
TYPE Review

PUBLISHED 27 November 2024

DOI 10.3389/fnimg.2024.1455436

OPEN ACCESS

EDITED BY

Junichi Chikazoe,

National Institute for Physiological Sciences

(NIPS), Japan

REVIEWED BY

Gang Li,

University of North Carolina at Chapel Hill,

United States

David N. Kennedy,

University of Massachusetts Medical School,

United States

*CORRESPONDENCE

Yangming Ou

yangming.ou@childrens.harvard.edu

RECEIVED 26 June 2024

ACCEPTED 07 November 2024

PUBLISHED 27 November 2024

CITATION

Hussain MA, Grant PE and Ou Y (2024)

Inferring neurocognition using artificial

intelligence on brain MRIs.

Front. Neuroimaging 3:1455436.

doi: 10.3389/fnimg.2024.1455436

COPYRIGHT

© 2024 Hussain, Grant and Ou. This is an

open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Inferring neurocognition using
artificial intelligence on brain
MRIs

Mohammad Arafat Hussain1, Patricia Ellen Grant1,2 and

Yangming Ou1,2,3*

1Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA,

United States, 2Department of Radiology, Harvard Medical School, Boston, MA, United States,
3Computational Health Informatics Program, Boston Children’s Hospital, Harvard Medical School,

Boston, MA, United States

Brain magnetic resonance imaging (MRI) o�ers a unique lens to study

neuroanatomic support of human neurocognition. A core mystery is the MRI

explanation of individual di�erences in neurocognition and its manifestation in

intelligence. The past four decades have seen great advancement in studying

this century-long mystery, but the sample size and population-level studies limit

the explanation at the individual level. The recent rise of big data and artificial

intelligence o�ers novel opportunities. Yet, data sources, harmonization, study

design, and interpretation must be carefully considered. This review aims to

summarize past work, discuss rising opportunities and challenges, and facilitate

further investigations on artificial intelligence inferring human neurocognition.
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1 Introduction

Neurocognition refers to the mental process of learning, solving problems,

remembering, and appropriately using information from memory (Morley et al., 2015).

On the other hand, intelligence refers to different mental abilities such as problem-

solving, logic, reasoning, and planning. Intelligence describes neurocognition quality

in people (Latal et al., 2016; Kessler et al., 2020; Watson et al., 2018). A person’s

neurocognition and its manifestation in terms of intelligence are important factors in a

person’s education, career, social status, health, and longevity (Dubois et al., 2018b). Yet,

how can we explain the substantial differences among people in their neurocognition? Can

we effectively measure a person’s neurocognition? Can we predict a person’s future course

of neurocognition, in normal and disease? Seeking answers to these questions has been

at the core of neuroscience research for over a century. The hope is to identify and boost

each individual’s potential (different people are “smart” in different ways) (Kanai and Rees,

2011) and to intervene early and improve outcomes for those vulnerable (Liamlahi and

Latal, 2019; Urschel et al., 2018).

Differences in neuroanatomy and brain connectivity are widely believed to contribute

to individual variability of neurocognition (Kanai and Rees, 2011). Early studies (the

1900s) related neurocognitive functions to brain structures in post-mortem brains (Spitzka,

1903). The invention of magnetic resonance imaging (MRI) in 1977 has allowed for

the in vivo, three-dimensional (3D) study of brain structure and function. Advancement

in MRI analytics in the past four decades further brings the automated, quantitative,

and sophisticated investigation of neuroanatomy (Pol et al., 2006; Rushton and Ankney,

2009), white matter integrity (Deary et al., 2006; Schmithorst et al., 2005), and brain
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circuit connectivity (Jensen, 2006), which are all found to

correlate to neurocognitive and intelligence test scores (Kanai and

Rees, 2011). Sample sizes, however, were often dozens to lower

hundreds; findings were not always consistent; and population-

level associations have not yet been reliably translated into

individual prediction.

The very recent availability of big data brain MRI (over

1,000 or even 10,000 individuals) (Poldrack and Gorgolewski,

2014), coupled with the rise of artificial intelligence (AI)

(Graham et al., 2020), promises to revolutionize MRI inference

of neurocognition. While opportunities arise, open issues on

the data source, merging, harmonization, analytics, target test

scores, study design, and interpretations must be considered.

As mentioned earlier, human intelligence reflects the quality

of neurocognition functions (Latal et al., 2016; Kessler et al.,

2020; Watson et al., 2018); recent reviews mostly focused

on MRI’s association with human intelligence (Dizaji et al.,

2021). In contrast, this review focuses on the association of

MRI with neurocognition/intelligence at the population level

and the prediction of individual neurocognition/intelligence.

We conducted a comprehensive analysis of studies on the

association of population-level neurocognition with brain MRI

and predicting an individual’s neurocognition/intelligence from

brain MRI using predictive models, leveraging Google Scholar

for a thorough review of the most relevant literature. We

also discuss open issues and rising opportunities. The aim is

to facilitate further studies of artificial intelligence inferring

human intelligence.

1.1 Search strategy

We searched Google Scholar thoroughly for all scholarly

publications: peer-reviewed journal papers and papers published in

the proceedings of conferences or workshops from January 2005

to August 2024. Our search query was (Magnetic Resonance∗ |

MRI∗) (Cognition | Neurocognition | IQ | Intelligence) (Correlat∗

| Predict∗). We applied a rigorous selection process to identify

relevant articles for our review. The criteria for inclusion were:

(1) the full text had to be accessible online or published in

reputable journals or conferences indexed in databases such as

PubMed, IEEE Xplore, Scopus, or Web of Science; (2) the article

must have utilized traditional statistical or conventional machine

learning or deep learning, specifically for finding correlation of

neurocognition with different brain MRIs or for the prediction

of neurocognition/intelligence from different brain MRIs; (3) the

hypothesis posed by the study had to be supported by robust

qualitative and quantitative results; and (4) the article had to meet

a minimum quality standard, ensuring no missing abstracts or

methodologies, no reference errors, and clear figure legends and

axis titles. Similar search strategies and selection criteria have been

used in other recent reviews (e.g., Azad et al., 2024). In addition,

we took great care to include all relevant studies utilizing different

MRImodalities and AI for neurocognition prediction, though a few

papers may have been inadvertently overlooked. Our goal, however,

was to provide a comprehensive overview of the field. In total, we

have reviewed 94 articles in this study.

2 Measurement of human
neurocognition

Assessment of human neurocognitive abilities is often

performed via the assessment of human intelligence (Latal et al.,

2016; Kessler et al., 2020; Watson et al., 2018). Intelligence is

positively correlated to different neurocognitive abilities such as

processing speed (Watson et al., 2018), executive functions (Naef

et al., 2021; Fontes et al., 2019), general memory (Pike et al.,

2021), and working memory (Ehrler et al., 2020). That is why, the

estimation of human intelligence (see Sections 2.1–2.3 for details)

lies at the core of assessing different neurocognitive abilities. As

such, this review also includes studies that link human intelligence

scores with brain MRIs.

2.1 Cattell–Horn–Carroll’s theory for
human intelligence

The Cattell-Horn-Carroll (CHC) theory (McGrew, 2009) is

a widely accepted framework for intelligence tests. It categorizes

intelligence into three strata (Carroll, 1993; Horn and Cattell,

1966): general intelligence (g) (Spearmen, 1904), broad abilities

(Cattell, 1963), and narrow abilities (Figure 1). The g, proposed

by Spearmen (1904), is a fundamental ability supporting all

neurocognitive abilities. Broad abilities include factors like fluid

(gF) and crystallized (gC) intelligence, short-term memory

(gY), long-term retrieval (gR), visual perception (gV), auditory

perception (gU), cognitive speediness (gS), and processing speed

(gT). Each broad ability is further divided into narrow abilities.

2.2 Intelligence and neurocognition tests

The CHC theory simplifies the measurement of g by testing

8-10 broad abilities and over 60 narrow abilities (McGrew, 2009;

Kaufman, 2018). Tests like theWechsler Adult Intelligence Scale IV

(WAIS-IV) (Hartman, 2009) assess five broad abilities to estimate

the full-scale intelligence quotient (FSIQ) as a proxy of g (Benson

et al., 2010). Other popular scoring systems like the Wechsler

Intelligence Scale for Children-V (WISC-V),Wechsler Abbreviated

Scale of Intelligence-II (WASI-II) (Wechsler, 1999), and others

follow similar sub-factoring for IQ scoring.

2.3 Cognitive test batteries

FSIQ or g, while indicative of overall cognitive ability, does

not express the extent of impairment in single domains (Kubinger,

2019). To examine specific broad abilities, cognitive test batteries

are used. These tests assess performance in several domains,

including additional ones like executive function and language

performance. For instance, the neuropsychological assessment

battery (NAB) assesses five cognitive domains. Another popular

and widely used test battery, the NIH toolbox of neurocognitive

battery (NIH-TCB) (Akshoomoff et al., 2013) is designed to

measure (i) executive function, (ii) attention, (iii) episodic memory,
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FIGURE 1

The Cattell-Horn-Carrol (CHC) Theory divides the general intelligence g (top stratum), which is hard to measure, into 8–10 broad abilities (middle

stratum; di�erent key neurocognitive functions) and over 60 narrow abilities (bottom stratum), which are more measurable. Measuring these narrow

abilities is the core of many of today’s neurocognitive and intelligence tests.

(iv) language, (v) processing speed, and (vi) working memory

(Denboer et al., 2014).

3 Theories linking brain structure and
neurocognitive functions

Neuroimaging studies since the 1980s have given rise to

theories about brain structure-functionmapping. Examples include

network neuroscience theory (NNT) (Barbey, 2018), lateral

prefrontal cortex theory (LPFCT) (Duncan and Owen, 2000),

multiple-demand theory (M-DT) (Duncan, 2010), and process

overlap theory (POT) (Kovacs and Conway, 2016). Among these

popular theories is the Parieto-Frontal Integration Theory (P-

FIT) (Jung and Haier, 2007). The P-FIT theory, as detailed

in Section 3.1, is influential as it offers insights that human

intelligence/neurocognition resides in large-scale connected brain

regions known as brain networks (Deary et al., 2010).

The selection of the P-FIT as a central framework in this

study, where findings in the reviewed manuscripts in this study are

juxtaposed, is grounded in its unique integration of structural and

functional neuroimaging findings across multiple studies. While

other theories, including NNT, LPFCT, and M-DT, offer valuable

insights into brain structure-function relationships, P-FIT stands

out for its comprehensive scope. It synthesizes evidence from

various neuroimaging modalities, such as structural, diffusion, and

functional MRIs, to link specific brain regions and networks with

intelligence. A critical strength of P-FIT is that it consolidates

findings across 37 independent neuroimaging studies, as originally

outlined by Jung and Haier (2007), which focused on brain regions

like the parietal and frontal cortices that have repeatedly been

implicated in neurocognitive processing. Furthermore, this theory

focuses on large-scale brain networks and is supported by an

increasing number of studies demonstrating network integrity’s

importance in sustaining human intelligence. Recent evidence

consistently aligns with the central claim of the P-FIT that

interconnected regions across the brain, rather than isolated

structures, underlie complex cognitive functions. In contrast, other

models like M-DT and LPFCT either lack the same breadth

of empirical validation or focus more narrowly on task-specific

activations, which do not capture the full spectrum of intelligence-

related processes. Therefore, the P-FIT is perhaps the most studied

theory that emphasizes network integrity in the sustenance of

human intelligence (Dizaji et al., 2021) based on its robust empirical

support and broad explanatory power, as reflected in the current

neuroimaging literature.

3.1 The P-FIT theory for distributed brain
network underlying human intelligence

The P-FIT theory emphasizes network integrity most in the

sustenance of human intelligence (Dizaji et al., 2021). The P-FIT

theory involves four information processing stages, each involving
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FIGURE 2

Sensory information processing stages by the P-FIT model. Brodmann area (BA) numbers are color-coded to correspond to di�erent stages of

information processing (Stage 1 as yellow, Stage 2 as blue, Stage 3 as green, and Stage 4 as orange; a few white-colored BAs are shown for reference).

different Brodmann areas (BAs) in the connected brain networks

(Jung and Haier, 2007; Colom et al., 2022) (see Figure 2):

Stage 1: It is assumed that humans first gather and process

sensory information predominantly in the occipital and temporal

areas (i.e., brain regions colored with yellow numbers in Figure 2).

Early processing of sensory information happens in the extrastriate

cortex (BAs 18 and 19). Recognition, imagery, and elaboration

happen in the fusiform gyrus (BA 37). Analysis and elaboration of

auditory information syntax happen in Wernicke’s area (BA 22).

Stage 2: This stage involves the structural symbolism,

abstraction, and elaboration of the basic sensory information (in

Stage 1) in the angular gyrus (BA 39), supramarginal gyrus (BA 40),

and superior parietal lobule (BA 7). These brain regions are colored

by blue numbers in Figure 2.

Stage 3: This stage involves the interaction between parietal

areas and frontal lobes (BAs 6, 9, 10, 45, 46, and 47, as colored

by green numbers in Figure 2). This interaction supports problem-

solving, evaluation, and hypothesis testing.

Stage 4:Once the best solution is reached, the anterior cingulate

(BA 32) gets engaged for response selection and inhibition of

competing responses. This brain region is colored by an orange

number in Figure 2.

The P-FIT theory emphasizes that the whole process (Stages

1–4) depends upon the fidelity of underlying white matter

connectivity. White matter facilitates rapid and error-free data

transmission from the posterior to frontal brain regions. Note

that the P-FIT model considers only those Brodmann areas, which

appeared in more than 25% of the total 37 studies (Jung and Haier,

2007) reviewed. Table 1 covers a full spectrum of Brodmann areas

that Jung and Haier (2007) have summarized.

4 Methods inferring neurocognition
from brain MRIs

In our review, the application of traditional methods for

correlating neurocognitive outcomes with brain MRI data or AI

methods for predicting neurocognitive outcomes from brain MRI

data is categorized into several broad methodological approaches,

as outlined in Figure 3. These include both traditional/statistical

and AI-based methods. We distinguish between population-

level correlation analysis methods and individual-level prediction

methods, each with distinct advantages and limitations. Below,

we briefly describe these categories, their relative advantages

and disadvantages, and how AI benefits brain analysis beyond

traditional approaches.

4.1 Population-level correlation analysis
methods

As shown in Figure 3, traditional approaches like correlation

methods (e.g., Pearson and Spearman correlations) and regression

methods (e.g., linear regression and mixed-effect models) are

frequently used to assess relationships between brain imaging

features and neurocognitive measures at the population level.

These methods are widely employed due to their simplicity and

interpretability, making them useful for understanding general

trends across populations.

However, these traditional methods often struggle with

the high dimensionality of neuroimaging data. Figure 3 also

highlights statistical comparison methods (e.g., ANOVA, chi-

square) that are used for population-level comparisons, though

they provide limited insight into correlations between two types of

parameters. More advanced techniques such as graph theoretical

methods (e.g., global efficiency and network-based statistics) and

modeling and path analysis methods (e.g., structural equation

modeling) offer deeper insights into brain network properties and

complex interactions but still lack the predictive power of AI-

based approaches.

4.2 Individual-level prediction methods

Figure 3 further outlines AI approaches designed for

individual-level neurocognition prediction, which aimed a

Frontiers inNeuroimaging 04 frontiersin.org

https://doi.org/10.3389/fnimg.2024.1455436
https://www.frontiersin.org/journals/neuroimaging
https://www.frontiersin.org


Hussain et al. 10.3389/fnimg.2024.1455436

TABLE 1 A list of Brodmann areas (BAs) that were found to be related to human cognition and intelligence in a total of 37 studies over 1,557 subjects

(Jung and Haier, 2007).

Only shaded columns of BAs comprise the P-FIT model. BA, brodmann area; LH, left hemisphere; RH, right hemisphere.

FIGURE 3

A mind map showing the methods, and their types. Numbers in blue boxes appended in the front of each method represent the number of papers

used in that method.

superior performance in identifying relationships between

brain MRI features and neurocognitive outcomes at

the individual level, a task where traditional methods

fall short. These approaches are divided into three

broad categories.

4.2.1 Conventional machine learning
Methods such as support vector machines (SVM), random

forests, and connectome-based predictive modeling (CPM)

have been extensively used to predict neurocognitive outcomes

from MRI data. These models excel at handling complex,
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multivariate datasets and can identify patterns that simpler

models cannot. However, they require manual feature selection,

which can introduce bias and limit generalizability across

different datasets.

4.2.2 Deep learning
Deep learning models, such as convolutional neural networks

(CNNs) and their different variations (e.g., 3D CNN, VoxCNN,

UNet, etc.), have recently gained traction for brain MRI analysis.

These models automatically learn features from raw data, allowing

for the detection of non-linear relationships and subtle patterns

in brain structure and function that are crucial for accurate

neurocognitive predictions. While deep learning models offer

superior performance, their lack of interpretability and need for

large datasets are notable challenges.

4.2.3 Combination of conventional machine
learning and deep learning

In some studies, approaches that combine conventional

machine learning with deep learning have emerged (e.g., CNN &

Random Forest, CNN & Gradient Boosting, etc.). These methods

aim to leverage the interpretability of conventional models with

the powerful feature extraction capabilities of deep learning.

For instance, conventional machine learning may be used for

feature selection, followed by deep learning for final prediction,

offering improved prediction accuracy while retaining a degree

of interpretability.

4.3 Advantages of AI over traditional
methods

AI approaches, particularly conventional machine learning,

deep learning, and a combination of them, aimed to offer

distinct advantages over traditional population-level correlation

analysis methods. AI models are highly effective at managing the

high dimensionality and complexity of brain MRI data, whereas

traditional methods, such as correlation and regression, are limited

in their capacity to generalize to new data or make individual-

level predictions.

AI techniques also enable the modeling of non-linear

relationships between brain imaging data and neurocognitive

outcomes, which traditional linear methods often miss. The

individual-level predictions facilitated by AI are particularly

valuable for precision medicine and monitoring cognitive decline,

where traditional population-level analyses fail to capture the

nuances of individual variability.

Despite these strengths, AI approaches, particularly

deep learning models, are often criticized for their lack

of interpretability, an issue that is less of a concern with

traditional/statistical methods, which are more transparent

in their underlying assumptions and relationships.

However, the ability of AI to capture complex and subtle

patterns gives it a significant advantage in predicting

brain-behavior relationships.

5 Structural MRI to infer
neurocognition

Typical brainMRIs include structural, diffusion, and functional

sequences. This section starts with structural MRI (sMRI) and its

inference of human intelligence and neurocognition.

sMRI sequences typically include T1- and T2-weighted MRI

(T1/T2-MRI). Subsections below will introduce morphometric

features from sMRI [see review for more details (Lerch et al., 2017)]

and their use to infer neurocognition and intelligence.

5.1 Total and regional brain volume to infer
neurocognition

Several studies have investigated the relationship between brain

volume, both total and regional, and neurocognitive outcomes

using population-level statistical approaches. Software tools such

as FreeSurfer (Fischl, 2012), FSL (Jenkinson et al., 2012), AFNI

(Cox, 2012), and others [see review (Eickhoff et al., 2018)] allow for

the segmentation of T1- or T2-weighted MRIs into hemispheres,

tissue types (e.g., white matter, gray matter, cerebrospinal fluid),

and brain regions using single/multi-atlas (Zhang-James et al.,

2019) or machine learning (Chen et al., 2018) techniques (see

Supplementary Figure 1). However, it is important to acknowledge

that findings in the literature regarding brain volumes and cognitive

functions may vary across studies, and not all results have been

widely replicated or universally confirmed. Some conclusions are

based on specific cohorts or methodologies, which could lead to

variability in outcomes.

5.1.1 Population-level correlation analysis
Nave et al. (2019) examined the population-level correlation of

total brain volume (TBV), the combined volume of gray matter,

white matter, and cerebrospinal fluid with fluid intelligence (gF) in

a large cohort of adults (N = 13,608), reporting a modest positive

correlation (r = 0.19, p < 0.05). However, this finding reflects

a population-level trend and does not necessarily translate to

predictive power at the individual level. Individual-level inference

of neurocognition from TBV is notably sparse in the literature,

highlighting the uncertainty in applying these correlations to

personalized predictions. Similarly, other studies reported positive

correlations between total gray matter volume and cognitive

functions such as fluid intelligence (r = 0.16, p < 0.01), working

memory (r = 0.21, p < 0.01), and quantitative reasoning (r =

0.26, p < 0.01) in a smaller adult cohort (N = 211) (Paul et al.,

2016). These results offer valuable insights, but the field could

benefit from further replication efforts to confirm the robustness of

these findings across diverse populations and study designs, as this

study data is not publicly accessible, and the sample size is small.

In an infant cohort, studies reported that pre-term fetal growth-

restricted (PT-FGR) infants had lower gray matter, white matter,

and other brain region volumes compared to pre-term appropriate

gestational age (PT-AGA) and term AGA groups (Morsing et al.,

2018). This reduction in brain volumes corresponded to lower FSIQ

scores in the PT-FGR group compared to PT-AGA (80 vs. 103,
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respectively). However, it is worth noting that not all studies on

early brain development and cognition reach identical conclusions,

and differences in study design (e.g., imaging techniques, timing

of assessment) may account for some of the variability observed

in the literature. Furthermore, prediction of insight test battery

(ITB) cognitive scores from gray matter volumes in regions such as

the right insula and right middle cingulate cortex/precuneus (BAs

13, 14, 16, 4) has shown significant results (p < 0.001) (Ogawa

et al., 2018), further underscoring the role of regional volumes in

neurocognitive assessments.

5.1.2 Individual-level AI-based predictions
AI-based methods have emerged to make individualized

predictions of neurocognitive performance by utilizing more

detailed brain features, such as regional volumes, rather than

relying solely on TBV. Studies using machine learning (Zhang-

James et al., 2019; Chiang et al., 2019; Srivastava et al., 2019; Ren

et al., 2019; Tamez-Pena et al., 2019; Brueggeman et al., 2019;

Mihalik et al., 2019; Ranjbar et al., 2019; Wlaszczyk et al., 2019; Kao

et al., 2019; Li et al., 2019; Saha et al., 2021) have explored regional

volumes, identifying key brain regions, such as the frontoparietal

(BAs 6, 8, 9), cingulo-opercular (includes BAs 22, 41, and 42),

visual (includes BAs 17, 18, and 19), somatosensory (includes BAs

1, 2, 3, 5, and 7), right posterior cingulate gyrus (BAs 23, 31),

entorhinal white matter (BA 28), globus pallidus, precentral gyrus

(BA 4), corpus callosum, left/right hippocampus, parahippocampal

gyrus (BA 34), thalamus, precentral gyrus (BA 4), caudate nucleus,

pons, and motor (includes BAs 4 and 6) cortex areas, as significant

predictors of residual fluid intelligence (gF) in adolescents. These

models reported mean squared errors (MSEs) ranging from 92 to

101 for a range of true residual fluid intelligence scores of [−40,

30], indicating moderately accurate predictions at the individual

level. However, the predictive power of these models can vary; for

instance, some studies reported correlations as low as r = 0.1 (p

< 0.05) between predicted and actual fluid intelligence (gF) scores

(Saha et al., 2021). This suggests that while AI-based methods offer

promise, there remains uncertainty regarding their generalizability

across methods. Other studies have extended these predictions

to FSIQ (or g) using models that integrate brain volumes across

networks such as the frontoparietal network (BAs 6, 8, 9), default

mode network (BAs 38, 25, 23, 31, 4), dorsal attention network

(BAs 17, 18, 19, 8, 7, 6), and cerebellum. These approaches used

principal component analysis (PCA) to reduce dimensionality

and subsequently used linear support vector regressor on the

PCA features. They reported MSEs of around 320 (p = 0.279)

and correlations of r = 0.11 between predicted and actual FSIQ

scores for true residual FSIQ in the range of (Jung and Haier,

2007; Hilger et al., 2020; Santarnecchi et al., 2017). In addition,

caudate nucleus volumes have been found to play an important role

in individual cognitive predictions, particularly in reinforcement

learning and decision-making processes (Packard and Knowlton,

2002; Tricomi et al., 2006). A significant positive correlation (r

= 0.24, p = 0.01) between caudate volume and FSIQ has been

reported (Grazioplene et al., 2015), reinforcing its importance

in neurocognitive assessments. While AI-based approaches hold

significant promise for individual-level predictions using local and

total brain volumes, the variability in their accuracy highlights the

need for further research and validation across larger and more

diverse cohorts.

5.1.3 Salient brain regions across various
neurocognitive measures

Figure 4 provides an illustration highlighting the Broadmann

Areas (BAs) that have been identified as salient in at least one

of the reviewed studies investigating associations between total

or regional brain volume and various neurocognitive measures.

This figure serves to visually summarize the brain regions that

were most frequently reported as having significant correlations

with neurocognitive outcomes, thereby offering an integrative

perspective on the structural correlates of cognition. We see in this

figure that multiple BAs within the frontal lobe, such as BAs 4, 6,

8, and 9, were consistently implicated in studies examining fluid

intelligence and FSIQ. These findings highlight the importance of

the frontal lobe in supporting a wide range of cognitive functions.

Similarly, BAs 23 and 31 in the cingulate cortex were linked to

fluid intelligence, FSIQ, and Quantitative Reasoning & Working

Memory. Furthermore, BA 7 in the parietal lobe, and BAs 17,

18, and 19 in the occipital lobe were primarily linked to fluid

intelligence and FSIQ, highlighting their importance for general

cognitive abilities.

5.2 Cortical surface metrics to infer
neurocognition

In addition to the total and regional brain volumes, metrics

on the cortical surface (e.g., thickness, area, curvature, gyrification,

etc.) also play a vital role in inferring human intelligence.

Automated software such as FreeSurfer can reconstruct brain

cortical surfaces and extract cortical surface areas, cortical

thickness, cortical folding curvatures, and gyrification indices (see

Supplementary Figure 1). In this section, we discuss those studies

that included cortical surface metrics with or without cortical

volumes (summarized in Supplementary Table 2).

5.2.1 Population-level correlation analysis
Previous research suggests that information integration and

processing are supported by regions such as the parahippocampal

gyrus (BA 34) and the precuneus/cuneus cortex (BAs 4, 19) (Pol

et al., 2006; Westlye et al., 2009), while the ventral temporal cortex

(Bar et al., 2001; McCandliss et al., 2003) is implicated in visual

identification and recognition. Additionally, the integration and

retrieval of semantic knowledge are associated with the medial

temporal lobes (BA 38) (McClelland and Rogers, 2003). However,

these functions likely emerge from the coordinated activity of

multiple brain regions rather than being confined to isolated areas.

Cortical surface metrics are often combined with regional cortical

volumes as features to enhance the prediction of neurocognitive

outcomes. For instance, significant positive correlations were

found between the Reynolds Intellectual Assessment Scales (RIAS)

composite IQ scores and cortical surface area, cortical thickness,
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FIGURE 4

Illustration showing the Broadmann Areas, which have been found salient at least once in one or more reviewed articles, reporting an association of

total brain volume or regional brain volume with various neurocognitive measures.

and gray matter volumes in the orbitofrontal gyrus (BAs 11, 12)

(r = 0.41; p = 0.03) and transverse temporal gyri (BAs 41, 42)

(r = 0.42; p = 0.02) (Li et al., 2020). Similar relationships were

reported for the left superior temporal gyrus (BA 22) (r = 0.41; p

= 0.04) and right anterior cingulate gyrus (BAs 24, 32, 33) (r =

0.42; p = 0.03) (Li et al., 2020). Despite these findings, uncertainty

remains regarding the generalizability of these correlations to

broader populations, as this study is performed on only N = 68

subjects. Further research has also indicated a positive relationship

between cortical thickness and volume in the inferior parietal lobe

(BAs 39, 40) and FSIQ, as well as performance IQ (PIQ), at a

cluster-forming threshold (CFT) of p < 0.05 (Bajaj et al., 2018).

Similarly, associations between cortical thickness and volume and

verbal IQ (VIQ) were found in the left insula (BAs 13, 14, 16)

and FSIQ within the inferior frontal gyrus (BAs 44, 45, 47) (Bajaj

et al., 2018). However, this study is performed on N = 56 subjects,

and it is crucial to consider that not all studies may confirm these

findings, emphasizing the need for a more nuanced understanding

of these relationships. The local gyrification and surface area in the

superior parietal (BA 7), left supramarginal (BA 40), left caudal

middle frontal (BA 22), left pars opercularis (BA 44), left inferior

temporal (BA 20), right inferior and middle temporal (BA 21),

right medial orbitofrontal (BAs 11, 12), and right rostral middle

frontal (BA 10) regions are also found correlated to gF (r = 0.29;

p < 0.001) and (r = 0.22; p < 0.001), respectively, and to gC (r

= 0.28; p < 0.001) and (r = 0.28; p < 0.001), respectively, on

a healthy young dataset (N = 740, age = 21-35 years) (Tadayon

et al., 2020). However, the reliance on a homogeneous sample of

young adults may limit the generalizability of this study to broader

age ranges and populations. Additionally, Mullen scales of early

learning (MSEL) cognitive ability such as visual reception, fine

motor, receptive language, expressive language, and early learning

composite, has also been found positively correlated (r = 0.14,

p = 0.025; r = 0.186, p = 0.002; r = 0.147, p = 0.016; r =

0.120, p = 0.049, respectively) with the cortical thickness of the

infants at age 1 year, especially in the bilateral superior frontal

and middle frontal gyri (BA 10), right medial superior frontal

gyrus (BA 10), right occipital superior gyrus (BA 19), bilateral

superior parietal cortices (BA 7), left primary motor cortex (BA

4), bilateral anterior cingulate (BAs 24, 32, 33) and precuneus (BA

4), and right superior and middle temporal cortices (BA 22) areas

(Girault et al., 2020). Despite these findings, the modest effect sizes

(correlation coefficients) suggest that other factors might also play

a significant role in early cognitive development, which may limit

the explanatory power of cortical thickness alone. Better FSIQ level

has also been reported for thinner parietal association cortices,

especially left/right inferior parietal (BAs 39, 40) and left/right

superior parietal (BA 7) cortices (Squeglia et al., 2013). However,

the inverse relationship between cortical thickness and intelligence,

as found here, contrasts with other studies linking greater cortical

thickness to higher cognitive abilities, raising questions about the

consistency of these findings across different cohorts. In other

studies, overall FSIQ has been found (Yang et al., 2013; Choi

et al., 2008) to correlate (r = 0.3∼0.7; p < 0.01) with the cortical

thickness, surface area, sulcal depth, curvature from the left and

right parahippocampal gyrus (BA 34), left olfactory cortex (BA

35), right fusiform gyrus (BA 37), bilateral transverse temporal

gyri (BAs 41, 42), bilateral thalamus, left parahippocampal gyrus

(BA 34), left hippocampus, right opercular part of inferior frontal

gyrus (BAs 44, 45, 47), left anterior cingulate gyrus (BAs 24, 32,

33), right amygdala, left lingual gyrus (BA 19), left superior parietal

lobule (BA 7), right inferior parietal lobule (BAs 39, 40), left angular

gyrus (BA 39), left paracentral lobule, and left caudate nucleus

(BAs 1-4). Yet, the wide range of brain areas implicated here

raises doubts about the specificity of these findings, as it remains

unclear which regions are most critical to the observed associations

with intelligence.

5.2.2 Individual-level AI-based predictions
Cortical metrics have also been linked to individual cognitive

abilities in AI-based prediction studies. For instance, research using

the ABCD dataset predicted residual fluid intelligence (gF) scores

in over 4,500 adolescents. These studies reported a mean squared

error (MSE) between 93 and 95, despite the true residual fluid

intelligence scores ranging from−40 to 30 (Oxtoby et al., 2019;

Rebsamen et al., 2019; Valverde et al., 2019; Pölsterl et al., 2019a,b;

Guerdan et al., 2019). This suggests that although the models

demonstrate some predictive power, the magnitude of the error is

large relative to the score range, highlighting the need for improved

model accuracy. These studies incorporated cortical thicknesses,

curvatures, and surface areas alongside regional volumes from
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various brain structures, including the left middle temporal gyrus

(BA 21) and the right superior temporal gyrus (BA 22). However,

it is essential to note that while these studies observed significant

positive correlations with neurocognitive outcomes, replication

studies are needed to validate these findings. Additionally, along

with finding a correlation of MSEL cognitive ability with the

cortical thickness (discussed in the previous section) of the infants

at age 1 year, Girault et al. (Girault et al., 2020) used a linear mixed

effect model to predict 2-year neurocognitive scores using cortical

metrics such as cortical thickness and cortical surface area. Similar

findings are also reported for MSEL-based future (at 4 years of

age) cognitive score prediction using sMRI brain features at birth,

such as cortical thickness, mean curvature, local gyrification index,

vertex area, vertex volume, sulcal depth in string distance and sulcal

depth in Euclidean distance with amean root square error of 0.023–

0.18 (Adeli et al., 2019; Zhang et al., 2018, 2020; Cheng et al., 2022,

2023). Furthermore, Wang et al. (2015) used multi-kernel SVR for

estimating IQ values using cortical thickness, surface area, sulcal

depth, and curvature from BAs 1, 2, 3, 4, 7, 32, 34, 39, 40, 41,

42, 44, 45, and 47 and obtain an average correlation coefficient of

0.718 and a mean root mean square error of 8.695 between the

true FSIQs and the estimated ones. Nonetheless, the variability

in results underscores the need for careful interpretation of AI-

based predictions in cognitive assessment, as further replication

and exploration of these relationships are warranted.

5.2.3 Salient brain regions across various
neurocognitive measures

Figure 5 presents an illustration of the Broadmann Areas

that were identified as salient in studies investigating associations

between cortical surface metrics and various cognitive and

motor functions. This figure integrates the key findings across

multiple studies, offering a visual summary of the brain

regions most frequently implicated in significant correlations

with a variety of neurocognitive domains. Several regions in

the frontal lobe (BAs 4, 10, 11, 12, 45, and 47) show broad

involvement in multiple domains, including FSIQ/Composite IQ,

fluid intelligence, crystallized intelligence, motor function, and

language. Particularly, BAs 4, 10, 11, 45, and 47 are prominently

linked to motor functions. The cingulate cortex, including BAs 23,

24, 31, and 32, appears to be involved across a range of domains,

including fluid intelligence, motor, and language, suggesting a

more generalized role in higher-order cognition. Moving to the

parietal lobe (BAs 7 and 40), there is a notable association

with FSIQ, fluid and crystallized intelligence, motor, and visual

reception. These findings are consistent with the parietal lobe’s role

in integrating sensory information and spatial reasoning, which

underlies various cognitive functions. The temporal lobe regions

(BAs 20, 21, 22, 37, and 38) demonstrate associations mostly with

fluid intelligence, reinforcing their role in auditory processing,

language comprehension, and higher cognitive functions. Lastly, in

the occipital lobe (BAs 17 and 19), the involvement of these areas

with visual reception, motor, and language is evident, confirming

their primary function in visual processing and their role in

intelligence through visual-spatial reasoning.

5.3 Voxel- and surface-based
morphometry to infer neurocognition

Voxel-based morphometry (VBM) (Wright et al., 1995) and

surface-based morphometry (SBM) (Kim et al., 2017) allow the

correlation ofMRI volume or surface metrics at the voxel or surface

vertex level (see Supplementary Figure 1). They are extensions of

the correlation from the regional or surface area levels into the

voxel- or vertex-levels (Whitwell, 2009). In Supplementary Table 3,

we summarized existing VBM and SBM-based neurocognitive

predictive studies.

5.3.1 Population-level correlation analysis
VBM and SBM methods have provided valuable insights into

the neuroanatomical correlates of cognitive abilities. For instance,

VBM-based gray matter volumes in the left gyrus rectus (BA 11)

and anterior cingulate gyrus (BAs 24, 32, 33), left posterior insula

(BAs 13, 14, 16), left superior and middle frontal gyri (BA 10) are

found to be positively correlated (t score= 4.94; p < 0.005) to VIQ

scores (Hidese et al., 2020). However, these findings come from

studies with relatively small sample sizes (N = 266), and further

research is necessary to verify the consistency of these results across

larger, more diverse cohorts. Similarly, SBM-base shape features

in the left inferior and middle temporal (BAs 20, 21), left inferior

parietal (BAs 39, 40), and left medial frontal (BA 25) regions showed

positive associations (β > 100; p < 0.001) with FSIQ (McDermott

et al., 2019). Another study (Ramsden et al., 2011) divided their

study population into average (FSIQ= [80, 119]), low (FSIQ< 80),

and high (FSIQ > 119) groups, and observed that the correlation

between the change in VIQ and the change in the gray matter

density in the motor area (BAs 4, 6) and anterior cerebellum is

0.876 (p < 0.01) for high ability, 0.797 (p < 0.05) for average ability

and 0.660 (p < 0.05) for low ability groups, respectively. Similarly,

the corresponding effects were seen for PIQ as 0.492 (p > 0.05) for

high ability, 0.788 (p < 0.05) for average ability, and 0.715 (p <

0.01) for low ability groups. These findings highlight that cognitive

performance may be differentially associated with neuroanatomical

changes depending on baseline cognitive abilities.

5.3.2 Salient brain regions across various
neurocognitive measures

Figure 6 illustrates the Broadmann Areas identified as

significant in studies examining the associations between

voxel- and surface-based morphometric measures and different

intelligence scores, specifically FSIQ (or g), PIQ (or gF), and VIQ

(or gC). In the frontal lobe, BAs 4 and 6 were consistently linked to

FSIQ and PIQ, underlining the frontal lobe’s role in both general

and performance-related cognitive abilities. Additionally, BA 10,

11, and 13 were associated with VIQ, which supports the frontal

lobe’s established contribution to verbal reasoning and executive

functions. The cingulate cortex, particularly BAs 24 and 32, was

predominantly associated with VIQ, reflecting its involvement in

attention, emotional regulation, and cognitive processes related

to verbal abilities. In the parietal lobe, BAs 39 and 40 were linked

to FSIQ, which aligns with the parietal lobe’s role in integrating
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FIGURE 5

Illustration showing the Broadmann Areas, which have been found salient at least once in one or more reviewed articles, reporting an association of

cortical surface metrics with various neurocognitive measures.

sensory information and supporting higher-order reasoning.

These regions are crucial for spatial and mathematical reasoning,

processes that are integral to broader measures of intelligence. The

insula (BA 13) and the temporal lobe (BAs 20 and 21) were also

identified as significant for VIQ and FSIQ. These findings reinforce

the temporal lobe’s role in auditory processing and language

comprehension, both of which are critical for verbal intelligence.

5.4 Summary of sMRI and neurocognition

Figures 4–6 illustrate the key Broadmann Areas identified

in studies investigating associations between brain volume,

cortical surface metrics, and morphometric measures with

various neurocognitive functions and intelligence scores. Figure 4

highlights BAs in the frontal lobe (e.g., BAs 4, 6, 8, 9), consistently

linked to fluid intelligence and FSIQ, emphasizing the role of

the frontal lobe in supporting cognitive functions. BAs in the

cingulate cortex (e.g., BAs 23, 31) and the parietal and occipital

lobes also correlate with general cognitive abilities. Figure 5 shows

multiple BAs in the frontal (e.g., BAs 4, 10, 11), cingulate (BAs

23, 24), parietal (BAs 7, 40), and temporal lobes (e.g., BAs 20, 21)

associated with various domains like IQ, motor functions, fluid

intelligence, and language, highlighting their roles inmotor control,

sensory integration, and cognitive processing. Figure 6 focuses on

morphometric measures and their links to intelligence scores like

FSIQ, PIQ, and VIQ, with the frontal lobe (BAs 4, 6), cingulate

cortex, parietal (BAs 39, 40), and temporal lobes associated with

reasoning, language, and performance-related intelligence.

6 Di�usion MRI to infer
neurocognition

Diffusion MRI (dMRI) is a specialized imaging technique that

measures the diffusion of water molecules in biological tissues. It

provides information about the microstructural organization and

integrity of tissues, particularly white matter in the brain. Diffusion

tensor imaging (DTI) is a specific type of diffusion MRI technique

that assumes a tensor solution to quantify the diffusion properties

of water molecules within tissues. It is widely used to investigate

the structural connectivity and organization of white matter tracts

in the brain. By analyzing the diffusion tensor, variousmeasures can

be derived, including fractional anisotropy (FA, whichmeasures the

directionality of water diffusion, ranging between 0 for completely

isotropic diffusion in all directions and 1 for single-directional

diffusion), mean diffusivity (MD, which measures the magnitude

of water diffusion), axial diffusivity (AD), which measures the rate

of diffusion of water molecules along the principal axis of diffusion,

and radial diffusivity (RD), which measures the rate of diffusion of

water molecules perpendicular to the principal axis of diffusion.

In most DTI-neurocognition studies in the literature, these

maps are used together with a few exceptions with FA to establish

the relationship between the integrity of white matter tracks and

neurocognition. DTI can also be used to construct tracts, which

characterize the major direction of white matter tracts that water

flows alongside and is also known as structural connectivity. In

Supplementary Table 4, we summarized existing diffusion MRI-

based neurocognitive predictive studies.

6.1 Population-level correlation analysis

Several studies have demonstrated correlations between FA

and neurocognitive function at the population level, though it is

important to recognize that replication issues and methodological

differences between studies may raise uncertainty about their

generalizability. For example, FA has been found to account for

10% of the variance in general intelligence (g) (Penke et al., 2012).

Specific regions, such as the right anterior thalamic radiation,

left superior longitudinal fasciculus, left inferior frontal-occipital

fasciculus, and left uncinate fasciculus (BAs 1, 3-9, 11, 13, 17, 18,

22, 24, 25, 29, 32, 34-36, 38, 39, 41, 42-47), have shown significant

correlations with FSIQ (r = 0.53; 95% CI 0.35–0.66) (Malpas

et al., 2016). Additionally, FA in the corpus callosum (r = 0.48; p

< 0.003) (Navas-Sánchez et al., 2014), the medial orbital frontal

cortex (BA 25) (r = 0.496, p = 0.01 (Nestor et al., 2015); r =

0.463, p = 0.020 (Ohtani et al., 2017)), and the right inferior

frontal-occipital fasciculus (p = 0.05) (Wang et al., 2012) have

all been found to correlate with FSIQ. However, it is crucial to

acknowledge that while these findings are promising, they represent

only specific studies. The question remains whether they can be

reliably replicated, as other studies may report different effect

sizes or even null results depending on sample characteristics
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FIGURE 6

Illustration showing the Broadmann Areas, which have been found salient at least once in one or more reviewed articles, reporting an association of

voxel- and surface-based morphometric features with various neurocognitive measures.

and methods. Similarly, studies like those conducted by Clayden

et al. (2012) have shown that the third principal component of

FA, estimated across different tracts, is predictive of FSIQ (F =

8.36, P < 0.01) and that the second principal component of MD

predicts FSIQ (F = 4.60, P < 0.05). However, the applicability

of these models to different populations has not been rigorously

tested, raising concerns about generalizability. Further population-

level studies have also shown that gF has the strongest correlation

with FA (r = 0.57) (Haász et al., 2013) and that whole-brain mean

FA is positively correlated with emotional processing (r = 0.63;

p < 0.05) (Pisner et al., 2017). In one population-based study,

FA and AD were greater in individuals with higher IQs (FSIQ

> 130) than in a control group, especially in widespread white

matter regions associated with frontal, central, and associative

pathways (Nusbaum et al., 2017). These population-level findings

suggest widespread relationships between FA and various cognitive

measures, but replication efforts remain important to confirm

the consistency of these effects. In developmental studies, FA at

2 weeks of age correlated with neurodevelopmental outcomes

at 2 years of age (r = 0.35–0.48) (Feng et al., 2019). Pearson

correlation analysis also showed a negative relationship between

VIQ (gC) and FA in the left-hemispheric Broca’s area (r = −0.73;

p < 0.001) (Konrad et al., 2012), while MD in the same region

correlated positively with VIQ (Konrad et al., 2012). Although these

findings highlight the potential of FA as a marker for early brain

development, using such correlations to predict future outcomes

is still in its infancy. Longitudinal studies with larger sample

sizes and varied populations would be necessary to determine

these early correlation’s robustness. Finally, FA has also been

used in studies exploring neurodegenerative conditions, such as

a study that found significant relationships between FA and

chronic neurological damage in retired National Football League

players. This study showed that∼24% of participants demonstrated

neurophysiological impairments based on Mini-Mental State

Examination (MMSE) evaluation (Casson et al., 2014). Again,

although this study is an important early step, further population-

level investigations are necessary to assess the consistency of these

findings across different samples. Several other population-level

investigations have explored the relationship between white matter

diffusion metrics such as FA, AD, and RD, and various cognitive

outcomes. For example, Lee et al. (2017) conducted a study as

part of the UNC-Chapel Hill Early Brain Development Study and

examined the correlation between AD, RD, and FA with early

learning composite (ELC) scores in a population of infants aged 0–

2 years. They reported correlation coefficients ranging from 0.13

to 0.20 (p < 0.05) for these diffusion metrics, suggesting a modest

but significant relationship between white matter development and

early cognitive function. Similarly, Dunst et al. studied a sample

of 63 adults aged 18–50 years in Austria and used FA and RD

metrics to investigate their relationship with intelligence scores

obtained from the Intelligence Structure Battery (INSBAT) (Dunst

et al., 2014). However, no significant group differences in FSIQwere

observed between the sexes, highlighting the potential variability

of FA-intelligence relationships across demographic subgroups. In

older populations, Fischer et al. examined the correlation between

FA and FSIQ in a cohort of 43 elderly individuals aged 60–

85 years (Fischer et al., 2014). Their results indicated that while

younger elderly participants showed slightly higher FSIQ than

their more advanced-aged counterparts, the difference was not

statistically significant, suggesting that the relationship between

white matter integrity and cognitive function may attenuate with

age. Among pediatric populations, Nusbaum et al. compared

children with higher IQs (FSIQ > 130) to a control group in

a study of 44 participants aged 8–12 years in France (Nusbaum

et al., 2017). Their results showed greater AD and FA values in

widespread white matter regions associated with frontal, central,

and associative pathways in the higher IQ group, providing further

evidence of the relationship between whitematter development and

intelligence. Koenis et al. (2018) explored brain network efficiency

in a large sample of 330 individuals aged 9-23 years from the

Netherlands Twin Register. They found that FSIQ at age 18 was

positively correlated (r = 0.28; p < 0.0001) with global brain

network efficiency as measured by FA-weighted brain networks,

suggesting that network efficiency may play a role in cognitive

functioning during late adolescence. Additionally, Ponsoda et al.

(2017) used tractography-based brain connectivity matrices in a

study of 94 young adults (mean age 20.0 ± 1.7 years) from

Spain. They found that individuals with similar brain connectivity

profiles were also more similar in their levels of gF and gC, further

supporting the notion that white matter connectivity is linked to

cognitive abilities. Kenett et al. (2018) examined the relationship

between anatomical connectivity and cognitive performance using
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tractography and parcellation in a sample of 416 young adults from

the United States. Their study focused on the inferior parietal lobe

and found a positive correlation (r = 0.11; p < 0.02) between

average controllability and cognitive performance as measured by

the Combined Raven’s Test (CRT), suggesting that regional white

matter properties may contribute to specific cognitive abilities.

Lastly, Kocevar et al. (2019) conducted a study using tractography-

based brain connectivity matrices in 43 children aged 8–12 years

and found that global brain connectivity was strongly associated

with high intelligence scores. These findings add further support

to the idea that brain network homogeneity may be a marker of

cognitive abilities in both children and adults.

6.2 Individual-level AI-based predictions

While population-level studies offer insight into broad trends,

AI-based approaches have gained attention for their ability to

make individualized predictions about neurocognitive function. AI

models have been used to predict cognitive outcomes based on

structural and diffusion MRI features, including FA, AD, and MD.

For instance, one study employed DTI features from the whole

brain, such as connected surface area (CSA), weighted CSA, FA,

MD, and cluster number in a latent partial multi-view multitask

representation learning, to predict gF, reporting a correlation

between actual and estimated gF of 24.11% (p < 0.001) (Zhang

et al., 2019).

6.3 Salient brain regions across various
neurocognitive measures

Figure 7 presents the Broadmann Areas identified as significant

in studies investigating associations between dMRI features and

various neurocognition scores. As most of the dMRI-based

approaches reviewed in this study do not specify specific brain

regions that can be translated to multiple Broadmann areas

(see Supplementary Table 4), we use information from studies

that specified salient Broadmann areas that connect to different

neurocognition functions. We see in Figure 7 that several BAs (4,

6, 8, 9, 11, 13, 44, 45, 46, and 47) in the frontal lobe are linked

predominantly to FSIQ, with BA 44 and BA 45 also showing an

association with VIQ. BAs 24 and 32 in the cingulate cortex are

associated with FSIQ. In the parietal lobe, BAs 3, 5, 7, and 39

show connections with FSIQ. Notably, BA 22 in the temporal lobe

demonstrates associations with both FSIQ and VIQ, highlighting

their roles in cognitive and verbal processing. Finally, BAs 17 and

18 in the occipital lobe are linked to FSIQ, emphasizing the occipital

lobe’s involvement in visual processing and spatial reasoning.

6.4 Summary of dMRI and neurocognition

The population-level correlation analysis reveals that fractional

anisotropy (FA) in specific brain regions is consistently linked

to neurocognitive function, particularly general intelligence (g).

Key areas include the right anterior thalamic radiation, superior

longitudinal fasciculus, inferior frontal-occipital fasciculus,

and uncinate fasciculus, as well as the corpus callosum and

medial orbital frontal cortex. These regions are associated with

various cognitive measures, though replication challenges raise

questions about their generalizability. Studies show significant

correlations between FA and intelligence, emotional processing,

and neurodevelopment, with specific brain networks and white

matter regions (e.g., frontal, parietal, temporal, and occipital

lobes) linked to cognitive abilities like FSIQ, PIQ, and VIQ. While

findings are promising, more research is needed to confirm the

consistency of these relationships across different populations.

Figure 7 further highlights the involvement of frontal (e.g., BAs

4, 6, 8, 9, 44, and 45), cingulate (BAs 24, 32), parietal (BAs 3,

5, 7, and 39), temporal (BA 22), and occipital lobes (BAs 17,

18) in supporting various cognitive functions, reinforcing their

importance in neurocognitive processing.

7 Functional MRI to infer
neurocognition

Functional MRI (fMRI) utilizes the blood oxygenation

level-dependent (BOLD) effect to reveal brain connectivity

during a resting state (rs-fMRI) (Gore et al., 2019) (see

Supplementary Figure 3). Major large-scale brain networks as

found in resting-state fMRI include the dorsal and ventral default

mode, right and left executive control, dorsal and ventral attention,

anterior and posterior salience, basal ganglia, language, high and

primary visual, precuneus, auditory and somatosensory networks,

and others (Shirer et al., 2012). Functional connectivity strength

among different parts of the brain as estimated from fMRI was

found to be associated with neurocognitive and intelligence levels

in humans (Vakhtin et al., 2014; Schultz and Cole, 2016; Kruschwitz

et al., 2018; Pezoulas et al., 2017; Noble et al., 2017).

7.1 Population-level correlation analysis

As summarized in Supplementary Table 5, Vakhtin et al. (2014)

conducted a study that showed that functional brain networks,

covering attentional, cognitive, default-mode, sensorimotor, visual,

auditory, and basal ganglia regions remained stable across resting-

state and complex cognitive tasks. These findings indicate a

consistency in network spatial features when transitioning between

different brain states. In another study, Schultz and Cole (2016)

observed that high-performing individuals demonstrated more

efficient brain connectivity updates, as reflected in smaller changes

to the functional network architecture between rest and task

states, with Pearson correlation measures used to assess network

similarity. Kruschwitz et al. (2018) analyzed 1,096 participants but

found no significant association between characteristic path length

and global efficiency. This suggests that these metrics may not be

robust indicators of network functionality in this context. Pezoulas

et al. (2017) studied the cerebellum’s functional connectivity in

136 participants. They identified sex-based differences in IQ: high-

IQ females had significantly higher average clustering coefficients

and characteristic path length than high-IQ males, highlighting

potential gender-specific variations in brain connectivity patterns.
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FIGURE 7

Illustration showing the Broadmann Areas, which have been found salient at least once in one or more reviewed articles, reporting an association of

dMRI features with various neurocognitive measures.

In another study, Noble et al. (2017) demonstrated a 22%

correlation between actual and estimated fluid intelligence (gF)

(p < 0.0001) based on connectivity patterns in 10 functionally

coherent networks across the whole gray matter, as assessed

through Raven’s Progressive Matrices. Song et al. (2008) performed

a population-level correlation analysis, showing that functional

connectivity in the bilateral dorsolateral prefrontal cortices (BA 9)

was significantly correlated (r = 0.47; p = 0.0002) with Wechsler

Adult Intelligence Scale (WAIS) scores. Similarly, frontoparietal

regions have been implicated in various neurocognitive measures,

such as FSIQ (g), general fluid intelligence (gF), and crystallized

intelligence (gC). Regional homogeneity of functional connectivity

in frontoparietal and central brain regions (BAs 1, 2, 3) has

been shown to correlate with FSIQ (Wang et al., 2011; Langeslag

et al., 2013; Basten et al., 2013; Pamplona et al., 2015; Hilger

et al., 2017a,b), gF (Hearne et al., 2016; Santarnecchi et al., 2017),

and gC (Hearne et al., 2016) performance. These correlations,

while promising, often vary in effect size, with some studies

reporting lower correlations that may reflect sample-specific

characteristics. Notably, the strength of these associations suggests

that frontoparietal connectivity may serve as a biomarker for

cognitive abilities, although replication efforts remain necessary

to confirm these effects across diverse populations. Frontoparietal

network integrity, particularly in BAs 4, 7, 11, 12, 13, 14, 16, 24, 32,

33, and 40, has also been linked to fluid intelligence (gF) (Ebisch

et al., 2012). Connectivity in the lateral prefrontal cortex (BAs 9, 10,

46) has been correlated with gF (r = 0.28–0.32; p = 0.006–0.0015)

(Cole et al., 2012; ColeM.W. et al., 2015). As a result, many diseases

[e.g., Turner syndrome (Hart et al., 2006)] related to impairment

in the frontoparietal network are also associated with a deficit

in the gF/VIQ, compared to a healthy population (p < 0.0001).

Some other studies used fMRI-based functional connectivity data

from the Human Connectome Project (HCP) to show a correlation

between the actual and estimated fluid intelligence (r = 0.19–33)

(Greene et al., 2018; Elliott et al., 2019; He et al., 2018; Li et al., 2018;

Dubois et al., 2018a) and cognitive ability (r = 0.95) (Yoo et al.,

2019). Further, when compared between average IQ and higher IQ

healthy population, greater BOLD activation across different brain

regions, including parietal, caudate, fusiform, and occipital areas

(BAs 3, 4, 6, 7, 8, 9, 19, 31, 32, 38, 46, 47), is seen for complex

reasoning in higher IQ population (Graham et al., 2010).

7.2 Individual-level AI-based predictions

Additionally, functional connectivity in the frontoparietal

network has been used for predicting later-life neuropsychological

performance, with correlations (r) ranging from 0.08 to 0.44

(p < 0.001) (Kwak et al., 2021). Despite these correlations,

the predictive accuracy of functional connectivity measures for

behavioral outcomes may vary across studies and populations,

introducing uncertainty about the generalizability of these findings.

Other studies have focused on specific networks, such as the

frontoparietal network (BAs 9, 4, 39, 40, 46, 10, 13, etc.), which has

been significantly correlated with fluid intelligence (r = 0.50; p <

0.01) (Finn et al., 2015), memory (r = 0.097; p < 0.001) (Powell

et al., 2018), general neurocognitive ability (r = 0.31; p < 0.0001)

(Sripada et al., 2020), and FSIQ (r = 0.51; p < 0.001) (Jiang et al.,

2017) performance.

7.3 Salient brain regions across various
neurocognitive measures

Figure 8 illustrates the Broadmann Areas identified in studies

investigating associations between fMRI features and cognitive

functions, including FSIQ/Cognitive Ability, fluid intelligence,

behavioral test performance, and Picture Sequence Memory. Many

regions in the frontal lobe, such as BAs 4, 6, 8, 9, 10, 11, 12,

13, 44, and 46, are associated with a wide range of functions.

FSIQ/Cognitive Ability and fluid intelligence (BAs 4, 6, 8, 9, 10,

11, 12, 13, and 46) dominate, while Picture Sequence Memory

and Behavioral tests also show a role in BAs 4, 9, 10, 13,

and 46. BAs 23, 24, 30, 31, and 32 in the cingulate cortex

exhibit involvement across fluid intelligence, behavioral testing,

and FSIQ/Cognitive Ability. In the parietal lobe, BAs 3, 7, 39,

and 40 are notably associated with multiple cognitive domains,

including FSIQ/Cognitive Ability, fluid intelligence, behavioral

test performance, and Picture Sequence Memory. These areas

are crucial for processing sensory input and spatial reasoning,

consistent with their broad involvement. BA 13 in the Insula is

notably associated with FSIQ/Cognitive Ability, fluid intelligence,

behavioral test performance, and Picture Sequence Memory.

Frontiers inNeuroimaging 13 frontiersin.org

https://doi.org/10.3389/fnimg.2024.1455436
https://www.frontiersin.org/journals/neuroimaging
https://www.frontiersin.org


Hussain et al. 10.3389/fnimg.2024.1455436

Temporal lobe BAs 20, 21, 22, 37, 38, 41, and 42 are primarily

linked to FSIQ/Cognitive Ability, reinforcing their role in memory

and higher cognitive functions. BA 19 in the occipital lobe shows

involvement primarily with FSIQ/Cognitive Ability, confirming

their key role in visual processing and spatial reasoning.

7.4 Summary of fMRI and neurocognition

The population-level correlation analysis underscores the

importance of consistent functional brain network activity across

resting-state and cognitive tasks, with key regions including

the frontoparietal, cingulate, and temporal lobes. Several studies

demonstrate that efficient brain connectivity, particularly in the

frontoparietal network (BAs 9, 10, 46), is linked to cognitive

measures such as FSIQ, fluid intelligence (gF), and crystallized

intelligence (gC). The correlations between functional connectivity

and cognitive abilities, though varying in effect sizes, suggest

that frontoparietal connectivity could serve as a biomarker for

neurocognitive performance. These findings are consistent across

multiple brain regions, including the dorsolateral prefrontal cortex,

cingulate cortex, and insula, all showing significant associations

with cognitive functions. Figure 8 highlights the key brain regions

involved in cognitive abilities, with the frontal, parietal, and

temporal lobes playing central roles in FSIQ, fluid intelligence,

and behavioral performance, reinforcing their importance in

neurocognitive processing. While these correlations are promising,

further replication studies are necessary to confirm the robustness

of these associations across diverse populations.

8 Deep features from MRI to infer
neurocognition

Regional, surface-area, voxel, and vertex-level features are

so-called handcrafted or hand-engineered features. They carry

neuroanatomic meanings and are easy to interpret. On the other

hand, deep learning extracts tens of thousands or even millions

of “deep features” from the whole MRI or image patches. Those

deep features are extracted from convolutions of images with

filters (3 × 3 × 3, 5 × 5 × 5, or other sizes), or the so-

called attention mechanisms in vision transformer (ViT) deep

learning models. In Figure 9, we show a working pipeline of

machine/deep learning approaches that make use of different

modes of brain MRI or MRI-extracted hand-engineered data to

predict neurocognition/intelligence scores for each subject.

8.1 Individual-level AI-based predictions

Several studies (Chiang et al., 2019; Ranjbar et al., 2019; Vang

et al., 2019; Pominova et al., 2019; Zou et al., 2019; Liu et al.,

2019) used convolutional neural networks (CNNs), a specific type

of image-based deep learning technique, on T1-MRI to predict

fluid intelligence (gF) in adolescents. They predicted the residual

fluid intelligence score of more than 4,500 adolescents with a mean

square error (MSE) ranging from 92 to 103, the true residual

fluid intelligence scores ranged from −40 to 30, as summarized

in Supplementary Table 6. However, the interpretation of deep

features is difficult. A potential solution is to choose brain regions

beforehand and input those regions into deep learning models. For

example, Zou et al. (2019) used regions from bilateral transverse

temporal gyri (BAs 41, 42), bilateral thalamus, left parahippocampal

gyrus (BA 34), left hippocampus, right opercular part of inferior

frontal gyrus (BAs 44, 45, 47), left anterior cingulate gyrus (BAs

24, 32, 33), right amygdala, left lingual gyrus (BA 19), left superior

parietal lobule (BA 7), right inferior parietal lobule (BAs 39, 40),

left angular gyrus (BA 39), left paracentral lobule, and left caudate

nucleus (BAs 1–4) in their deep learning model to predict gF

score. However, the choice of such regions may be subjective,

the accuracy of prediction was not significantly different from

inputting the whole image, and treating regions separately may

miss the opportunity to consider those regions jointly in the

convolutions. Interpretation of deep learning models can be also

achieved by masking or replacing different regions, adding random

noise to images, or calculating the saliency, activating, or attention

maps (Arrieta et al., 2020; Gunning et al., 2019; Speith, 2022).

Their use in interpreting deep learning prediction of intelligence

or neurocognition is yet to be studied.

8.2 Salient brain regions across various
neurocognitive measures

Despite the challenge of the interpretability of the deep models,

Figure 10 presents the specific Broadmann Areas identified as

significantly correlated with fluid intelligence when deep models

are utilized for the predictive tasks. In the frontal lobe, BAs 4, 6,

8, 9, 10, 11, 12, 44, 45, and 47 show notable involvement in fluid

intelligence, supporting the role of executive function, reasoning,

and problem-solving typically associated with these areas. The

cingulate cortex, including BAs 24 and 32, also demonstrates

involvement, which is consistent with the region’s role in cognitive

control and emotional regulation, both essential for adaptive

reasoning and fluid intelligence. In the parietal lobe, BAs 3,

5, 7, 39, and 40 are linked with fluid intelligence, reflecting

the importance of sensory integration, attention, and spatial

processing in tasks requiring fluid reasoning. The temporal lobe’s

involvement is indicated by BAs 22, 41, and 42, regions linked to

language processing and memory, highlighting the role of these

cognitive functions in fluid intelligence. Additionally, regions in

the occipital lobe (BAs 17, 18, and 19) show associations with fluid

intelligence, underscoring the contribution of visual processing and

visual-spatial reasoning to intellectual tasks requiring adaptability

and novel problem-solving. This broad distribution of cortical

involvement across frontal, cingulate, parietal, temporal, and

occipital regions illustrates the multifaceted nature of fluid

intelligence, engaging a wide network of brain areas.

8.3 Summary of deep learning of MRI and
neurocognition

Several studies have utilized CNNs on T1-weighted MRI data

to predict fluid intelligence (gF) in adolescents, achieving mean

square error (MSE) values ranging from 92 to 103 across over
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FIGURE 8

Illustration showing the Broadmann Areas, which have been found salient at least once in one or more reviewed articles, reporting an association of

fMRI features with various neurocognitive measures.

FIGURE 9

Typical machine/deep learning inferring neurocognition working pipeline that uses large brain datasets from various MRI modalities to predict

neurocognitive/intelligence scores.

4,500 subjects. However, interpreting deep learningmodels remains

a challenge. One approach to improve interpretability involves

pre-selecting specific brain regions for model input, though this

method may not significantly improve prediction accuracy and

can overlook interactions between brain regions. Techniques like

saliency maps and attention mechanisms offer potential solutions

for interpreting deep learning models, but their application

to intelligence predictions is still under-explored. Despite the

challenges in interpreting deep models, certain Broadmann Areas

(BAs) have been consistently associated with fluid intelligence

across predictive tasks. Frontal areas (BAs 4, 6, 8, 9, 10, 11, 44,

45, 47) are linked to executive function and problem-solving, while
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FIGURE 10

Illustration showing the Broadmann Areas, which have been found salient at least once in one or more reviewed articles, reporting an association of

MRI features used in deep learning approaches with various neurocognitive measures.

cingulate cortex regions (BAs 24, 32) are involved in cognitive

control and emotional regulation. Parietal regions (BAs 3, 5, 7, 39,

40) contribute to sensory integration and spatial reasoning, and

temporal (BAs 22, 41, 42) and occipital areas (BAs 17, 18, 19) are

crucial for language, memory, and visual-spatial processing. This

broad cortical distribution underscores the complex, multi-regional

brain activity underlying fluid intelligence.

9 Reviewed paper’s overall agreement
with the P-FIT model

Figure 11 shows a bar plot representing the percentage of our

reviewed papers (N = 94) that used different Brodmann areas in

inferring intelligence and neurocognition. For simplicity, we only

used the Brodmann areas without mentioning the hemisphere. We

see in this figure that most of the reviewed studies emphasized the

frontal lobe, cingulate cortex, and parietal lobe as being influential

on human neurocognition and intelligence. In addition, we also

see in this figure that most of the reviewed papers found a

strong relation between frontal and parietal lobes with the human

intelligence and these two regions are a major part of the P-FIT

model.

10 Opportunities, challenges, and
possible solutions

10.1 Precision and individual variability

Most of the earlier studies associated MRI metrics with

neurocognition in a population, while a smaller number of studies

aimed to predict neurocognition at the individual level. The

population-level association does not explain individual variability.

There is a need to use MRI to estimate or predict neurocognition

for individual subjects. A fundamental question remains open for

which MRI metrics, out of hundreds of s/d/fMRI metrics, carry the

neurocognitive information for individual differences. The answers

to this question may vary by the neurocognitive domains. In short,

while MRI metrics have been associated with neurocognition at a

population level, they fall short in explaining individual variability,

and the challenge lies in identifying which specific MRI metrics

and neuroanatomical regions carry the neurocognitive information

that accounts for individual differences. To address the challenge of

identifying which MRI metrics best predict individual differences

in neurocognitive outcomes, several approaches can be utilized:

10.1.1 Multimodal fusion approaches
Combining multiple MRI modalities (e.g., s/d/fMRI) into a

single predictive framework can help capture a broader range

of neurocognitive information. Techniques such as canonical

correlation analysis (CCA) (Yang et al., 2019), multiview learning,

or deep multimodal networks enable the integration of diverse

features from different MRI types, which may enhance the ability

to explain individual variability in neurocognitive performance.

10.1.2 Feature selection and explainability
Identifying the most informative MRI features for individual

prediction is crucial. Feature selection methods like recursive

feature elimination, LASSO, or elastic net regression can help filter

out irrelevant or redundant features, focusing on those that carry

the most neurocognitive information. Additionally, explainable

machine learning methods, such as SHapley Additive exPlanations

(SHAP) (Nohara et al., 2019) or local interpretable model-agnostic

explanations (LIME) (Mishra et al., 2017), can provide insights into

how specific features from different brain regions contribute to

individual predictions.

10.1.3 Domain-specific neurocognitive prediction
The relationship betweenMRImetrics and neurocognitionmay

vary across different cognitive domains (e.g., working memory,

attention, fluid intelligence). Using domain-specific models, rather

than global models, can help fine-tune the prediction process by

focusing on the relevant brainmetrics and neuroanatomical regions

associated with each specific domain of neurocognitive function.

10.1.4 Longitudinal and personalized modeling
Individual variability in neurocognition may not be fully

captured by cross-sectional data. Longitudinal data, where

brain changes are tracked over time, can provide a more
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FIGURE 11

Bar plot representing the percentage of our reviewed papers in this study that used di�erent Brodmann areas (BAs) in inferring intelligence and

neurocognition. BA numbers in dotted boxes are part of the P-FIT model. Brodmann areas are not specified for either the left or right hemisphere.

Studies that did not specify BAs are also included in the normalization/denominators.

dynamic understanding of individual neurocognitive trajectories.

Personalized modeling approaches, such as reinforcement learning

or few-shot learning, could be used to fine-tune predictions

for individual subjects based on their unique brain metrics and

cognitive profiles.

10.2 Neuroscientific interpretation

Sex differences exist widely in diseases (Kanaya et al., 2002) and

normal brainMRIs (Cosgrove et al., 2007). Hemispheric differences

exist and contribute to brain development. Besides sex and

hemispheric differences, brain development presents spatial and

temporal heterogeneity. Spatially, maturation occurs in a posterior-

to-anterior and inferior-to-superior direction (Sowell et al., 2004;

Giedd et al., 1999). Temporally, sensory andmotor cortices develop

earlier, while the prefrontal, amygdala, and hippocampus mature

during adolescence (Giedd et al., 1999; Herting et al., 2018), and

working memory (Nagel et al., 2013) and reasoning (Vendetti et al.,

2015) evolve over childhood and adolescence. Yet, it remains open

to “localizing” the regional brain biomarkers in space, in time,

and specific to sex, age, race, ethnicity, and brain hemisphere.

Elucidating the neural substrate of inter-individual intelligence

difference will also differ across neurocognitive domains. Thus,

the challenge remains to localize the regional brain biomarkers

specific to sex, age, race, ethnicity, and brain hemisphere, and

to elucidate the neural substrate of inter-individual intelligence

differences across various neurocognitive domains. Localizing

brain biomarkers that account for differences in sex, age, race,

ethnicity, and hemisphere, as well as inter-individual intelligence

variation across neurocognitive domains, is a complex challenge

that can be tackled with the following approaches:

10.2.1 Sex- and age-specific modeling
To account for sex and age differences, sex-stratified models

and age-specific developmental models can be employed. These

models could analyzeMRImetrics separately formales and females,

and across age groups, to identify biomarkers specific to sex-

and age-related neurodevelopmental trajectories. Machine learning

algorithms that incorporate interaction terms can be useful to

capture how brain structure-function relationships differ by sex

or change over time during key developmental stages, such as

childhood, adolescence, and adulthood.
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10.2.2 Multivariate and spatiotemporal modeling
The spatial and temporal heterogeneity of brain development

requires sophisticated multivariate models that can capture

the dynamics of regional brain maturation. Methods such as

spatiotemporal graph convolutional networks (ST-GCNs) or

longitudinal growth models can integrate spatial and temporal

dimensions of MRI data, identifying how different regions

mature at different rates and how these changes relate to

cognitive functions. These models can also help pinpoint

regional brain biomarkers specific to developmental windows and

brain hemispheres.

10.2.3 Cultural and ethnic considerations in
neuroimaging

Accounting for race and ethnicity in neuroimaging studies

requires the inclusion of diverse datasets to avoid the bias

often seen for homogeneous samples. Meta-analytic approaches,

which combine data from multiple populations, can help identify

universal vs. population-specific brain biomarkers. Additionally,

transfer learning and domain adaptation techniques can be

employed to adapt models trained on one population to another,

ensuring that biomarkers are not biased toward a specific

ethnic group.

10.2.4 Domain-specific biomarker identification
Since the neural correlates of intelligence are likely to vary

across different neurocognitive domains (e.g., working memory,

reasoning, verbal intelligence), domain-specific models can help

localize which regions are important for specific cognitive

functions. This could be achieved using task-specific fMRI

paradigms alongside multi-domain modeling frameworks. By

differentiating between cognitive domains, researchers can better

elucidate the regional brain biomarkers that drive performance in

each area of cognition.

10.2.5 Cross-domain integration for personalized
neurocognitive profiles

To fully capture the inter-individual differences in intelligence,

an integrated approach that combines sex, age, race, hemisphere,

and cognitive domain information is essential. Multidimensional

models that integrate these factors can reveal more personalized

neurocognitive profiles, linking specific brain biomarkers

to intelligence across diverse populations. Techniques like

individualized prediction models or dynamic functional

connectivity analysis could help in developing highly personalized

biomarkers for neurocognitive function.

10.3 Challenges of interpretability in deep
learning methods

Deep learning methods, particularly CNNs and ViTs, have

proven powerful in extracting high-dimensional features from

MRI data to predict neurocognitive outcomes. However, a major

limitation of deep learning models is their lack of interpretability,

often referred to as the “black box” problem. While traditional

machine learning approaches, such as those based on handcrafted

neuroanatomic features, allow for straightforward interpretation

grounded in neurobiology, deep learning models extract features

that do not necessarily have an obvious neuroanatomic or cognitive

meaning. One of the primary challenges is the sheer complexity

and scale of the deep features extracted from MRI images. These

features are typically low-level pixel representations or highly

abstracted patterns derived throughmultiple layers of convolutions

or attention mechanisms, which complicates the task of mapping

them back to interpretable brain structures or functions. As a

result, the ability to understand how deep learning models arrive

at their predictions, whether they are predicting intelligence scores

or other neurocognitive outcomes, becomes limited. To address

this issue, explainable machine learning frameworks have been

developed (Pat et al., 2023) to increase both prediction accuracy

and interpretability. For example, a recent study applied an

explainable machine learning approach to predict cognitive abilities

from task-based fMRI during a working memory task in the

ABCD cohort (N = 3,989). This framework compared multiple

predictive algorithms, including Elastic Net, which demonstrated

either similar or better prediction performance compared to more

complex nonlinear models. Importantly, the study used techniques

such as SHAP, Accumulated Local Effects, and Friedman’s H-

statistic to interpret how these algorithms drew information from

the brain to make their predictions. These tools helped explain

the relative importance of different brain regions in predicting

cognitive abilities, providing a clearer picture of the underlying

brain-cognition relationships. Another set of interpretability tools

includes methods such as saliency maps, activation maps, and

attention maps, which highlight the regions of the input image that

most strongly influence the model’s predictions. These techniques

can help researchers identify which brain regions or features are

driving the model’s decision, providing a degree of interpretability.

For example, saliency maps can show which areas of an MRI scan

are most critical for predicting intelligence, allowing researchers

to verify whether these regions align with known neuroanatomic

correlates of cognition. Similarly, occlusion tests, where certain

parts of the image are masked or perturbed to assess their

contribution to the model’s prediction, can offer insights into the

model’s reasoning. While these tools provide useful insights, their

effectiveness remains limited in neuroimaging studies due to the

complex and distributed nature of brain functions. Interpretation

methods often identify large, diffuse areas of the brain, making

it difficult to establish clear links between model features and

specific neurocognitive processes. Additionally, these methods lack

standardization, and different techniques may yield inconsistent

results, raising concerns about their reliability for interpreting

deep learning models in cognitive neuroscience. Overall, while

interpretability remains a significant challenge in applying deep

learning to neuroimaging, the development and application of

methods such as region selection, saliency maps, and perturbation-

based analyses represent promising directions. However, these

techniques are still in their infancy when it comes to predicting

neurocognitive outcomes, and further validation is necessary to

ensure they provide biologically meaningful insights.
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10.4 Nature and nurture beyond MRI data

A mystery is to which extent is human intelligence or

neurocognition decided by nature (i.e., genetics) and by nurture.

For nurture, social upbringing (Steffener et al., 2016) and

environment (Hackman et al., 2021) both have effects on

neurodevelopment, so do demographics [age, sex, body mass index

(BMI), etc.], lifestyle (smoking, alcohol, reading, exercise, etc.),

nutrition, socioeconomic status (education, parental education,

especially maternal education, and income, etc.), and other factors.

Thus, we need to combine MRI with other nature and nurture

data to better understand individual variability in neurocognition

(Kessler et al., 2020; Skotting et al., 2021; Bolduc et al., 2018;

Asschenfeldt et al., 2020; Oster et al., 2017; Savory et al.,

2020; Derridj et al., 2021). There are technical challenges for

(i) how to best combine 3D MRIs with 1D non-MRI features

(Huang et al., 2020); (ii) how to identify the best subset of

variables that optimally estimate neurocognitive abilities (Guyon

and Elisseeff, 2003; Li et al., 2017); and (iii) how to eventually

quantify and separate the contribution of nature vs. nurture.

To unravel the contributions of nature (genetics) and nurture

(environment and lifestyle) in explaining individual differences

in neurocognition, combining MRI data with non-MRI features

is essential. Below are some strategies to address the technical

challenges identified,

10.4.1 Combining 3D MRIs with 1D non-MRI
features

Integrating complex 3D MRI data with 1D non-MRI variables

(e.g., demographics, lifestyle factors) requires advancedmultimodal

data fusion techniques. Approaches such as multi-kernel learning

or tensor decomposition can effectively handle multi-dimensional

data by capturing the different relationships between brain

structure and non-imaging variables. Additionally, the use of

hybrid deep learning models, where CNNs process MRI data

and other layers handle non-imaging data, can jointly model

neuroimaging and non-neuroimaging information to improve

predictions of neurocognition.

10.4.2 Feature selection for multimodal data
Identifying the most informative features from both MRI and

non-MRI data is key to understanding neurocognitive variability.

Feature selection techniques like elastic net, recursive feature

elimination, or random forest feature importance can be applied

to both imaging and non-imaging datasets to extract the optimal

subset of variables. Dimensionality reduction methods, such as

PCA or CCA, can also reduce the complexity of large datasets,

ensuring that the most relevant features are retained while

minimizing redundancy.

10.4.3 Quantifying and separating contributions
of nature and nurture

The relative contributions of genetics (nature) and

environmental factors (nurture) can be assessed using advanced

statistical and machine learning methods. One approach is

to use structural equation modeling (SEM) (Burnette and

Williams, 2005) or twin studies to estimate heritability and

disentangle genetic vs. environmental influences. In addition,

techniques like partial least squares regression (PLSR) or

mixed-effects models can help quantify how much variability

in neurocognitive abilities is explained by MRI-derived brain

features (reflecting biological aspects) and non-MRI features

(reflecting environmental and lifestyle factors). These models allow

researchers to separate and estimate the contribution of nature vs.

nurture to cognitive outcomes.

10.4.4 Causal inference and genetic data
integration

To further separate the effects of nature and nurture, causal

inference methods, such as Mendelian randomization (Sanderson

et al., 2022) or propensity score matching, can be employed. These

approaches enable the identification of causal relationships between

genetic markers (e.g., polygenic scores) and neurocognitive abilities

while controlling for confounding factors such as socioeconomic

status or lifestyle choices. Integrating genetic data (nature)

with MRI and environmental data (nurture) provides a more

comprehensive view of how both domains influence brain

development and cognitive outcomes.

10.5 Merging datasets

Artificial intelligence requires a large training dataset, which,

for brain MRI, means 1,000 or more subjects (Smith and Nichols,

2018). Recent studies have combined public or private datasets to

form a large database of thousands or even tens of thousands of

brain MRIs, for age prediction (He et al., 2021a,b), quantification

of normal brain development (He et al., 2018), genotype-phenotype

mapping (Brookes and Robinson, 2015), and other tasks. We have

found at least 38 public datasets with a total of about 35,000 unique

individuals with both brain MRIs and neurocognitive/intelligence

test scores (Table 2). Challenges arise, however, for (a) multi-

site, multi-scanner, multi-protocol MRI harmonization; (b) dealing

with different types or versions of neurocognitive tests as used in

different datasets; (c) tackling uncertainties in the test scores for

neurocognition/intelligence; and (d) coping with incompleteness

or inconsistency in other variables (demographics, socioeconomic

status, genetics, environment, etc.) across datasets. To tackle these

challenges, the following steps can be taken:

10.5.1 Multi-site, multi-scanner, multi-protocol
MRI harmonization

Harmonizing MRI data across multiple sites and scanners is

a critical challenge due to differences in hardware and scanning

protocols. One effective approach is to use statistical harmonization

techniques like ComBat (Wang et al., 2017), which adjusts for

scanner effects while preserving biological variability. Additionally,

deep learning-based domain adaptationmethods [review (Farahani

et al., 2021)] can help normalize data across different sites without

needing specific hand-engineered correction parameters.
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TABLE 2 We have found at least 38 public datasets with a total of about 35,000 unique individuals with both brain MRIs and neurocognitive/intelligence

test scores.

1https://abcdstudy.org/
2https://fcon_1000.projects.nitrc.org/indi/abide/abide_I.html
3https://fcon_1000.projects.nitrc.org/indi/abide/abide_II.html
4https://adni.loni.usc.edu/data-samples/adni-data/
5https://adni.loni.usc.edu/data-samples/adni-data/
6https://adni.loni.usc.edu/data-samples/adni-data/
7https://aibl.csiro.au/adni/index.html
8http://fcon_1000.projects.nitrc.org/indi/retro/BeijingEnhanced.html
9http://fcon_1000.projects.nitrc.org/indi/retro/BeijingEOEC.html
10http://rfmri.org/BeijingEOEC2_Raw
11http://fcon_1000.projects.nitrc.org/indi/pro/Berlin.html
12https://dataverse.harvard.edu/dataset.xhtml?persistentId=10.7910/DVN/25833
13https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/
14https://fcon_1000.projects.nitrc.org/indi/cmi_healthy_brain_network/
15https://fcon_1000.projects.nitrc.org/indi/CoRR/html/concept.html
16https://fcon_1000.projects.nitrc.org/indi/retro/dlbs.html
17https://nda.nih.gov/edit_collection.html?id=1151
18https://fcon_1000.projects.nitrc.org/indi/pro/nki.html#LastRel
19https://fcon_1000.projects.nitrc.org/indi/enhanced/index.html
20https://www.humanconnectome.org/study/hcp-lifespan-development
21https://www.humanconnectome.org/study/hcp-young-adult
22https://www.humanconnectome.org/study/hcp-lifespan-aging
23https://fcon_1000.projects.nitrc.org/indi/pro/wchsu_li_index.html
24https://brain-development.org/ixi-dataset/
25http://schizconnect.org/
26https://memory.ucsf.edu/research-trials/research/allftd
27https://fcon_1000.projects.nitrc.org/indi/pro/nyu.html
28https://sites.wustl.edu/oasisbrains/
29https://nda.nih.gov/study.html?id=477
30https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000607.v3.p2
31https://www.ppmi-info.org/
32https://fcon_1000.projects.nitrc.org/indi/pro/Quiron-Valencia.html
33https://fcon_1000.projects.nitrc.org/indi/retro/sald.html
34https://fcon_1000.projects.nitrc.org/indi/retro/southwestuni_qiu_index.html
35https://fcon_1000.projects.nitrc.org/fcpClassic/FcpTable.html
36http://schizconnect.org/
37http://schizconnect.org/
38https://www.ukbiobank.ac.uk/.
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10.5.2 Handling di�erent types or versions of
neurocognitive test

Standardizing cognitive assessments across datasets is difficult

due to varying test versions and scoring methods. One strategy

is to apply crosswalk methodologies (Pritchard et al., 2024) that

map scores from different versions to a common scale, allowing

for more consistent comparisons across datasets. Furthermore,

latent variable modeling can help harmonize cognitive measures

by identifying common cognitive constructs despite differences in

test versions.

10.5.3 Dealing with uncertainties in test scores
Neurocognitive test scores may be subject to uncertainties due

to testing conditions, examiner bias, or random variation. Bayesian

modeling approaches provide a robust framework to incorporate

uncertainty by generating probability distributions for test scores

rather than relying on single-point estimates. These models allow

for more flexible interpretations and uncertainty quantification

in analyses.

10.5.4 Coping with incompleteness or
inconsistency in other variables

Missing data is a common issue in multi-dataset studies,

especially regarding demographic, socioeconomic, genetic, or

environmental variables. Advanced imputation techniques, such

as multiple imputation by chained equations (MICE) (White

et al., 2011) or machine learning-based imputation methods like

k-nearest neighbors (KNN) or random forests, can help handle

missing data effectively. Additionally, sensitivity analyses should

be performed to assess how missing data influences the results,

ensuring robustness across different datasets.

10.6 Evaluation of the present vs.
prediction of the future

Predicting future neurocognitive outcomes and intelligence

level is more difficult but is as important, if not more,

than evaluating the current status. Early prediction of later-life

neurocognitive outcomes will create a precious time window

for early intervention (Liamlahi and Latal, 2019; Urschel et al.,

2018). It will identify high-risk patients for targeted intervention,

avoiding unnecessary interventions for patients at low risk for

future neurocognitive impairments (Sterling et al., 2021). Both the

early and the targeted interventions are key unmet needs in clinical

trials that aim to improve patients’ long-term neurocognitive

outcomes (Urschel et al., 2018; Calderon and Bellinger, 2015). For

the last three decades, there have been many studies that used

medical imaging (e.g., MRI) and computer-aided mathematical

models (e.g., multivariate analysis, machine learning, deep learning,

etc.) to identify neurocognitive impairments in patients with

various diseases, e.g., traumatic brain injuries (Cole J. H. et al.,

2015), schizophrenia (Cole et al., 2018), Alzheimer’s Disease

(Franke et al., 2010), and diabetes (Franke et al., 2013). Yet,

predicting normal and abnormal neurocognitive development

trajectories remains a largely unanswered question. The prediction

of future neurocognitive outcomes and intelligence levels is

critical for enabling early intervention and improving long-term

neurocognitive health. Below are some strategies to address the

challenges of predicting future neurocognitive development:

10.6.1 Longitudinal data and time series modeling
Predicting future neurocognitive outcomes requires

longitudinal datasets that track individuals over time. Machine

learning approaches that are specifically designed for time series

data, such as recurrent neural networks (RNNs) or their variants

like long short-term memory (LSTM) networks, can be used

to model developmental trajectories. These methods account

for temporal dependencies and can predict future cognitive

states based on patterns in past data. Integrating longitudinal

imaging and neurocognitive test data will improve our ability to

forecast later-life outcomes and identify early deviations from

normal trajectories.

10.6.2 Transfer learning for early prediction
Transfer learning offers an approach for improving predictions

in cases with limited early-life data by leveraging models trained

on large datasets of older populations. Pre-trained models from

adult neuroimaging studies can be fine-tuned using pediatric data

to predict later-life cognitive outcomes. This method reduces the

need for extensive early-life data and provides a more efficient

framework for predicting long-term neurocognitive outcomes from

early MRI scans and neurodevelopmental profiles.

10.6.3 Risk stratification for targeted interventions
Early prediction models can be designed to stratify patients

into risk categories (e.g., high-risk vs. low-risk for future

neurocognitive impairments). Techniques like survival analysis or

Cox proportional hazards models can assess the probability of

neurocognitive decline over time. More advanced models, such

as gradient-boosted decision trees or deep learning classifiers, can

also identify patients at higher risk for cognitive impairments

based on baseline MRI and other clinical factors. These risk

stratification models will guide the development of personalized

intervention strategies, allowing for targeted prevention in

high-risk groups while avoiding unnecessary treatments in

low-risk individuals.

10.6.4 Multimodal data integration for
comprehensive predictions

To accurately predict future neurocognitive outcomes, it is

crucial to incorporate not only MRI data but also genetic,

behavioral, environmental, and lifestyle factors. Multimodal data

integration using machine learning models, such as multimodal

neural networks or ensemble approaches, can combine different

types of data (e.g., neuroimaging, genetics, and clinical profiles)

to provide a more holistic view of an individual’s cognitive

trajectory. This integrative approach can lead to more precise
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predictions of normal and abnormal neurocognitive development

across the lifespan.

10.6.5 Early biomarker identification and
personalized trajectories

Identifying early biomarkers of cognitive decline or abnormal

neurodevelopment is key to predicting future outcomes. Advanced

neuroimaging methods, including dMRI and fMRI, combined with

feature selection algorithms, can help pinpoint critical brain regions

or connectivity patterns that are predictive of long-term cognitive

outcomes. Personalized prediction models, which account for an

individual’s unique brain characteristics, genetic predispositions,

and environmental exposures, will further refine future outcome

predictions and allow for more tailored early interventions.

10.7 Linking healthy and diseased

Do machine intelligence models that predict human

intelligence in normal controls help us predict abnormal

neurocognitive outcomes in diseased populations? Do

neurocognitive outcome prediction models share similar MRI and

non-MRI features across diseases? Current studies of diseased

populations often focus on one specific disease at a time. Linking

healthy and diseased, or merging data across diseases, may offer

new insight for the common support of normal and abnormal

neurocognitive development.

11 Conclusion

In this paper, we reviewed different MRI studies that

inferred neurocognitive or human intelligence. While existing

reviews are often on specific disease populations, our review

focuses primarily on healthy subjects but has included various

disease-specific MRI findings. We observed several trends in

this research direction: population-level association studies are

transitioning to individual-level machine learning predictions,

integrating MRI with rich non-MRI information, and bigger

sample sizes (thousands or tens of thousands) by merging datasets

are fast increasing compared to small sample size studies (dozens

to hundreds) from a single dataset. Despite growing efforts

and expanding knowledge, the decades-long topic of artificial

intelligence inferring human intelligence remains little understood

in general. Opportunities exist with the rise of big data and AI, but

several major neuroscientific and data science challenges call for
further investigations.
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