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Di�usion magnetic resonance imaging is sensitive to the microstructural

properties of brain tissue. However, estimating clinically and scientifically

relevant microstructural properties from the measured signals remains a highly

challenging inverse problem that machine learning may help solve. This study

investigated if recently developed rotationally invariant spherical convolutional

neural networks can improve microstructural parameter estimation. We trained

a spherical convolutional neural network to predict the ground-truth parameter

values from e�ciently simulated noisy data and applied the trained network to

imaging data acquired in a clinical setting to generate microstructural parameter

maps. Our network performed better than the spherical mean technique and

multi-layer perceptron, achieving higher prediction accuracy than the spherical

mean technique with less rotational variance than the multi-layer perceptron.

Although we focused on a constrained two-compartment model of neuronal

tissue, the network and training pipeline are generalizable and can be used to

estimate the parameters of any Gaussian compartment model. To highlight this,

we also trained the network to predict the parameters of a three-compartment

model that enables the estimation of apparent neural soma density using tensor-

valued di�usion encoding.

KEYWORDS

di�usion magnetic resonance imaging, geometric deep learning, microstructure,

spherical convolutional neural network, MRI

1 Introduction

Neuroimaging enables non-invasively measuring functional and structural properties

of the brain, and it is essential in modern neuroscience. Diffusion magnetic

resonance imaging (dMRI), the most commonly used imaging modality for quantifying

microstructural properties of the brain, measures displacements of water molecules at

the microscopic level and is thus sensitive to tissue microstructure. dMRI has been used

to localize microstructural alterations associated with, for example, learning (Sagi et al.,

2012), healthy development (Lebel et al., 2019), aging (Sullivan and Pfefferbaum, 2006),

neurodevelopmental disorders (Gibbard et al., 2018), and neurodegenerative diseases

(Zhang et al., 2009). However, accurately inferring clinically and scientifically relevant

properties of tissue microstructure (e.g., cell morphology or distribution of cell types)

from the measured signals remains a highly challenging inverse problem (Kiselev, 2017).
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Most dMRI data analysis methods are based on signal models

that express the measured signal as a function of parameters of

interest and can be fit to data by numerically minimizing an

objective function (Novikov et al., 2019). An essential requirement

for microstructural neuroimaging methods is low rotational

variance (i.e., estimated parameters should not depend on how

the subject’s head is oriented in the scanner). Furthermore, it is

often desirable for the parameter estimates to be independent of

the orientation distribution of the microscopic structures (e.g., an

estimate of axon density should not depend on whether the axons

are aligned or crossing). These two requirements are often achieved

by acquiring high-angular resolution diffusion imaging (HARDI)

data and averaging over the diffusion encoding directions, which is

referred to as “powder-averaging”, a term borrowed from the field

of solid-state nuclear magnetic resonance (NMR). The number of

acquisition directions required for a nearly rotationally invariant

powder-averaged signal depends on the properties of tissue

microstructure and diffusion encoding (Szczepankiewicz et al.,

2019a). Fitting models to powder-averaged signals is often referred

to as the “spherical mean technique” (SMT), a term introduced

by Kaden et al. (2016b). While powder-averaging enables the

estimation of various microstructural parameters (Jespersen et al.,

2013; Lasič et al., 2014; Kaden et al., 2016a,b; Szczepankiewicz et al.,

2016; Henriques et al., 2020; Palombo et al., 2020; Gyori et al.,

2021), a significant amount of information is lost during averaging.

Therefore, it may be beneficial to estimate the parameters directly

from full data without powder-averaging.

In recent years, microstructural parameter estimation using

machine learning (ML) has received significant attention as a

potential solution to issues with conventional fitting, such as

slow convergence, poor noise robustness, and terminating at local

minima (Golkov et al., 2016; Barbieri et al., 2020; Palombo et al.,

2020; de Almeida Martins et al., 2021; Elaldi et al., 2021; Gyori

et al., 2021, 2022; Karimi et al., 2021; Sedlar et al., 2021a,b;

Kerkelä et al., 2022). ML models can be trained to predict

microstructural parameter values from data using supervised or

self-supervised learning. In the context of dMRI, a particularly

promising development has been the invention of spherical

convolutional neural networks (sCNNs) (Cohen et al., 2018; Esteves

et al., 2018). sCNNs are SO(3)-equivariant (i.e., rotating the input

changes the output according to the same rotation) artificial neural

networks that perform spherical convolutions with learnable filters.

They theoretically enable rotationally invariant classification and

regression, making them potentially well-suited for predicting

microstructural parameters from dMRI data.

This study aimed to investigate if sCNNs can improve

microstructural parameter estimation. We focused on estimating

the parameters of a constrained two-compartment model by Kaden

et al. (2016a) regularly used in neuroscience to study human white

matter in vivo (Collins et al., 2019; Toescu et al., 2021; Voldsbekk

et al., 2021; Battocchio et al., 2022; Rahmanzadeh et al., 2022). An

sCNN implemented according to Esteves et al. (2018) was trained

to predict the neurite orientation distribution function (ODF) and

scalar parameters (neurite diffusivity and density) from dMRI data.

Training and testing were done using simulated data. The sCNN

was compared to conventional fitting and a multi-layer perceptron

(MLP) in terms of accuracy and orientational variance. The trained

model was then applied to MRI data acquired in a clinical setting to

generate microstructural maps. Furthermore, to highlight the fact

that the sCNN and training pipeline are applicable to any Gaussian

compartment model, the network was trained to estimate the

parameters of a constrained three-compartment model by Gyori

et al. (2021) that enables the estimation of apparent neural soma

density using tensor-valued diffusion encoding (Topgaard, 2017).

2 Materials and methods

2.1 Spherical harmonics

Any square-integrable function on the sphere f : S2 → C can

be expanded in the spherical harmonic basis:

f (x) =
b

∑

l=0

l
∑

m=−l

f̂ml Ym
l (x), (1)

where x is a point on the unit sphere, b is the bandwidth of f , l is

the degree,m is the order, f̂m
l

is an expansion coefficient, and Ym
l
is

a spherical harmonic defined as

Ym
l (θ ,φ) =

√

2l+ 1

4π

(l−m)!

(l+m)!
Pml (cos θ)e

imφ , (2)

where θ ∈ [0,π] is the polar coordinate, φ ∈ [0, 2π) is the

azimuthal coordinate, and Pm
l
is the associated Legendre function.

The expansion coefficients are given by the spherical Fourier

transform (SFT):

f̂ml =
∫

S2
dx f (x)Ȳm

l (x). (3)

SFT of a band-limited function can be computed exactly as a

finite sum using a sampling theorem (Driscoll and Healy, 1994).

Equation 1 is the inverse spherical Fourier transform (ISFT).

Since reconstructed dMRI signals are real-valued and

antipodally symmetric, we use the following basis:

Sml =



















0 if l is odd√
2 ℑ

(

Y−m
l

)

ifm < 0

Y0
l

ifm = 0√
2 ℜ

(

Ym
l

)

ifm > 0

. (4)

Considering that diffusion encoding directions do not usually

follow a sampling theorem like the one by Driscoll and Healy

(1994) that enables SFT to be exactly computed as a finite sum, we

use least squares to compute the expansion coefficients: Indexing

j = 1
2 l(l + 1)+m assigns a unique index j to every pair l,m. Given

f sampled at points x1, x2, ..., xnpoints stored in a column vector X,

the values of the spherical harmonics sampled at the same points

are organized in a npoints × ncoefficients matrix B where Bij = Sm
l
(xi).

(

B
T
B
)−1

B
T
X gives a vector containing the expansion coefficients

minimizing the Frobenius norm (Brechbühler et al., 1995).
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2.2 Spherical convolution

Convolution of a spherical signal f by a spherical filter h is

defined as

(f ∗ h)(x) =
∫

SO(3)
dR f (Rê3)h(R

−1
x), (5)

where ê3 is a unit vector aligned with the z-axis. If f and h are

band-limited, the above equation can be evaluated efficiently as a

pointwise product in the frequency domain (Driscoll and Healy,

1994). The spherical harmonic coefficients of the convoluted signal

y are

ŷml = 2π

√

4π

2l+ 1
f̂ml ĥ0l . (6)

Spherical convolution is equivariant to rotations (i.e.,R(f ∗h) =
(Rf ) ∗ h for all R ∈ SO(3)) and the filter is marginalized around the

z-axis (i.e, for every h, there exists a filter hz that is symmetric with

respect to the z-axis so that f ∗ h = f ∗ hz).

2.3 Compartment models

Compartment models represent the dMRI signal as a sum of

signals coming from different microstructural environments (e.g.,

intra- and extra-axonal water). For details, see, for example, the

review by Jelescu and Budde (2017). Here, we focus on models with

non-exchanging Gaussian compartments following an ODF. The

signal measured along n̂ is expressed as a spherical convolution of

the ODF by a microstructural kernel response function K:

S(n̂) =
∫

SO(3)
dR ODF(Rê3)K(R

−1
n̂), (7)

where K is the microstructural kernel response function:

K(n̂) = S0

[

N
∑

i=1

fi exp(−b :Di)

]

, (8)

where S0 is the signal without diffusion-weighting, N is the

number of compartments, fi is a signal fraction, b is the b-tensor

corresponding to n̂ and a b-value equal to Tr(b), : denotes the

generalized scalar product (b :D =
∑3

i=1

∑3
j=1 bijDij) (Westin

et al., 2016), and Di is an axially symmetric diffusion tensor

aligned with the z-axis representing Gaussian diffusion in the

compartment. The training pipeline presented in this paper is

applicable to any compartment model that can be expressed using

Equations 7 and 8. Given a different data generation method, the

sCNN can be trained to predict the parameters of non-Gaussian

models as well.

2.3.1 Two-compartment model
The so-called “standard model” of diffusion in white matter

consists of a one-dimensional compartment representing diffusion

inside neurites and a coaxial axially symmetric extra-cellular

compartment (Novikov et al., 2019). We focus on a constrained

version of the model by Kaden et al. (2016a) that enables model

parameters to be estimated from powder-averaged data using the

SMT. The model contains two parameters: intra-neurite diffusivity

d and intra-neurite signal fraction f . Axial and radial diffusivities

of the extra-cellular compartment are d and (1 − f )d, respectively.

Inserting this into Equation 8 gives

K(n̂) = S0






f exp






−b :







0 0 0

0 0 0

0 0 d













+ (1− f ) exp






−b :







(1− f )d 0 0

0 (1− f )d 0

0 0 d


















. (9)

2.3.2 Spherical mean technique
Kaden et al. (2016b) observed that for a fixed b-value, the

spherical mean of the dMRI signal over the gradient directions

does not depend on the ODF. By exploiting this invariance, the

constrained two-compartmentmodel can be fit to powder-averaged

data, denoted by SPA here, using the following signal equation

(Kaden et al., 2016a):

SPA = S0



f

√
πerf

(√
bd

)

2
√
bd

+ (1− f )e−b(1−f )d

√
πerf

(

√

bfd
)

2
√

bfd



 .

(10)

2.3.3 Three-compartment model
Palombo et al. (2020) added a spherical compartment

representing neural soma to the standard model to make it more

suitable for gray matter. We use a constrained three-compartment

model by Gyori et al. (2021) that uses tensor-valued diffusion

encoding to make apparent neural soma imaging more feasible

without high-performance gradient hardware. The model contains

four parameters: intra-neurite diffusivity di, intra-neurite signal

fraction fi, spherical compartment diffusivity dsph, and spherical

compartment signal fraction fsph. Axial and radial diffusivities of

the extra-cellular compartment are di(1− fi − fsph)
1
2 fsph/(fsph+fi) and

di(1 − fi − fsph)
( 12 fsph+fi)/(fsph+fi), respectively. We omit explicitly

writing out the kernel signal equation to save space, but it is trivial

to construct from Equation 8.

2.4 Simulations

Simulated training data was generated by evaluating Equation 7

in the frequency domain according to Equation 6. The response

function values were evaluated along 3072 directions uniformly

distributed over the surface of the sphere according to the

hierarchical equal area isolatitude pixelisation (HEALPix) (Gorski

et al., 2005; Zonca et al., 2019) and expanded in the spherical

harmonics basis. Rician noise was added to the simulated signals:

Snoisy =
√

(S+ X)2 + Y2, (11)
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FIGURE 1

Network for two-compartment model parameter prediction. The input is normalized two-shell data expanded using spherical harmonics up to

degree eight. The signals undergo spherical convolutions, non-linearities, and spectral pooling to produce the predicted orientation distribution

function. After the initial three convolutions, global mean pooling is applied in the signal domain, and the resulting arrays are concatenated to create

a nearly rotationally invariant feature vector passed on to the FCN that outputs the predicted scalar parameter.

TABLE 1 Mean squared error of the estimated two-compartment model

parameters on the test dataset.

Method ODF d (µm2/ms) f

sCNN 2.76 · 10−3 3.08 · 10−3
3.23 · 10−3

sCNN∗ 2.75 · 10−3
3.07 · 10−3

3.23 · 10−3

SMT 6.47 · 10−3 10.92 · 10−3 37.50 · 10−3

MLP 2.71 · 10−3 4.00 · 10−3 3.70 · 10−3

MLP∗ 2.70 · 10−3 4.00 · 10−3 3.63 · 10−3

Deep learning-based parameter estimation outperformed the spherical mean technique. The

asterisk (∗) refers to models trained with randomly rotated training data. The lowest values

are highlighted in bold.

where S is the simulated signal without noise and X and Y are

sampled from a normal distribution with zero mean and standard

deviation of 1/SNR, where SNR is the signal-to-noise ratio. SNR

was matched to the mean SNR in the imaging experiments.

2.5 Network architecture

Our sCNN, visualized in Figure 1, consists of six spherical

convolution layers implemented according to Esteves et al. (2018)

without enforcing localized filters. The network takes the expansion

coefficients in the frequency domain as input and outputs the

estimated ODF and scalar model parameters. The number of input

channels is equal to the number of shells in data. Each spherical

convolution layer is followed by a leaky (slope is 0.1 for negative

values) rectified linear unit (ReLU) applied in the spatial domain.

The conversion between frequency and spatial domains is done

using the 3072 HEALPix directions. Spherical harmonics up to

degree 16 are used in the network because the non-linearity can

increase signal bandwidth. Spectral pooling discards coefficients

of the highest degrees. After the initial three convolutions, global

mean pooling is applied in the spatial domain, and the resulting

arrays are concatenated and passed to the fully connected network

(FCN) that outputs the predicted scalar parameter. The FCN

consists of three hidden layers with 128 units each. The first two

layers of the FCN are followed by batch normalization (Ioffe and

Szegedy, 2015) and a ReLU. The sCNN for estimating the two-

compartment model parameters has 78,258 trainable parameters.

2.6 Training

Training was done over 105 batches of simulated data

generated during training. Each batch contained signals from

500 microstructural configurations produced by random sampling

(d ∼ U(0, 3 µm2/ms) and f ∼ U(0, 1)). ODFs were sampled from

five volunteer scans. Validation and test datasets were constructed

similarly, except that they contained 104 and 106 microstructural

configurations, respectively, and the ODFs were sampled from

different volunteer scans. Training was performed twice: with and

without randomly rotating the ODFs. The ODFs in the validation

and test datasets were randomly rotated. ADAM (Kingma and

Ba, 2014) was the optimizer with an initial learning rate of 10−3,

which was reduced by 90% after 50% and 75% into the training.

Mean squared error (MSE) was the loss function. ODF MSE was

calculated in the spatial domain.

2.7 Baseline methods

The sCNN was compared to the SMT and an MLP that

takes the normalized dMRI signals as inputs and outputs the

Frontiers inNeuroimaging 04 frontiersin.org

https://doi.org/10.3389/fnimg.2024.1349415
https://www.frontiersin.org/journals/neuroimaging
https://www.frontiersin.org


Kerkelä et al. 10.3389/fnimg.2024.1349415

FIGURE 2

Mean squared error of the estimated two-compartment model parameters on the test dataset for di�erent values of intra-neurite di�usivity (d) and

intra-neurite signal fraction (f). The first row (A–E) shows the results for d and the second row (F–J) shows the results for f. Deep learning-based

methods outperformed the spherical mean technique in all parts of the parameter space. The asterisk (*) refers to models trained with randomly

rotated training data.

TABLE 2 Average standard deviation of the estimated two-compartment

model parameters over rotations of the input signals.

Method d (µm2/ms) f

sCNN 0.23 · 10−3 0.13 · 10−3

sCNN∗ 0.18 · 10−3
0.09 · 10−3

SMT 0.14 · 10−3 0.25 · 10−3

MLP 20.30 · 10−3 14.40 · 10−3

MLP∗ 17.23 · 10−3 12.78 · 10−3

The asterisk (∗) refers to models trained with randomly rotated training data. The lowest

values are highlighted in bold.

spherical harmonic coefficients of the ODF and the model

parameters. The SMT parameter estimation and the subsequent

ODF estimation using the estimated microstructural kernel and

constrained spherical deconvolution (CSD) was done using Dmipy

(Fick et al., 2019). The MLP consisted of three hidden layers

with 512 nodes each. The hidden layers were followed by batch

normalization and a ReLU. The MLP had 614,447 trainable

parameters. It was trained like the sCNN, except ten times more

batches were used to account for the higher number of parameters

and ensure convergence.

2.8 Imaging data

The brains of eight healthy adult volunteers were scanned on

a Siemens Magnetom Prisma 3T (Siemens Healthcare, Erlangen,

Germany) at Great Ormond Street Hospital, London, United

Kingdom. Data was denoised (Veraart et al., 2016) using

MRtrix3 (Tournier et al., 2019) and distortion- and motion-

corrected using FSL (Jenkinson et al., 2012; Andersson and

Sotiropoulos, 2016). SNR was estimated in each voxel as the

inverse of the standard deviation of the normalized signals

without diffusion-weighting.

2.8.1 High-angular resolution di�usion imaging
Seven volunteers were scanned using a standard clinical

two-shell HARDI protocol with two non-zero b-values of 1

and 2.2 ms/µm2 with 60 directions over half a sphere each.

Other relevant scan parameters were the following: diffusion

time (1) = 28.7 ms; diffusion encoding time (δ) = 16.7 ms;

echo time (TE) = 60 ms; repetition time (TR) = 3,050 ms;

field of view (FOV) = 220 × 220 ms; voxel size = 2 × 2 ×
2 mm3; slice gap = 0.2 mm; 66 slices; phase partial Fourier =

6/8; multiband acceleration factor = 2. Fourteen images were

acquired without diffusion-weighting, one of which had the

phase encoding direction reversed to be used to correct for

susceptibility-induced distortions. The total scan time was 7

minutes. Mean SNR in the brain was 50. Neurite ODFs were

estimated using multi-tissue CSD (Jeurissen et al., 2014) with

lmax = 8.

2.8.2 Tensor-valued di�usion imaging
One volunteer was scanned using a prototype spin echo

sequence that enables tensor-valued diffusion encoding

(Szczepankiewicz et al., 2019a). Data was acquired using

numerically optimized (Sjölund et al., 2015) and Maxwell-

compensated (Szczepankiewicz et al., 2019b) gradient waveforms

encoding linear and planar b-tensors. The acquisitions with

linear b-tensors were performed with b-values of 0.5, 1, 2, 3.5,

and 5 ms/µm2 with 12, 12, 20, 20, and 30 directions over half

a sphere, respectively. The acquisitions with planar b-tensors

were performed with b-values of 0.5, 1, and 2 ms/µm2 with

12, 12, and 20 directions over half a sphere, respectively. Other

relevant scan parameters were the following: TE = 82 ms; TR =

4.2 s; FOV = 220 × 220 ms; voxel size = 2 × 2 × 2 mm3; slice

gap = 0.2 mm; 66 slices; phase partial Fourier = 6/8; multiband

acceleration factor = 2. Fourteen images were acquired without

diffusion-weighting, one of which had the phase encoding direction

reversed. The total scan time was 12 minutes. Mean SNR in the

brain was 29.
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FIGURE 3

Axial slices of the intra-neurite di�usivity (A–C) and intra-neurite signal fraction (G–I) maps generated using the spherical convolutional neural

network, multi-layer perceptron, and spherical mean technique. The second row (D–F) shows the di�erences between the intra-neurite di�usivity

maps and the fourth row (J–L) shows the di�erences between the intra-neurite signal fraction maps.

3 Results

3.1 Two-compartment model

3.1.1 Prediction accuracy
MSE on the test dataset is reported in Table 1. The sCNN and

MLP outperformed the SMT in estimating the ODF and scalar

parameters. The sCNN predicted d and f the best while the MLP

was predicted the ODF marginally better than the sCNN. Both

the sCNN and MLP benefited slightly from randomly rotating the

training data. Figure 2 shows how prediction accuracy depends

on the values of d and f . The sCNN and MLP outperformed

the SMT in all parts of the parameter space. Although the

largest errors with the SMT occurred for values of d and f not

typically observed in the brain, ML-based approaches were more

accurate for values observed in the brain (i.e., d roughly between 1

and 2 µm2/ms).

3.1.2 Rotational variance
The rotational variance of the differentmethods was assessed by

generating signals from 103 randommicrostructural configurations

rotated over 729 rotations given by the SO(3) sampling theorem

by Kostelec and Rockmore (2008). No noise was added to the

signals to exclude the effects of noise. The average standard

deviation of the estimated parameters from the rotated data

are shown in Table 2. The sCNN and SMT were much less

sensitive to rotations than the MLP. The SMT had the lowest
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FIGURE 4

Neurite orientation distribution functions overlaid on a map of intra-neurite signal fraction generated by the spherical convolutional neural network

trained with randomly rotating the training data. The color represents the principal direction, and the size is scaled according to neurite density. This

coronal slice shows the intersection of the corticospinal tract and the corpus callosum.

rotational variance for d, and the sCNN had the lowest rotational

variance for f . However, the SMT’s non-zero rotational variance

was driven by low values of d or f for which the fit is

unstable. For values typically observed in white matter, the SMT’s

estimates’ standard deviation was three orders of magnitude

smaller than the average. Data augmentation by rotating the

input signals improved prediction accuracy for both the sCNN

and MLP. However, the sCNN was much less rotationally

variant even without data augmentation than the MLP was with

data augmentation.

3.1.3 Application on real imaging data
Figure 3 shows parameter maps generated using the three

methods. The maps produced by the ML-based methods appear

less noisy. Overall, the sCNN estimated d to be greater than the

MLP (mean difference = 2.4 · 10−2 µm2/ms; std of difference

= 8.1 · 10−2 µm2/ms) and SMT (mean difference = 0.9 · 10−2

µm2/ms; std of difference = 12.7 · 10−2 µm2/ms). However, in

the CSF the sCNN tended to estimate d to be less than the MLP

or SMT. Overall, the sCNN estimated f to be greater than the

MLP (mean difference = 0.5 · 10−2; std of difference = 3.6 ·
10−2) and SMT (mean difference = 0.1 · 10−2; std of difference =

4.5 · 10−2) while exhibiting a similar yet lesser tissue-dependent

pattern as d. Figure 4 shows example ODFs generated by the

trained sCNN.

3.2 Three-compartment model

To highlight the fact that the network and training pipeline

are applicable to any Gaussian compartment models, the sCNN

was trained to predict the three-compartment model parameters

the same way as with the two-compartment model. Informed by

the two-compartment model results, the network was trained with

randomly rotated training data. di ∼ U(0, 3 µm2/ms), fi ∼ U(0, 1),

dsph ∼ U(0,max(di, 0.5 µm2/ms)), and fsph ∼ U(0, 1 − fi). The

upper limit of dsph was chosen to correspond to a sphere with

a diameter of 25 µm using the Monte Carlo simulator Disimpy

(Kerkelä et al., 2020). Figure 5 showsmaps that the sCNN generated

from preprocessed dMRI data.

4 Discussion

The primary purpose of this study was to investigate whether

sCNNs can improve microstructural parameter estimation from

noisy dMRI data, focusing on a constrained two-compartment

model widely used in neuroscience research to study human white

matter in vivo. The sCNN demonstrated superior accuracy with

similar rotational variance compared to the SMT, and exhibited

similar accuracy but considerably lower rotational variance than

the MLP that had significantly more trainable parameters. Our

results show that sCNNs can offer substantial benefits over
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FIGURE 5

Axial slices of the intra-neurite di�usivity (A), spherical compartment di�usivity (B), intra-neurite signal fraction (C), and spherical compartment signal

fraction (D) maps generated by the spherical convolutional neural network trained with randomly rotating the training data.

simpler artificial neural network architectures for ML-based

microstructural parameter estimation from dMRI data.

We focused on comparing neural network architectures with

a fixed training strategy, using the SMT as a baseline. Previous

research byGyori et al. (2022) has highlighted the significant impact

of training data distribution on neural network predictions, which

affects the performance of our sCNN when applied to real imaging

data. We are aware of this limitation, and in future work, we aim

to optimize the training data distribution. Another relevant key

takeaway from the work by Gyori et al. (2022) is that at low SNR,

ML-based parameter estimation can suffer from high bias, which

manifests as maps that appear exceedingly smooth. Moreover, it is

important to note the general limitation of microstructural models

that deviations from model assumptions can lead to inaccuracies

(Lampinen et al., 2017; Henriques et al., 2019; Kerkelä et al., 2021).

When it comes to training the sCNN, while it is crucial to

sample the space of possible ODFs as exhaustively as possible

during training, the MLP training requirements are even more

demanding since its rotational variance can only be reduced

through learning. Changes in b-values or the angular resolution of

shells will necessitate retraining our network. Technically, the same

network could be used as long as the b-values remain consistent,

but the spherical harmonics expansion would vary with different

angular resolutions (i.e., the number of b-vectors).

To the best of our knowledge, sCNNs have been used

to analyze dMRI data only a few times prior to this. Sedlar

et al. (2021a) trained an sCNN to predict ’neurite orientation

dispersion and density imaging’ (NODDI) (Zhang et al., 2012)

parameters from subsampled data, and Goodwin-Allcock et al.

(2022) showed that sCNNs can improve the robustness of

diffusion tensor estimation from data with just a few directions.

sCNNs have also been used to estimate ODFs (Elaldi et al.,

2021; Sedlar et al., 2021b). However, this study differs from the

aforementioned studies in two important ways. First, our network

and simulations were developed to estimate both the ODF and

scalar parameters of any Gaussian compartment model. Second,

we carefully compared the sCNN to the SMT, a commonly used

and nearly rotationally invariant conventional fitting method, thus

warranting a comparison with sCNN. Although we implemented

spherical convolution layers as described by Esteves et al.

(2018), other architectures also exist and warrant investigation

in the context of microstructural parameter estimation. For

example, the sCNNs by Cohen et al. (2018) use cross-correlation

and can learn non-zonal (i.e., not symmetric with respect to

the z-axis) filters, Kondor et al. (2018) developed efficient

quadratic nonlinearities in the spherical harmonics domain,

and the graph-based sCNN by Perraudin et al. (2019) is

suitable for spherical data with very high angular resolution.

Besides optimizing network architecture, future studies should

also focus on optimizing hyperparameters and especially on

carefully assessing the effects of and optimizing the training

data distribution.
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