.

2.3. Evaluation

Both trained networks were evaluated separately on the

following three test sets: (1) 22 test cases of the normal RSNA

TABLE 2 Mean dice and standard deviation for two network architectures trained on normal data for parenchyma (P), left ventricle (LV), right ventricle

(RV), third ventricle (3rdV), and fourth ventricle (4thV).

Runtime Dice

Network Per dataset P LV RV 3rdV 4thV

3D aU-Net 18.8 s 0.96± 0.02 0.86± 0.06 0.85± 0.06 0.77± 0.07 0.81± 0.06

2D U-Net 3.8 s 0.96± 0.02 0.88± 0.05 0.87± 0.06 0.76± 0.09 0.81± 0.06

Evaluation done on validation split for model selection.
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FIGURE 1

Boxplot of Dice scores and 95%-Hausdor� distance for the segmentation of parenchyma (P), left ventricle (LV), right ventricle (RV), third ventricle

(3rdV), and fourth ventricle (4thV) using the two U-Nets trained on normal only vs. normal plus hemorrhage data on normal and hemorrhage test sets.

cohort, (2) 70 test cases of the RSNA hemorrhage data, and (3)

106 cases of the glioma dataset. For all evaluation experiments

we report the Dice score and 95%-Hausdorff distance. Calculation

of statistical significance with correction for multiple testing (per

metric and test set) using the Benjamini-Hochberg procedure was

performed with the statannotation python package (Charlier et al.,

2022).

3. Results

In the following sections, we present results on the normal

and hemorrhage test cases of the RSNA Brain CT Hemorrhage

challenge (Section 3.1) and on the glioma test set (Section 3.2).

3.1. RSNA (normal and hemorrhage) test
sets

On the normal test set, both trained networks show no

significant difference in performance after correction for multiple

testing for all five target structures for Dice and 95%-Hausdorff

distance metrics, see Figure 1. On the hemorrhage test set, the

Dice score is increased significantly for all structures with the

exception of fourth ventricle, when including anomaly data into the

training. The 95%-Hausdorff metric is significantly reduced for all

structures. On average, the Dice score of the improvedmodel on the

hemorrhage test set is similar compared to the normal test set for

all structures. The 95%-Hausdorff distance has more severe outliers

on the anomaly test set, due to small but distant false positives as

described in Section 2.2.

In Figure 2, the Dice scores achieved by both networks are

plotted per test subject in descending order. On the normal test

set, the performance of both networks is almost identical for

all subjects. On the hemorrhage test set, the performance of the

network trained exclusively on normal cases drops considerably for

several subjects, whereas the network also trained on anomaly cases

is more robust and maintains an overall higher performance. This

direct per case comparison illustrates well that the segmentation

performance of the model trained on additional hemorrhage

data drops in only few cases, again with the exception of the

fourth ventricle.

Qualitative segmentation results of both networks are shown

in Figure 3 on anomaly cases with different hemorrhage classes. In

cases with small anomalies (row 1: small subdural bleed on right

hemisphere), both networks achieve similar results. In cases with
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FIGURE 2

Dice scores per patient on the normal test set (left column) and anomaly test set (right column) for each structure. The two colors represent results

for the network trained on normal cases only vs. normal plus hemorrhage cases.

larger anomalies (row 2: subdural bleed between hemispheres, row

3: intraventricular bleed, row 4: intraventricular bleed), the network

trained also on hemorrhage cases is much more robust. However,

some anomalies may still bemissed, such as smaller intraventricular

bleeds with lower HU values. In some cases (row 5: largemostly iso-

or hypodense subdural bleed), both networks fail in a similar way

for parenchyma segmentation.

3.2. GLIS-RT (tumor) test set

On the glioma test set, the segmentation performancemeasured

by the Dice score is significantly improved for all structures

when adding anomaly (hemorrhage) data to the training, see

Figure 4. The 95%-Hausdorff distance is significantly reduced for

all structures except for parenchyma, where it is already low for

the U-Net trained only on normal data. As shown in Table 3, the

median Dice score of the improved model on the glioma data is

similar to the RSNA data for parenchyma and lateral ventricles,

but slightly reduced for third and fourth ventricle. The median

95%-Hausdorff distance is slightly lower for the third ventricle,

but higher for the fourth ventricle, for parenchyma and lateral

ventricles it is similar.

Figure 5 shows qualitative examples from the glioma dataset.

The algorithm trained also on anomaly data is overall more robust

to changes in intensity than the algorithm trained only on normal

data. In some cases, the improved segmentation even outperforms

the reference segmentation (rows 3–5).
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FIGURE 3

Qualitative segmentation examples from the RSNA dataset of parenchyma (yellow) and ventricles (left ventricle: green, right ventricle: cyan, third

ventricle: magenta, fourth ventricle: purple). Each row shows from left to right (A) the original CT slices, (B) the reference segmentation, (C) the

segmentation from the algorithm trained on normal cases only, and (D) the segmentation from the algorithm trained on normal cases and

hemorrhage cases. For better visibility, not all structures are shown for all cases.

4. Discussion

The field of DL-based quantitative neuroimage analysis is

rapidly expanding and currently already covers commercial

applications for non-contrast CT to identify acute ischemia, arterial

obstruction seen as hyperattenuated arteries, brain hemorrhage

or brain trauma. However, there has been much criticism of

the certification process for artificial intelligence (AI) software
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TABLE 3 Median (and inter-quartile range) of dice score and 95%-Hausdor� distance for the U-Net trained on normal and hemorrhage data on the three

di�erent test sets.

Test set

Metric Structure RSNA normal RSNA anomaly GLIS-RT

Parenchyma 0.96 (0.96–0.97) 0.98 (0.97–0.98) 0.96 (0.94–0.97)

Left ventricle 0.89 (0.87–0.91) 0.91 (0.87–0.93) 0.90 (0.87–0.92)

Dice Right ventricle 0.88 (0.83–0.90) 0.90 (0.85–0.92) 0.90 (0.86–0.92)

3rd ventricle 0.79 (0.74–0.82) 0.81 (0.70–0.86) 0.75 (0.69–0.80)

4th ventricle 0.77 (0.73–0.84) 0.80 (0.72–0.83) 0.73 (0.67–0.77)

Parenchyma 16.33 (15.36–18.18) 1.54 (0.98–2.50) 5.00 (3.52–5.65)

Left ventricle 1.92 (1.09–5.00) 1.54 (0.98–3.89) 2.05 (1.37–3.46)

HD-95% Right ventricle 2.22 (1.51–4.39) 1.95 (0.98–4.49) 2.21 (1.36–5.00)

3rd ventricle 5.00 (3.03–5.02) 5.00 (2.50–5.52) 2.59 (2.50–5.00)

4th ventricle 5.01 (5.00–5.50) 5.04 (5.00–10.00) 7.50 (5.00–10.08)

FIGURE 4

Boxplot of Dice scores and 95%-Hausdor� distance for the segmentation of parenchyma (P), left ventricle (LV), right ventricle (RV), third ventricle

(3rdV), and fourth ventricle (4thV) using the two U-Nets trained on normal only vs. normal plus hemorrhage data on the glioma test set.

in the radiological community (Wardlaw et al., 2022). Currently

such software can be marketed in the European Economic Area

(EEA) after achieving a Conformité Europëenne (CE) mark but

the standards for achieving such a certification are surprisingly

low. Exploiting the loophole created by the phrasing that they are

designed to only support (not replace) medical decision making,

AI software for radiology is often awarded the CE mark without

external scrutiny. An independent review of all CE-marked AI

software for radiology in Europe published in 2021 found that

64 of 100 products had no published peer-reviewed evidence of

efficacy (van Leeuwen et al., 2021). Therefore, we chose to perform

a study that focuses on the training and validation data and to

develop an algorithm that is robust to unseen pathologies in the

input data, rather than focus on methodological improvements of

the architecture or training process.

With this aim, we have demonstrated that a robust and fully

automatic segmentation of brain parenchyma and ventricular

system can be achieved by deep learning. Unlike previous

publications on the topic, that have either excluded subjects

with severe anomalies (e.g., Huff et al., 2019; Cai et al.,

2020) or focused on a particular kind of disease (e.g., Zhou

et al., 2020, 2022), our developed algorithm is robust for

two different kinds of anomalies (intracranial hemorrhage and

tumors), despite being trained only on normal and hemorrhage

data with partially incomplete annotations. In addition, the

higher generalizability and robustness to anatomical changes

does not come with a decrease in segmentation performance

on normal anatomy, which is equally important. The resulting

algorithm can therefore likely be applied in a wide range of

clinical scenarios.

In this initial study, the evaluation of the developed algorithm

was still limited to two kinds of anomalies and should be validated

on a larger test set, including overall more subjects and more

diverse anatomical changes. Moreover, the training set should be

extended to better reflect the diversity of possible anomalies to

further increase the robustness. A major obstacle in this is the effort
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FIGURE 5

Qualitative segmentation examples from the glioma dataset of parenchyma including tumors (yellow) and ventricles (left ventricle: green, right

ventricle: cyan, third ventricle: magenta, fourth ventricle: purple). Each row shows from left to right (A) the original CT slices, (B) the reference

segmentation, (C) the segmentation from the algorithm trained on normal cases only, and (D) the segmentation from the algorithm trained on

normal cases and hemorrhage cases.

for manually curated ground truth data. The robust segmentation

algorithm could serve as an automatic pre-segmentation step that

will likely reduce the time required for manual corrections in an

iterative workflow.

Future work should extend the evaluation to clinically used

parameters such as volumetric measurements, in addition to

common segmentation measures like the Dice score and Hausdorff

distance. Testing the model on a larger data set with different
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imaging or patient properties could add further insights on

the generalizability of the model. In the future, possibilities for

integrating the method into clinical workflow shall be explored.
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