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Evaluation of EEG pre-processing
and source localization in
ecological research

Carlos Gomez-Tapia*, Bojan Bozic and Luca Longo*

Artificial Intelligence and Cognitive Load Research Lab, Applied Intelligence Research Centre, School

of Computer Science, Technological University Dublin, Dublin, Ireland

Introduction: Electroencephalography (EEG) source localization (SL) has shown

potential for various applications, from epilepsy and seizure focus localization

to psychiatric disorder evaluation. However, questions remain about its

neurophysiological plausibility in real-world settings where only EEG signals are

availablewithout subject-specific anatomical information. This study investigates

whether established pre-processing and source localization methods can

produce neurophysiologically plausible activation patterns when applied to

naturalistic EEG data without structural magnetic resonance imaging (MRI) or

digitized electrode positions.

Methods: Proven methods are aggregated into an end-to-end pipeline that

includes automatic pre-processing, eLORETA for source estimation, and a shared

forward model derived from the ICBM 2009c Nonlinear Symmetric template

and its corresponding CerebrA atlas. The pipeline is validated using two distinct

datasets: the Healthy Brain Network (HBN) dataset comparing resting and

naturalistic video-watching states and the multi-session and multi-task EEG

cognitive dataset (COGBCI) comparing di�erent cognitive workload levels. The

validation approach focuses on whether the reconstructed source activations

exhibit expected neurophysiological patterns via permutation testing.

Results: Findings revealed significant di�erences between resting state and

video-watching tasks, with greater activation in posterior regions during video-

watching, consistent with known visual processing pathways. The cognitive

workload analysis similarly showed progressive activation increases with task

di�culty, mapping to regions associated with executive function.

Discussion: These results prove that established source localization methods

can produce neurophysiologically plausible activation patterns without subject-

specific information, highlighting the strengths and limitations of applying these

methods to mid-length naturalistic EEG data. This research demonstrates the

viability of template-based source analysis for research settings where individual

structural imaging is unavailable or impractical.
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electroencephalography, source localization, ecological settings, inverse modeling,
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1 Introduction

Electroencephalography (EEG) is a method for non-invasive

recording of the brain’s electrical activity. Although possessing an

excellent temporal resolution, low spatial resolution limits EEG,

making precise neural source identification challenging. Over the

past five decades, researchers have developed numerous source

localization methods to address this limitation. Source localization

enhances EEG’s spatial resolution, bridging the gap between its

excellent temporal resolution and its traditionally limited spatial

accuracy. By pinpointing the origins of brain-specific electrical

activities, researchers and clinicians can gain deeper insights into

the neural underpinnings of cognitive processes, behaviors, and

disorders such as Alzheimer’s (Aghajani et al., 2013), depression

(Zhu et al., 2018), and focal epilepsy (Plummer et al., 2008), among

others. Traditional approaches for developing and testing source

localization algorithms include averaged trials based on events

(Event Related Potentials) (Slotnick, 2004; Tsolaki et al., 2015),

integration with fMRI or other neuroimaging modalities (Ritter

and Villringer, 2006; Huster et al., 2012), simulations (Supek and

Aine, 1993; Yao and Dewald, 2005; Dümpelmann et al., 2009), and

intracranial EEG recordings (Bénar et al., 2006; Plummer et al.,

2008; Michel and Brunet, 2019). However, a critical gap remains

in validating these methods, as the controlled laboratory settings

of traditional EEG studies limit their applicability in real-world

settings (Alday, 2019). While the efficacy of source localization has

been extensively examined in controlled settings, the performance

of unimodal EEG source localization techniques with mid-length

un-epoched recordings remains underexplored.

This study aims to bridge this gap by investigating whether

accurate EEG source localization can be achieved without subject-

specific information such as structural MRI or digitized electrode

positions. In particular, the research question this study aims to

answer is the following:

How can established pre-processing and source localization

methods, when aggregated, produce neurophysiologically

plausible activation patterns when evaluated in naturalistic

settings without subject-specific information?

An end-to-end aggregated pipeline for EEG pre-processing and

Source Localization suitable for real single-trial (non-averaged)

EEG data is designed, developed, and evaluated to address these

questions. The proposed approach utilizes unimodal EEG data,

emulating real-world settings where subject-specific information

might not be available. The aggregated pipeline includes an

automatic EEG signal pre-processing pipeline based on Makoto’s

guidelines (Makoto, 2024), the adoption of eLORETA (Pascual-

Marqui, 2007) as a source localization algorithm and a shared

forwardmodel derived from the ICBM 2009c Nonlinear Symmetric

template (Fonov et al., 2009) and the CerebrA atlas (Manera

et al., 2019). Our contribution lies in providing evidence that

these methods produce neurophysiologically plausible results even

without subject-specific information.

Accurately validating the accuracy of source localization

methods without a ground truth is not trivial, given the problem’s

ill-posed nature. The proposed evaluation procedure compares

differences in source space amplitudes for different tasks via

permutation testing. Methods are validated using data from 2

different datasets, namely the Healthy Brain Network (HBN)

dataset (Alexander et al., 2017) and the multi-session and multi-

task EEG cognitive dataset for passive brain-computer interfaces

(COGBCI) datasets (Hinss et al., 2023). Results demonstrate EEG

task variability at the sensor space is retained at the source space

level. Paired permutation testing shows a significant task-based

difference between source space amplitudes both on the overall

source space and in individual brain regions. These results validate

the aggregated pipeline’s effectiveness in retaining informative

features under the self-imposed constraint of not having access to

subject-specific information.

While individual anatomical variations can influence source

localization accuracy, standardized head models remain viable for

many research applications. Our validation across two independent

datasets demonstrates consistent and interpretable activation

patterns, suggesting that template-based source localization can

effectively capture meaningful neural activity patterns. This finding

aligns with previous research (Fuchs et al., 2002; Valdés-Hernández

et al., 2009; Song et al., 2015), which showed that template-based

approaches could achieve localization accuracies comparable to

individual MRI-based solutions in many cases. This has important

implications for research settings where individual MRIs are

unavailable or impractical.

The manuscript unfolds with a concise literature review

regarding EEG source localization in Section 2, followed by

Sections 3, 4, elucidating the methods that form the core of the

aggregated pipeline and its evaluation. The method’s section leads

to the presentation of results in Section 5, followed by a discussion

in Section 6 presenting the contributions to the body of knowledge,

and open works for the future in Section 7. The SL pipeline is

available as a Python package (Github).

2 Related work

Neuro-imaging uses various techniques to directly or indirectly

capture the nervous system’s structure and function. The origins

of neuro-imaging can be traced back to the 1880s, with the

pioneering work of Angelo Mosso, an Italian physiologist (Mosso,

1884). He developed the “human circulation balance,” a non-

invasive way of measuring blood flow to the brain (Sandrone et al.,

2012). Following Mosso’s innovation, various other techniques for

exploring the live human brain emerged. These included the use

of X-rays toward the end of the 19th century (Morton, 1896;

Assmus, 1995), the introduction of air ventriculography in 1918

(Dandy, 1918), and the development of electroencephalography

(EEG) in the 1920s by German psychiatrist Hans Berger (Berger,

1930; Tudor et al., 2005). EEG is a fundamental technique for

exploring the inner workings of the human brain. This non-

invasive technique captures electrical signals generated by neuronal

activity, providing insights into the brain’s inner complex workings

with remarkable temporal resolution and a relatively low cost.

EEG’s effectiveness, versatility and safety have cemented its place

in research and diagnostic settings, making it an invaluable tool

for understanding brain function and diagnosing neurological

disorders (Adeli and Ghosh-Dastidar, 2010; Alturki et al., 2020).

However, EEG’s effectiveness is hampered by its limited spatial
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resolution, which presents challenges in applications that demand

accurate identification of neural sources.

Source localization enhances EEG’s spatial resolution, bridging

the gap between its excellent temporal resolution and its

traditionally limited spatial accuracy. By determining where

the brain-specific electrical activities originate, researchers and

clinicians can gain deeper insights into the neural underpinnings

of cognitive processes, behaviors, and disorders such as Alzheimer’s

(Aghajani et al., 2013), depression (Zhu et al., 2018), or focal

epilepsy (Plummer et al., 2008) to name a few. Given the nature

of this problem, it is unfeasible to precisely locate the source of

brain activity from scalp-level sensor data (Vogel, 2002; Aster et al.,

2018), given there are infinitely many possible electrical source

configurations that could have given rise to the recorded potentials

at the electrode level. While pinpointing exact activation sources is

not feasible, approximations can be made by making assumptions

and imposing constraints. EEG source localization methods seek to

pinpoint the origins of electrical activity within the brain. Various

source localization (SL) methods have been developed since the

1970s to overcome this issue.

The first successful attempt to create such a heuristic and

produce quantitative findings was documented by Schneider and

Gerin (1970). The initial strategy for SL involved modeling the

human head as a uniformly conductive sphere with a single

electrical dipole inside and electrodes on its surface. Solving

the forward problem—calculating current flow from the dipole

to the electrodes—is relatively simple using electrical theory

(Smythe, 1988). However, solving the inverse problem—tracing

currents from the electrodes back to their sources—is complex

due to the countless dipole configurations that could lead

to the observed scalp potentials. A unique solution becomes

attainable only when the problem is confined to a parametric

model (Schneider, 1972). EEG SL algorithms require a source

equation (forward model) to compute the potential at any possible

electrode site and the equations for the partial derivatives of each

parameter. Iteratively adjusting model parameters, like the dipole

moment, and comparing the model’s output with actual scalp

potentials, the model’s accuracy can be progressively enhanced

until, eventually, the algorithm converges and a solution is

found (Marquardt, 1963). Another early approach tried using

an inhomogeneous sphere model with different conductivity

layers (Rush and Driscoll, 1969). Although this model yielded

slightly better results, its increased complexity led to poorer

computational performance. Consequently, simpler homogeneous

models were favored, although they do not accurately represent the

inhomogeneity of actual human heads (Kavanagk et al., 1978).

The aforementioned family of SL methods, known as dipole-

based, attempts to model brain electrical fields by locating one or

a few dipoles inside the subject’s head. Dipole-based approaches

have proven to be good approximations of brain electrical current

generation and have been extensively used in literature (Cuffin,

1998). In 1984, a new family of SL methods was introduced,

known as distributed or non-parametric methods. The shift

from a parametric (few-dipole) to a non-parametric (distributed

sources) approach represents a significant change in how the

inverse problem is addressed. In a parametric approach, the

challenge is to estimate a small number of parameters, such as

the location, orientation, and magnitude of a few dipoles, based

on the observed data. This method is constrained by the need to

correctly specify the number and approximate location of these

dipoles a priori, which can be highly challenging and subject to

error. In contrast, distributed source models do not pre-specify

the number and exact locations of the sources. Instead, they treat

the entire brain or a large area of interest as a grid of potential

sources (thousands of dipoles) and estimate the activity level at

each point. This paradigm shift from dipole-based to distributed-

based approaches was mainly due to advances in mathematical

and computational methods such as singular value decomposition

(Stewart, 1993). Distributed approaches inherently provide a

more comprehensive and detailed brain activity mapping. Still, it

introduces a high degree of ill-posedness to the inverse problem,

as the number of unknowns (sources) significantly exceeds the

number of observations (electrodes).

Minimum Norm Estimates (MNE) (Hämäläinen and

Ilmoniemi, 1994) emerged as the pioneering distributed method

for modeling brain activity, marking a significant departure from

the limited dipole-based approaches of earlier techniques by

proposing that the sources of measured electromagnetic fields

are spread across numerous potential locations within the brain.

Despite its innovation, MNE is known for its propensity to

misplace deep brain sources, inaccurately attributing them to

superficial cortical areas, a drawback extensively documented

in subsequent analyses (RD, 1995; Pascual-Marqui, 1999). The

LORETA algorithm (Pascual-Marqui et al., 1994) was introduced in

1994 to address this limitation, improving deep source localization.

Further advancements led to the development of standardized

LORETA (sLORETA) (Pascual-Marqui et al., 2002) and exact

LORETA (eLORETA) (Pascual-Marqui, 2007), each refining

the approach to source localization with enhanced accuracy

and specificity, thereby overcoming some of the fundamental

constraints observed in the original MNE methodology.

The validation of source localization methods presents

significant challenges due to the absence of direct ground

truth in non-invasive recordings. Previous validation approaches

typically fall into four categories, each with limitations for

naturalistic applications.

Approaches for developing and testing source localization

algorithms span averaged trials based on events (Slotnick, 2004;

Tsolaki et al., 2015), integration with fMRI and other neuro-

imaging modalities (Ritter and Villringer, 2006; Huster et al.,

2012), simulations (Supek and Aine, 1993; Yao and Dewald, 2005;

Dümpelmann et al., 2009), and intracranial EEG recordings (Bénar

et al., 2006; Plummer et al., 2008; Michel and Brunet, 2019).

Simulation studies (Supek and Aine, 1993; Yao and Dewald,

2005; Dümpelmann et al., 2009) provide controlled environments

with known ground truth but may inadequately represent real EEG

characteristics. Event-Related Potential (ERP) paradigms (Slotnick,

2004; Tsolaki et al., 2015) analyze brief EEG windows relative

to specific events, reducing noise through trial averaging but

potentially limiting generalizability to single-trial continuous EEG.

Multi-modal validation approaches incorporate complementary

neuroimaging methods, particularly fMRI (Bénar et al., 2006;

Grova et al., 2008; Bak et al., 2011). Work by Hasson et al.

(2004) introduced Inter-Subject Correlation (ISC) for analyzing
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congruence in brain activations during naturalistic viewing,

finding substantial correlation among viewers watching identical

film segments. This approach revealed altered cortical activity

patterns in autism (Hasson et al., 2009) and depression (Gruskin

et al., 2020). However, Hasson et al. (2010) noted limitations

in identifying common activation patterns during naturalistic

viewing, particularly the challenge of controlling specific brain

areas due to stimulus complexity. Finally, invasive validation

through stereotactic EEG (Bénar et al., 2006; Mikulan et al.,

2020) offers direct measurement but involves surgical electrode

implantation and may generate electrical impulses differently than

natural neural activity.

A promising alternative validation approach focuses on

neurophysiological plausibility—whether source localization

results align with established knowledge of functional

neuroanatomy during specific tasks. Several researchers have

employed this approach, particularly for visual processing tasks.

Cottereau et al. (2012) demonstrated that source-localized

EEG could accurately map retinotopic organization in visual

cortex, corresponding to known visual processing architecture.

Brodbeck et al. (2018) showed that temporal responses in localized

auditory regions during speech processing matched expected

processing hierarchies.

More relevant to naturalistic paradigms, Vanderwal et al. (2019)

demonstrated that video viewing produces reliable activations

in visual processing regions using fMRI. These findings suggest

that similar neurophysiologically valid activation patterns should

be detectable using source-localized EEG if methods are robust.

Critically, Michel et al. (2004) argued that the neurophysiological

plausibility of source localization results can serve as a meaningful

validation metric when direct ground truth is unavailable.

Whether individual MRIs are necessary for accurate source

localization remains unclear. Valdés-Hernández et al. (2009)

found that template-based approaches could achieve localization

accuracies comparable to individual MRI-based solutions in many

cases. Song et al. (2015) demonstrated that standardized head

models can provide reliable source estimates when individual MRI

data is unavailable, though with some reduction in precision.

Akalin Acar andMakeig (2013) systematically evaluated the impact

of using template versus individual MRIs on source localization

accuracy, finding that while individual MRIs improved results,

template-based approaches still produced neurophysiologically

plausible activations for well-understood tasks.

Despite these advances, a critical gap remains in validating

source localization using unimodal EEG without subject-specific

anatomical information in naturalistic settings. While controlled

laboratory studies have demonstrated the theoretical accuracy of

various methods, the performance of source localization with

continuous, non-event-locked data in ecological settings remains

underexplored. Previous work has typically relied on averaged

responses, multi-modal integration, or highly controlled stimuli,

limiting generalizability to real-world applications.

Our work addresses this gap by evaluating whether established

source localization methods, when applied to naturalistic EEG

data without subject-specific information, can produce activation

patterns that align with neurophysiological expectations. Rather

than developing novel algorithms, this research work focuses

on assessing whether existing methods can generate plausible

results under conditions that more closely approximate real-

world research settings, using task-induced neural differences as a

validation proxy.

3 Aggregated pipeline design

The aggregated pipeline consists of two key components: The

automatic EEG-preprocessing strategy. This section provides an

overview of the pre-processing and source localization methods.

Further design details are provided as Supplementary Section 1.

3.1 EEG preprocessing

Pre-processing of EEG signals is a crucial step for any

subsequent analysis. In the case of EEG source localization, it

is particularly relevant given that artifact-free recordings in the

sensor space lead to a cleaner signal in the source space. A general,

automatic pre-processing strategy should preserve the cognitive

information in the raw EEG signals while removing the artifacts

caused by internal and external sources such as eyeblinks or

electrode displacement. The current study implements a general-

purpose pre-processing strategy based on established guidelines

(Miyakoshi et al., 2007; Makoto, 2024).

This strategy, depicted in Figure 1, can be summarized

as follows: (Figure A1) Downsampling EEG data; (Figure A2)

Bandpass filtering; (Figure A3) Bad channel detection and

interpolation; and (Figure A4) Artifact correction. The detailed

description of pre-processing methods as well as their validation is

provided as Supplementary Section 1.1

3.2 EEG source localization

EEG source localization aims to estimate the location and

strength of neural sources within the brain that give rise to

the observed scalp potentials. This process addresses two main

problems: a forward model to determine how current travels from

the sources to the scalp and an inverse method that estimates source

activation given scalp-level recordings.

3.2.1 B1 - Forward model
A forward model (Figure 2B1) is derived from the average

ICBM 2009c Nonlinear Symmetric template (Fonov et al., 2009)

in conjunction with the CerebrA atlas (Manera et al., 2020)

and standard electrode positions and applies inverse modeling

through the eLORETA algorithm. The forward model is made

up by the Boundary Element Model (Figure 2B11), Source space

(Figure 2B12), and electrode montage (Figure 2B13).

The forward model can be computed using the freely available

MNE-Python software package (Gramfort et al., 2013), which

implements efficient algorithms for calculating the lead field based

on the Boundary Element Method (BEM), the defined source

space, and electrode locations. The resulting forward model allows

for estimating EEG signals for a given source space distribution,

forming the basis for the inverse problem solution.
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FIGURE 1

Pre-processing steps. (A1) Downsample to 125Hz (DC o�set removed for plotting). (A2) Band pass filter (1,50 Hz). (A3) PREP pipeline for bad channel

detection and interpolation, line noise removal, and robust average re-reference. (A4) Automatic ICA-based artifact removal.

FIGURE 2

(B1) Forward model, made up of (B11) Boundary Element Model (BEM), (B12) source space, and (B13) electrode montage.

3.2.2 B2 - Inverse method
The exact low-resolution electromagnetic tomography

(eLORETA) method is chosen for the inverse solution. This

decision is based on several factors. The established eLORETA

algorithm has been extensively validated through simulations,

controlled experiments, and multi-modal approaches. eLORETA

has been shown to provide unbiased localization even in the

presence of structured noise and multiple sources, and its

properties make it well-suited for analyzing continuous EEG data

not based on trials (Pascual-Marqui, 2007). While eLORETA is the

primary choice, the proposed aggregated pipeline is designed to be

flexible, potentially allowing for other inverse methods if required

for specific applications or comparative studies.

In the context of eLORETA, the parameter λ2 plays a

critical role in balancing the trade-off between data fidelity and

the regularization term, which accounts for noise and model

complexity. The choice of λ2 = 1.0
SNR2 is a judicious design decision,

derived from the signal-to-noise ratio (SNR):

SNR = 10 · log10

(

P

σ 2

)

(1)

Where P is the mean power of the EEG signal and σ 2 is the

variance of the signal power. By defining λ2 as the inverse square of

the SNR, the parameter effectively adapts to the quality of the signal:

higher SNR values, indicating cleaner signals, result in smaller

λ2 values, thus reducing the regularization effect and allowing

the algorithm to rely more on the observed data. Conversely,

lower SNR values, indicative of noisier signals, lead to larger λ2

values, thereby increasing the regularization term and preventing

overfitting to the noisy data.

4 Instantiation and empirical design

This section describes the methods used to assess the

performance and effectiveness of the proposed aggregated pipeline

for EEG source localization. Because EEG recordings lack an

unequivocal ground-truth source space, direct validation of how

closely the reconstructed sources match actual neural activations is

not possible. Instead, this study compares source space activations

across different tasks, leveraging task-induced variability as a

proxy measure. Specifically, if the proposed method is effective,

it should retain neural patterns associated with distinct tasks,

even without subject-specific anatomical data. Figure 3 depicts the

evaluation methodology. EEG signals are pre-processed, localized,

and grouped into cortical regions. The mean activation within each

cortical region is computed and permutation testing is employed

to test for statistically significant task-related differences in region

activation.

4.1 Data acquisition

The HBN (Healthy Brain Network) and COG-BCI datasets

are employed to evaluate the aggregated pipeline. Both feature
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FIGURE 3

Overall evaluation design. EEG signals are pre-processed, localized, and grouped into 62 unequally sized cortical regions. The mean amplitude value

for each cortical region across time is computed (MRA). Paired permutation testing is used to test for task-related significant di�erences in region

activation.

high-density electrode montages, as higher electrode counts are

known to improve source localization accuracy (Lantz et al.,

2003). The forward model generation for each distinct dataset is

based on their expected electrode locations. Details on how the

montages are defined and aligned to the head model are provided

as Supplementary Section 1.2.1.

4.1.1 HBN dataset
The Healthy Brain Network (HBN) biobank represents one

of the most extensive open-access pediatric psychiatric datasets,

comprising multi-modal data from 10,000 participants (ages 5–

22) in the New York City area (Alexander et al., 2017). While

the biobank includes neuroimaging, genetic, and phenotypic data,

this analysis focuses on the high-density EEG recordings collected

using a 128-channel EGI system with a sampling rate of 500 Hz.

This biobank offers multi-modal data such as fMRI recordings and

genetic and phenotypical information, but only EEG data was used.

One limitation of the proposed aggregated pipeline is that it

applies only to adults. The average brain template (MNI-ICBM152-

2009c) was computed only with adult MRIs. Consequently,

thirty-five young adults (ages 18–22) who completed resting-state

and naturalistic viewing paradigms were selected. The resting-

state recordings consist of 90-second epochs with participants

maintaining a relaxed state with eyes open. The naturalistic viewing

paradigms include three distinct video stimuli: a movie trailer

(“Diary of a Wimpy Kid,” 115 seconds), an educational clip

(“Fun with Fractals,” 150 seconds), and a feature film excerpt

(“Despicable Me,” 150 seconds). To facilitate direct comparisons

across conditions, all video-related EEG recordings were truncated

to match the 90-second duration of the resting-state data. This

dataset is particularly valuable due to its combination of resting and

engagement-driven conditions, which provides a basis for assessing

how well the method handles task-free and naturalistic EEG data.

4.1.2 COGBCI dataset
The COG-BCI database is the second validation dataset,

offering controlled cognitive paradigms designed to elicit distinct

mental states. This dataset comprises EEG recordings from

29 participants (11 female, 18 male, mean age 23.9 ± 3.20

years) across three separate weekly sessions, using a 64-channel

ActiCap system with active Ag-AgCl electrodes and an ActiCHamp

amplifier sampling at 500 Hz. While the dataset includes

multiple experimental paradigms, the validation focuses on

two key components that provide complementary insights into

the methods’ effectiveness: the MATB-II task and the resting

state recordings.

The MATB-II (Multi-Attribute Task Battery) offers a more

ecologically valid scenario, requiring participants to simultaneously

manage four aviation-related subtasks: system monitoring,

tracking, communications, and resource management. Three

distinct difficulty levels (easy, medium, and difficult) were

implemented through systematic task combinations, with each

5-min block generating increasingly complex EEG patterns and

movement-related artifacts. This multi-tasking paradigm provides

an ideal test case for pre-processing robustness under conditions

more closely approximating real-world cognitive demands.

Additionally, the dataset includes standardized resting state

recordings consisting of one-minute eyes-open and one-minute

eyes-closed conditions at the beginning and end of each

session. These baseline measurements, collected under controlled

conditions identical to those in the HBN dataset, enable

direct cross-dataset comparisons and validation of pre-processing

stability across different experimental contexts.

A comprehensive validation framework was created by

combining the naturalistic data from HBN with the controlled

paradigms from COG-BCI. This dual approach tests the pipeline

under ecologically valid task conditions and more experimentally

constrained scenarios.

4.2 Evaluation

The aggregated pipeline evaluation comprises two principal

components: EEG pre-processing assessment and cross-task

analysis through permutation testing. The EEG pre-processing

assessment is provided as Supplementary Section 2.2.
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Permutation testing represents a robust non-parametric

statistical methodology suited for electroencephalographic (EEG)

data analysis (Maris and Oostenveld, 2007). This approach offers

significant advantages due to its resilience against violations

of normality assumptions and its inherent capacity to address

multiple comparisons. The methodology’s core principle involves

randomizing condition labels to generate a null distribution,

which subsequently serves as a reference for evaluating observed

between-condition differences. The method’s suitability for EEG

analysis stems from its distribution-free nature and ability to

account for neurophysiological signals’ complex temporal and

spatial correlations. In this implementation, 10,000 iterations were

selected as an optimal balance between computational efficiency

and statistical precision. This quantity enables the detection of

significance levels reaching 0.0001 (1/10, 000) while ensuring stable

p-value estimations. While p-value estimation accuracy correlates

positively with the number of permutations, empirical evidence

suggests that exceeding 10,000 iterations yields diminishing returns

in neuroscientific applications.

The permutation testing procedure employs a paired design,

wherein label shuffling occurs within subjects at each iteration. For

instance, S1-Rest may be permuted with S1-Video1 but never with

S2-Rest or S2-Video1. The difference between means serves as the

test statistic, with the empirical H0 assuming no difference in the

source activation space means. Two thresholds, set at the 2.5th and

97.5th percentiles of H0, establish significance, equivalent to an

alpha value of α = 0.05 in a two-tailed normal distribution.

The inverse model application at each time step generates a

source activation space containing 31, 553 source activation points.

This produces a source space activation matrix S ∈ R
i,t, where i

represents an activation point in space and t denotes a time step.

For the HBN dataset’s resting conditions, lasting 90 seconds and

downsampled to 125Hz, this results in 11,250 time steps, yielding a

matrix of 31, 553× 11, 250 real numbers representing nano ampere

per meter (nA/m), the output of the eLORETA method.

The evaluation procedure examines source space differences

through two approaches. First, it computes the mean of the source

space for a particular sample, resulting in a single scalar for task

difference comparison. Second, it groups source space by region

[0–61], computing the mean of each region across time to produce

a 62-dimensional vector. The 31,553 sources are grouped into

62 differently-sized cortical areas, with regional means computed

across all time points within each condition.

For the HBN dataset, permutation testing examines the

following condition pairs: Rest vs. Video1, Rest vs. Video2, and Rest

vs. Video3. The COGBCI dataset analysis compares Medium vs.

Easy, Difficult vs. Medium, and Difficult vs. Easy conditions.

4.3 Hypotheses

Based on the methodological framework and the datasets

employed, two main hypotheses were formulated to validate the

neurophysiological plausibility of the source localization results:

The first hypothesis focuses on the pipeline’s ability to

distinguish between task-based and resting-state conditions in the

HBN dataset. Previous analyses of this dataset at the sensor level

have demonstrated apparent differences between video-watching

and resting-state conditions (Alexander et al., 2017). Given

these established sensor-level distinctions, these differences are

expected to be preserved and potentially more precisely localized

in source space, aligning with an established neurophysiological

understanding of visual processing pathways.

The position of each region within the cortex is included as

Supplementary Figure S5, with 62 cortical regions as defined in the

CerebrA atlas (Manera et al., 2020). In this specific experiment,

the cortical regions associated with visual processing and attention

during the video-watching state are particularly interesting in

this analysis. The posterior region of the brain, particularly the

occipital lobe, is known to be heavily involved in visual processing

(Grill-Spector, 2003). Therefore, while watching a video, increased

activation in this area is expected due to the visual nature of the

condition (Hasson et al., 2004). Additionally, the parietal lobe,

located in the posterior region, plays a crucial role in attention

and spatial processing (Corbetta and Shulman, 2002), is likely to

be activated in this condition. Furthermore, fMRI studies during

naturalistic video watching have consistently shown increased

activation in posterior brain regions (Rees, 2007). These findings

collectively support the informal hypothesis that the posterior part

of the brain is more activated in the task condition than in the

resting condition. In other words, a significant positive correlation

between the difference in rest-task conditions for particular regions

and their positions on the Anterior-Posterior (Y) axis is expected to

be observed.

H1: Source reconstructions from video-watching tasks will

show significantly higher activation than resting-state conditions,

with particularly pronounced differences in posterior brain regions

associated with visual processing.

The second hypothesis examines the pipeline’s sensitivity to

varying cognitive workload levels using the COGBCI dataset.

Prior analysis of this dataset has demonstrated reliable sensor-

level differences between workload conditions. These differences

align with established theories of cognitive load and attentional

networks. By extending these findings to source space, the

aggregated pipeline’s ability to capture functionally relevant neural

activity patterns can be validated.

H2: Source reconstructions will show progressive increases

in activation intensity corresponding to increasing cognitive

workload levels, with the highest workload condition showing

significantly greater activation compared to both medium and low

workload conditions.

These hypotheses collectively address two validation aspects.

(1) differentiating between task-specific and resting-state neural

activity patterns and (2) detecting gradual changes in brain

activation corresponding to varying cognitive demands. These

capabilities are essential for establishing the pipeline’s utility

in practical neuroscience applications and its potential for

advancing our understanding of brain dynamics during different

cognitive states.

4.4 Software and hardware

The software implementation utilized Python 3.10 as the

primary programming language, with MNE 1.6.0 as the core

EEG data processing framework. The software stack included
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FIGURE 4

Boxplots depicting the distribution of the mean source space activation values across 35 subjects for each condition in the HBN dataset.

essential scientific computing libraries such as Pandas for data

manipulation, NumPy for numerical operations, andMatplotlib for

visualization. Three-dimensional brain visualizations were created

using Open3D, while Freesurfer was employed for deriving the

necessary geometries from structural MRIs.

The computational infrastructure comprised a workstation

with an Intel i9-12900k processor and 64GB of RAM. Source

localization processing time averaged approximately two minutes

per five-minute sample. The data management requirements were

substantial, with the total data volume reaching several terabytes

across all experiments.

The memory requirements for data processing were significant

due to the high-dimensional nature of both sensor-level and

source-space data. Each EEG sample at the sensor level, comprising

62 channels sampled at 125 Hz, required approximately 124 MB of

storage. When transformed to source space with 31,554 points, the

storage requirement increased to approximately 7.8 GB per sample.

The total storage requirements amounted to 2.784TB for the

COGBCI dataset, 800 GB for the HBN dataset, necessitating careful

data management strategies and robust computational resources.

5 Results

This section presents the findings from evaluating the

aggregated pipeline applied to the HBN and COGBCI datasets.

The results are structured to provide an overview of the source

space activation, the statistical validation of differences across

conditions, and regional activation patterns. Statistical significance

was assessed through permutation testing, and spatial correlations

were evaluated to validate our hypotheses regarding task-specific

activation patterns.

5.1 HBN dataset

The analysis of the HBN dataset aims to assess the pipeline’s

capacity to differentiate between resting-state and task-based neural

activation patterns. This section presents the overall source space

findings, statistical validation through permutation testing, and

regional analysis of activation differences.

5.1.1 Overall source space analysis
The global analysis of source space activation indicated a

significant variation across the different experimental conditions.

Figure 4 presents boxplots illustrating the distribution of source

space activation means across 35 subjects for the resting and video-

watching conditions.

The mean source activation values (mean ± standard

deviation) for each condition were as follows: Rest (0.054± 0.013),

Video1 (0.062 ± 0.016), Video2 (0.068 ± 0.022), and Video3

(0.059 ± 0.019). Initial inspection of Figure 4 reveals that the

resting condition exhibited the lowest overall activation intensity

in terms of mean and variance. The most pronounced difference in

activation was observed between the Rest and Video2 conditions,

whereas the most negligible difference occurred between the Rest

and Video3 conditions.

Although visual inspection of the boxplots suggests overlapping

distributions, formal statistical analysis using permutation testing

demonstrated significant differences across conditions. Figure 5

presents the permutation test results, confirming the robustness of

the observed effects.

As depicted in Figure 5, permutation tests demonstrated

significant differences between all pairs of conditions (Rest-Video1,

Rest-Video2, and Rest-Video3). The observed mean differences

were 0.0079 nA/m, 0.0139 nA/m, and 0.0049 nA/m for Rest-

Video1, Rest-Video2, and Rest-Video3 comparisons, respectively.

In all cases, the observed differences (indicated by orange lines)

exceeded the 97.5th percentile threshold (red lines), confirming

significantly higher activation during video-watching compared

to rest.

The within-subject analysis in the Supplementary Section 2.1

corroborates this trend. Most participants exhibited significantly

higher activation in task conditions than in the resting condition.

However, a few subjects displayed comparable or slightly elevated

resting-state activation, highlighting inter-individual variability in

neural response patterns.

5.1.2 Per-region analysis
A detailed regional analysis was conducted to determine

whether specific cortical areas exhibited significantly greater

activation during task conditions compared to the resting

state. The permutation test results provided confidence values

indicating significant differences in regional activation. To facilitate

interpretation, the results for the three video conditions were

aggregated, with non-significant differences set to zero before

averaging. Figure 6 presents the aggregated regional differences in

source space activation.

Themost substantial activation differences were observed in the

Supramarginal, Superior Temporal, Precentral, Lateral Occipital,

Postcentral, and Inferior Parietal regions. Notably, a spatial

visualization of these differences (Figure 7) highlights that the most
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FIGURE 5

Permutation test across pairs of conditions. A significant di�erence is found in the means for all tested pairs of conditions (Rest-Video1, Rest-Video2,

and Rest-Video3), since the observed mean for each video is above the 97.5th percentile.

FIGURE 6

Di�erence (nA/m) between the source space intensity in resting condition vs video condition. Average of 3 videos. Non-significant di�erences are set

to 0.

pronounced increases in activation occur in the posterior regions

of the brain, aligning with known visual processing pathways.

These findings are consistent with established neuroanatomical

knowledge about brain function during visual processing tasks.

The preferential engagement of posterior brain regions during

video-watching tasks corresponds with the known roles of these

areas in visual perception, attention, and sensory integration. The

Lateral Occipital cortex, identified as one of the regions with

substantial task-related activation increases, is a key component

of the visual processing stream responsible for object recognition

and visual feature integration. Similarly, the significant activation

in the Supramarginal and Inferior Parietal regions aligns with

their established role in visual attention and integrating visual

information with other sensory modalities.

Statistical correlation analyses examined potential relationships

between activation differences and regional characteristics. A

Spearman correlation analysis revealed a moderate positive

correlation between the activation difference and cortical region

size (rs = 0.479, p < 0.001), suggesting that larger cortical regions

exhibit more significant differences in activation. Additionally,

a weak-to-moderate positive correlation was observed between

activation differences and a region’s y-axis position (rs = 0.323, p =

0.010). This further supports the hypothesis that posterior cortical

regions preferentially engage in video-watching task conditions,

which is neurophysiologically plausible given the visual nature of

the stimuli.

5.1.3 COGBCI dataset
The COGBCI dataset was analyzed to assess the pipeline’s

sensitivity to variations in cognitive workload. The results

demonstrate a systematic increase in source space activation with

increasing task difficulty, a neurophysiologically plausible pattern

that aligns with known neural correlates of cognitive effort.

5.1.4 Overall source space analysis
Permutation testing revealed highly significant differences

across all task conditions (p < 0.01). The mean source activation

values (nA/m) were as follows: Easy (0.0328), Medium (0.0337),
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FIGURE 7

Spatial representation of the di�erence in activation intensity between resting and task conditions. Greater activation is observed in posterior regions,

consistent with the involvement of visual processing areas (A, Anterior; P, Posterior; L, Left; R, Right; S, Superior; I, Inferior).

and Hard (0.0358). These findings indicate a progressive increase

in cortical activation with increasing cognitive demand (Figure 8).

This graded response to cognitive load aligns with established

neurophysiological principles of mental effort. As task demands

increase, the brain recruits additional neural resources to

maintain performance, leading to higher overall activation.

This pattern has been consistently observed in neuroimaging

studies using various modalities, including fMRI and PET. The

present results demonstrate that source-localized EEG can capture

this fundamental neurophysiological phenomenon even without

subject-specific anatomical information.

5.1.5 Per-region analysis
A regional analysis further validated these findings, revealing

increases in activation with task difficulty. These results align with

established theories of cognitive workload and attentional control,

emphasizing these cortical regions’ role in executive function.

Figure 9 presents a detailed visualization of regional activation

differences across task conditions.

The systematic increase in activation with task difficulty was

most evident in frontal and parietal regions involved in attentional

control and working memory. This pattern provides strong

neurophysiological support for the sensitivity of the aggregated

pipeline to cognitive workload variations.

The least significant differences were found between the easy

and medium conditions, with not all region differences being

statistically significant (Figure 9 top-left). The comparison between

medium and hard showed a statistically significant difference across

all regions (Figure 9 top-mid, top-right).

The systematic progression of activation intensities across

difficulty levels, combined with the anatomically specific

distribution of these effects, strongly supports the hypothesis

regarding the neurophysiological plausibility of the source-

localized activity. The observed pattern—increasing activation

with greater cognitive demand—represents a fundamental aspect

of brain function that has been extensively documented in the

cognitive neuroscience literature. The fact that this pattern emerges

clearly from the analysis, despite the absence of subject-specific

anatomical information, provides compelling evidence for the

validity of the source localization approach in naturalistic settings.

Particularly noteworthy is the spatial distribution of these

workload-related activation increases, which predominantly

involve regions of the frontoparietal network known to be critical

for cognitive control, attentional allocation, and working memory.

This anatomically specific pattern further substantiates the

neurophysiological plausibility of the results and demonstrates that

source localization using standardized head models can capture

meaningful functional neuroanatomy.

6 Discussion

This section aims to discuss the results presented in Section 5

and contextualize them within the existing body of knowledge. The

study sought to evaluate whether established source localization

methods could produce neurophysiologically plausible results

without subject-specific anatomical data or manual intervention.

The findings support the main hypotheses and demonstrate that

these methods can effectively retain EEG information from the

sensor space at the source space level while producing activation

patterns consistent with known functional neuroanatomy.

A significant increase in the SNR was observed, as indicated

by the dependent T-tests between consecutive pre-processing

steps. The band-pass filter demonstrated the most significant

effect on the SNR. This increase can be attributed to several
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FIGURE 8

Mean source activation intensity (nA/m) across the three di�culty levels of the MATB task, demonstrating a progressive increase in mean source

space activation with task di�culty. The triple asterisk (***) indicates a p-value smaller than 0.01.

FIGURE 9

Di�erence (nA/m) between the source space intensity in MATB task conditions grouped by cerebral cortical regions.

factors, such as reducing the signal’s slow drift and other low-

frequency artifacts. The high pass filter is also believed to have

increased SNR by removing high frequencies unrelated to cognitive

processes, such as artifacts caused by muscle movements or

electrical interferences. Visual inspection of the automatically

removed components confirmed that this final step benefits the

SNR. Overall, the employed pre-processing strategy has proven

to increase the quality of the EEG signal, preserving cognitive

information while reducing various artifacts. The approach does

not require human intervention, making it suitable for long EEG

recordings. The absence of artifacts and other forms of noise also

enables a meaningful subsequent source localization and, therefore,

a robust estimation of neural sources.

The first hypothesis, predicting differentiation between task-

based and resting-state conditions in the HBN dataset, was strongly

supported. The permutation tests revealed significant differences

in source space activation between resting and video-watching

conditions, with particularly pronounced effects in posterior brain

regions associated with visual processing. The observed pattern

of increased activation in occipital and parietal areas during
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video watching aligns well with an established understanding of

the brain’s visual processing hierarchy. The positive correlation

between activation differences and posterior positioning of brain

regions (rs = 0.323, p = 0.010) provides further validation that

standardized source localization approaches can detect functionally

relevant patterns of neural activity without requiring individual

anatomical data.

Significant differences in source space activation were observed

for every region in the conditions. The difference was most

prominent in the Supramarginal, Superior Temporal, Precentral,

Lateral Occipital, Postcentral, and Inferior Parietal regions. Visual

inspection of these activations showed a larger difference toward

the posterior part of the head. These results align with expectations

based on previous neuroimaging studies. The greater activation

observed in posterior regions in the task condition (video watching)

is consistent with the known involvement of these areas in visual

processing and attention. The occipital lobe, located in the posterior

part of the brain, is primarily responsible for visual processing.

Additionally, the parietal lobe, situated posteriorly, plays a crucial

role in spatial attention and integration of sensory information.

Intuitively, in these specific cases in which the activation in the

resting condition was equal or higher than the activation of at least

one conditionmight be explained by the notion ofmind-wandering

(Seli et al., 2016; Christoff et al., 2016). In other words, participants

who were asked to relax in the resting conditionmight have entered

the mind-wandering state, producing intentional or unintentional

thoughts, endogenous (voluntary), and exogenous (involuntary),

reflecting a higher activation of the source space. In particular,

for half of the subjects, the activation in the task conditions was

always significantly higher than in the resting condition (16 cases

out of 35). For some subjects, the overall activation in the resting

condition was larger than all the activation of the task conditions (4

cases). Additionally, for some subjects, the activation of the resting

condition was greater than or equal to at least one task condition

(9 cases) or equal to at least one (7 cases). Similarly, they might

have entered such a state in the task conditions because these were

not directly demanding a response, meaning the selected task did

not require explicit responses from participants. Eventually, the

analyzed EEG segments were 90 seconds long; therefore, in some

cases, there might not have been enough data to demonstrate that

the task conditions always lead to higher activation of the source

space when compared to the resting condition.

The second hypothesis, regarding sensitivity to varying

cognitive workload levels, was also supported by the COGBCI

dataset results. The systematic increase in source space activation

with task difficulty demonstrates the ability to detect graded neural

activity changes. This finding is particularly noteworthy as it

suggests that established source localization methods can capture

subtle variations in cognitive state without requiring averaging

across multiple trials or manual pre-processing. The progressive

increase in activation with cognitive demand aligns with established

neurophysiological models of attentional control and executive

function, providing further evidence for the neurophysiological

plausibility of the results.

A key strength of the employed approach is its ability to

operate effectively with unimodal EEG data. While previous

approaches often relied on multimodal imaging or extensive

manual preprocessing, the results demonstrate that meaningful

source localization can be achieved using standardized headmodels

and automated preprocessing steps. The successful differentiation

of experimental conditions across two independent datasets

validates this approach.

The observed correlation between regional activation

differences and cortical region size (rs = 0.479, p < 0.001)

warrants further investigation. While this relationship could

reflect genuine properties of neural activation patterns, it might

also indicate methodological considerations in how standardized

approaches handle regions of different sizes. Future work

should examine whether this relationship holds across different

experimental paradigms and analysis approaches.

While individual anatomical variations can influence source

localization accuracy, standardized head models remain viable for

many research applications. The validation across two independent

datasets demonstrates consistent and interpretable activation

patterns, suggesting that template-based source localization can

effectively capture meaningful neural activity patterns. This

finding aligns with previous research by Valdés-Hernández

et al. (2009), who showed that template-based approaches could

achieve localization accuracies comparable to individual MRI-

based solutions in many cases. Similarly, Song et al. (2015)

demonstrated that standardized head models can provide reliable

source estimates when individual MRI data is unavailable. The

present approach builds upon these established findings while

addressing practical constraints often encountered in research

settings, such as limited access toMRI facilities, cost considerations,

and time constraints. The robust performance observed across

demographically diverse datasets supports the utility of this

standardized approach, particularly in contexts where individual

structural imaging is not feasible or practical.

The primary contribution of this study is demonstrating that

established source localization methods, when applied without

subject-specific information, can produce neurophysiologically

plausible activation patterns that align with expected functional

neuroanatomy. The observed posterior activation during visual

tasks and the graded response to cognitive workload levels confirm

that these methods capture meaningful neural activity patterns

even under less-than-ideal conditions. This validates the utility of

source localization in research settings where individual structural

imaging is unavailable or impractical. While our approach does not

provide absolute validation of source localization accuracy, which

would require ground truth data such as simultaneous intracranial

recordings, it demonstrates that established methods produce

neurophysiologically plausible results that align with established

knowledge about brain function during visual processing and

cognitive tasks.

Scholars interested in estimating sources within the brain are

provided with some recommendations. The first is to employ an

average brain for the specific population of interest (children, adult

females, and adult males) because of the different anatomies, such

as skull thickness or brain size. The second recommendation is to

spend enough time aligning the components of the forward model,

such as the electrodes and the fiducials, to minimize the systematic

bias of the inverse solution. The third recommendation is to

design experiments robustly by acknowledging that EEG signals are

inherently noisy, even if preprocessed and cleaned and therefore

influence the source space estimation. Finally, researchers should
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be careful when interpreting results, given the many configurations

of the inverse model’s parameters, such as the inverse method,

regularization settings, and conductivity values, which will lead to

different results. There exists systematic bias within these methods

and so it’s better to analyze differences between source space

activation rather than the overall source space. Eventually, because

of the nature of the inverse problem, an inverse method only

generates estimations. It does not determine the brain activation

that led to a particular set of EEG recordings since infinitely many

configurations can exist.

7 Conclusion

This study has demonstrated that effective EEG pre-processing

and source localization can be achieved without subject-specific

anatomical data through a fully automated pipeline. The successful

validation across naturalistic viewing and controlled cognitive tasks

suggests broad applicability across different experimental contexts.

However, several important directions for future research emerge

from this work.

While the current method performs well with adult

participants, extending its application to pediatric populations will

require incorporating age-appropriate head models and validation

against developmental changes in brain structure and function.

Furthermore, the observed relationship between regional size

and activation differences indicates a need for more sophisticated

spatial normalization approaches to account for anatomical

variability across subjects and regions.

While individual anatomical variations can influence source

localization accuracy, using standardized head models remains a

viable approach for many research applications. Our validation

across two independent datasets demonstrates consistent and

interpretable activation patterns, suggesting that template-based

source localization can effectively capture meaningful neural

activity patterns. This finding aligns with previous research by

Valdés-Hernández et al. (2009), who showed that template-based

approaches could achieve localization accuracies comparable to

individual MRI-based solutions in many cases. Similarly, Song et al.

(2015) demonstrated that standardized head models can provide

reliable source estimates when individual MRI data is unavailable.

Our approach builds upon these established findings while

addressing practical constraints often encountered in research

settings, such as limited access toMRI facilities, cost considerations,

and time constraints. The robust performance observed across

our demographically diverse datasets supports the utility of this

standardized approach, particularly in contexts where individual

structural imaging is not feasible or practical.

It is important to note that the optimal choice of pre-processing

methods remains an open question in the field. As highlighted

in recent discussions (Delorme, 2023), automatic artifact removal

and other pre-processing strategies continue to be debated. In our

work, we aimed to maximize the signal-to-noise ratio, assuming

that improved SNR would lead to better source localization

accuracy; however, the precise impact of each pre-processing step

on localization performance has not been fully elucidated and will

require further investigation.

Additionally, the pipeline’s parameters—including grid size,

BEM resolution, and regularization—were selected based on

preliminary testing and the existing literature. It is conceivable

that alternative configurations might yield enhanced performance

for specific tasks, and systematic exploration of these parameters

represents an important direction for future work.

The open-source availability of the pipeline as a Python

package facilitates reproducibility and invites further development

by the research community. This accessibility, combined with the

pipeline’s automation, makes it a valuable tool for researchers

seeking to incorporate EEG source localization into their analyses

without requiring manual preprocessing or multimodal data. The

primary contribution of this work is not a novel source localization

method but rather an accessible Python implementation that

incorporates modern head models and atlases with established

methods, optimized for naturalistic EEG data without requiring

subject-specific information. While software like LORETA-KEY,

FieldTrip, Brainstorm, and EEGLAB provide similar functionality,

this pipeline offers distinct advantages for researchers working in

the Python ecosystem who require a streamlined approach for

analyzing mid-length naturalistic EEG data.

In conclusion, this work represents a significant step toward

making EEG source localization more accessible and practical

for real-world applications while maintaining scientific rigor.

The successful validation across different experimental paradigms

suggests that the proposed approach could be valuable in research

and clinical settings. Future work addressing pre-processing

uncertainties, different head geometries, and optimizing parameter

configurations will further enhance the robustness and applicability

of the proposed method.
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