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Introduction: Fourier base fitting for masked or incomplete structured data

holds significant importance, for example in biomedical image data processing.

However, data incompleteness destroys the simple unitary form of the Fourier

transformation, necessitating the construction and solving of a linear system—a

task that can su�er from poor conditioning and be computationally expensive.

Despite its importance, suitable methodology addressing this challenge is not

readily available.

Methods: In this study, we propose an e�cient and fast Fourier base fitting

method suitable for handling masked or incomplete structured data. The

developedmethod can be used for processingmulti-dimensional data, including

smoothing and intra-/extrapolation, even when confronted with missing data.

Results: The developed method was verified using 1D, 2D, and 3D benchmarks.

Its application is demonstrated in the reconstruction of noisy and partially

unreliable brain pulsation data in the context of the development of a biomarker

for non-invasive craniospinal compliance monitoring and neurological disease

diagnostics.

Discussion: The study investigated the impact of di�erent analytical and

numerical performance improvement measures (e.g., term rearrangement,

precomputation of recurring functions, vectorization) on computational

complexity and speed. Quantitative evaluations on these benchmarks

demonstrated that peak reconstruction errors in masked regions remained

acceptable (i.e., below 10% of the data range for all investigated benchmarks),

while the proposed computational optimizations reduced matrix assembly time

from 843 s to 11 s in 3D cases, demonstrating a 75-fold speed-up compared

to unoptimized implementations. Singular value decomposition (SVD) can

optionally be employed as part of the solving-step to provide regularization

when needed. However, SVD quickly becomes the performance limiting in terms

of computational complexity and resource cost, as the number of considered

Fourier modes increases.

KEYWORDS

Fourier-base fitting, image processing, reconstruction, brain deformation data, masked

data

1 Introduction

Fast Fourier transform (FFT) is an efficient algorithm that transforms a signal from

its original domain (usually time or space) to the frequency domain. In particular, it is

used to compute the discrete Fourier transform (DFT) or its inverse (IDFT) of a signal.

FFT is extensively employed in a wide range of applications such as filtering, efficient
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convolution evaluation, wave propagation, and more. It can be

interpreted as a special basis transformation to the orthonormal

Fourier basis vk(r) = ejk·r/C (j =
√
−1, C: normalization

constant). When the spatial domain consists of a structured

rectangular grid with Li (typically an even number) equidistant

coordinates along the i-axis with extent li, k is equal to (nx ·
2π/lx, ny · 2π/ly, nz · 2π/lz) with −Li/2 ≤ ni < Li/2. While the

DFT is defined for regular grids and the FFT is applicable to data

in that structured form, there is often a need to fit a Fourier basis

to unstructured data, or to structured data known on a subset of

the grid points (referred to here as “masked" data). Packages like

PyNUFFT (Lin, 2018) are designed to handle unstructured data.

However, PyNUFFT’s application to masked structured data (a

special case of unstructured data) poses challenges, since PyNUFFT

treats missing data as zero. This means that this package is

not suited for extrapolating data based on its frequency domain

representation, a common application in medical imaging.

One notable advantage of the Fourier basis lies in the simplicity

of its application and similarity between the DFT and IDFT. They

link the Fourier transform f̃ (k) to the underlying data f (r) through

f̃ (k) = 6rv
∗
k
(r)f (r) and f (k) = 6rvk(r)f̃ (r), where

∗ denotes

the complex conjugate. However, once the grid on which data

is available seizes to be regular and complete, vk stops being an

orthogonal basis. In other words, 6rv
∗
k
(r)vk′ (r) can be non-zero,

even when k 6= k
′. In fact, merely computing 6rv

∗
k
(r)f (r) no

longer corresponds to determining the coordinates of f in the space

spanned by the Fourier basis v, as the coordinate transformation

matrix {vk(r)}r,k is non-unitary and often non-square. Instead,

(pseudo-)inversion of said matrix is required to establish the

coordinate transformation.

It is often desirable to reduce the considered Fourier base

vectors to the range [−Ni,Ni] where Ni < Li/2. Reducing the

range of considered base vectors acts as a form of low-pass filtering,

effectively smoothing the signal. Fitting such a reduced basis can

be valuable, e.g., for obtaining a fitted approximation for inter- or

extrapolation purposes.

In the course of our investigation into establishing a

non-invasive surrogate for craniospinal compliance (CC) by

measuring changes in head impedance during the cardiac

cycle (Karimi et al., 2023; Spiegelberg et al., 2022), we were

confronted with this issue. CC is a measure of intracranial

volume buffering capacity. A drop in CC, as it may occur in

pathological conditions such hydrocephalus (Balédent et al.,

2004), syringomyelia (Leung et al., 2016), Chiari I malformation

(Terem et al., 2018), and cerebral small vessel disease (Perosa

et al., 2022), often precedes a potentially life-threatening increase

in intracranial pressure. Since direct continuous monitoring of

CC is currently not possible, an indirect quantification with a

surrogate derived from non-invasive brain motion assessment

could play an important role in the clinical management of such

conditions. Consequently, the quantification and interpretation

of brain’s pulsatile motion not only contributes to understanding

brain physiology, but can also play a role in the diagnosis

and therapeutic decision-making for the above-mentioned

neurological disorders.

To maximize the signal information content of a potential

novel CC surrogate, we leveraged magnetic resonance imaging

(MRI) deformation data, illustrating how the brain pulsates

during the cardiac cycle due to the exchange of blood and

cerebrospinal fluid (CSF) between cranial and spinal compartments

(Karimi et al., 2023). Deformation imaging is typically performed

using Displacement Encoding with Stimulated Echoes (DENSE)

(Soellinger et al., 2009; Adams et al., 2020; Karimi et al., 2023)

or phase-contrast MRI (Enzmann and Pelc, 1992). Fourier basis

fitting of the MRI data is essential for two distinct reasons (Karimi

et al., 2023): first, it improves signal-to-noise ratio, which is of

utmost importance considering the sensitivity of the surrogate

signal prediction, the noisy nature of imaging data, and the

subtlety of the features of interest. Second, Fourier basis fitting

enables extrapolation of the data from the brain bulk volume.

This is necessary because the displacements of primary relevance

are located on the brain surface, where artifacts associated with

flowing CSF and the high contrast to bone and air cavities

make the displacement data unreliable, such that it has to be

masked out. Similar challenges are common in the field of medical

imaging, and beyond. The equivalent for masked structured

data to the “FFT"-method should be fast and efficient both

computationally and in terms of memory requirements, especially

for processing large amounts of (e.g., 4D image) data. Since

masking often results in an ill-conditioned Fourier decomposition

matrix ([A] in Equation 8), the required inversion can also become

computationally challenging.

This work has three main goals:

• Develop a fast and robust Fourier base fitting method for

masked structured data;

• Verify the method using 1D, 2D, and 3D benchmarks;

• Demonstrate its applicability to deformation data in order to

support computation and interpretation of head impedance

change over the cardiac cycle, utilizing the approach

established in Karimi et al. (2023).

2 Methodology

2.1 Linear system derivation

Let f̂ (r) be an approximation for f (r) expressed in its Fourier

basis as:

f̂ (r) =
Nz
∑

nz=−Nz

Ny
∑

ny=−Ny

Nx
∑

nx=−Nx

{anx ,ny ,nz ej(nxkx0 x+nyky0 y+nzkz0 z)}

=
∑

n

ane
jkn·r

(1)

where Ni are the desired number of harmonics along the

i-axis-direction, ki0 = 2π/li, and an are complex numbers.

If the number of spatial points are larger than the number

of coefficients, the system is overdetermined and an should be

computed byminimizing the difference between f (r) and f̂ (r) using
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(for instance) the least square approach:

an = argmin
an

‖f (r)− f̂ (r)‖2 (2)

This can result in complex-valued f̂ (r). Therefore, to ensure a

real-valued approximation, Equation 1 is modified as follows:

f̂ (r) =
∑

n

(

ane
jkn·r + a∗ne

−jkn·r
)

(3)

Defining R as:

R =
∑

r

(

f (r)−
∑

n

(

ane
jkn·r + a∗ne

−jkn·r
)

)2

(4)

where the first summation is over all available points in 3D space,

and expressing an in terms of real values an = bn + jcn, we obtain

the following conditions by ensuring a zero gradient at minimum:

∂R(r)

∂bm
=
∑

r

(

f (r)−
∑

n

[

ane
jkn·r + a∗ne

−jkn·r
]

)

×
(

ejkm·r + e−jkm·r
)

= 0

(5)

∂R(r)

∂cm
=
∑

r

(

f (r)−
∑

n

[

ane
jkn·r + a∗ne

−jkn·r
]

)

×
(

ejkm·r − e−jkm·r
)

= 0

(6)

Multiplying Equations 5 and 6 by 0.5 and summing them yields:

∑

r

(

ejkm·r
∑

n

(

ane
jkn·r + a∗ne

−jkn·r
)

)

=
∑

r

f (r)ejkm·r
(7)

In real-valued matrix-form, Equation 7 can be written as:















...
...

. . .
...

· · · Re{Sm+n + Sm−n} −Im{Sm+n − Sm−n} · · ·
· · · Im{Sm+n + Sm−n} Re{Sm+n − Sm−n} · · ·
...

...
. . .

...





























...

bn
cn
...















=















...

Re{
∑

r f (r)e
jkm·r}

Im{
∑

r f (r)e
jkm·r}

...















≡ [A][x] = [B]

(8)

where Sm+n =
∑

r e
j(km+kn)·r and Sm−n =

∑

r e
j(km−kn)·r . In

this system of equations, odd (respectively, even) rows express

equations for bn (cn). Even though it may seem that the number

of unknown variables is N = 2(2Nx + 1)(2Ny + 1)(2Nz + 1),

these are actually pairs of duplicates, as bnx ,ny ,nz = b−nx ,−ny ,−nz and

cnx ,ny ,nz = −c−nx ,−ny ,−nz . This arises from the fact that f̂ (r) should

be real, necessitating ak = a∗−k
. In other words, a reduced system of

equations [AA] and [BB] can be constructed from [A] and [B], such

that the dimensions are halved and (2Nx + 1)(2Ny + 1)(2Nz + 1)

unknown variables ([xx]) are apparent. [x] is recovered from [xx] as

follows (notation: a : b signifies integers from a to b; a : c : b signifies

the same, but in steps of c):

x[i] = 1

2
xx[i]

x[i] = xx[i]

x[N − i] = 1

2
xx[i]

x[N − i+ 1] = −1

2
xx[i+ 1]

i = 1 :
N

2
− 1

i = N

2

i = 1 : 2 :
N

2
− 1

i = 1 : 2 :
N

2
− 1

(9)

2.2 E�cient matrix computation

In the previous section, we obtained a system of linear

equations, whose solution provides Fourier base fitting. In this

section, we focus on the efficient computation of [AA] and

[BB] in terms of both computational and memory resource

requirements. Key considerations are the reduction of the number

of function evaluations—particularly of expensive non-linear

function evaluations, which are factored out, combined, and

precomputed—and the enabling of vectorization. Let M(x, y, z)

be the 3D mask which has a value of one where data exist and

zero elsewhere. We pre-evaluate the costly exponential functions

ejnxkx0 x1D , ejnyky0 y1D , and ejnzkz0 z1D for nx = −2Nx : 2Nx, ny =
−2Ny : 2Ny, and nz = −2Nz : 2Nz , where x1D, y1D, and z1D are the

one dimensional x, y, and z coordinates. By this, we do not need

to compute any other exponential in later stages. Subsequently, we

compute Si as follows:

Si =
∑

r

ejki·r

=
∑

x1D

∑

y1D

∑

z1D

M(x, y, z)ejkzi zejkyi yejkxi x

=
∑

x1D

∑

y1D

(

∑

z1D

M(x, y, z)ejkzi z

)

ejkyi yejkxi x

=
∑

x1D





∑

y1D

Mz(x, y)e
jkyi y



 ejkxi x

=
∑

x1D

My,z(x)e
jkxi x

(10)

Similarly for the computation of [BB] matrix elements:

BB[i] =
∑

r

f (x, y, z)ejki·r

=
∑

x1D

∑

y1D

∑

z1D

f (x, y, z)M(x, y, z)ejkzi zejkyi yejkxi x

=
∑

x1D

∑

y1D

Fz(x, y)e
jkyi yejkxi x

=
∑

x1D

Fy,z(x)e
jkxi x

(11)
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Note that Equations 10 and 11 take the form of a regular

Fourier transformation, such that an FFT method could be

employed. However, given that Ni ≪ Li in our application-of-

interest, it is preferable to use vectorized tensordot operations

instead (see Section 4.1). Additionally, if 4Ni > Li, the number of

required S computations can be reduced by considering Sn = Sn+p,

where p = (jx · Lx, jy · Ly, jz · Lz)—in other words, exploiting

symmetry modulo Li.

The code was implemented in Python 3.9 using the NumPy

library. Pre-storage of required exponentials in 1D space and

reducing 3D transformations to 1D ones (in Equations 10 and

11) results in important performance improvements in terms

of computational complexity and memory requirements (see

Section 4.1). Nested loops were avoided completely and for-loops

were replaced whenever possible by vectorization and array

operation. A custom least-square solving method was implemented

to avoid the large memory overhead of commonly available Python

implementations. This is necessary, as the first dimension of the [A]

matrix is equal to the number of spatial points, which can be very

large for volumetric image data.

2.3 Solving and regularization

In the previous section, we obtained a linear system of

equations ([AA][xx] = [BB]) that needs to be solved to obtain

the correct Fourier basis. As [AA] is frequently ill-conditioned,

we used regularization based on singular value decomposition

(SVD). Figure 1 shows the regularization pipeline: first, the SVD

is obtained using the NumPy linear algebra package, i. e., [AA] =
USV⊤ where U and V are unitary matrices and S is diagonal.

Subsequently, all singular values smaller than an adaptively

adjusted threshold (see below) are zeroed in S. The regularized

inverse of [AA] is obtained as [AA]−1
reg = VS′−1U⊤, where S′ is the

thresholded singular value matrix, and its inverse is easily obtained

by inverting the diagonal elements. Subsequently, [xx] is computed

using [xx] = [AA]−1
reg [BB]. To identify the singular value threshold,

the maximum of relative error between ˆ[BB] = [AA][xx] and

[BB] is computed. If it is larger than a user-specified acceptance

criterion, the number of non-zero singular values is increased by

a fixed factor (we used 1.02 in the applications below) and the

procedure repeated.

Note that it is only necessary to compute S and AA, and to

perform the SVD and matrix inversion once for a dataset with a

constant mask, even if data is gathered at multiple time-steps.

2.4 Reconstruction from Fourier basis
coe�cients

For reconstruction, a variant of Equation 3 is used:

f̂ (r) = 2Re

{

∑

n

(

ane
jkn·r

)

}

(12)

A summary of the main computational steps of the proposed

method, including references to key equations and corresponding

sections, is provided in Table 1.

FIGURE 1

Regularization pipeline using singular value decomposition.

TABLE 1 Summary of the main computational steps in the proposed

method, with references to key equations and sections.

Step Description Key equations/
section

1 Fix the number of

desired Fourier modes

Section 2.1 and

Section 4.2

2 Precompute recurring

exponential terms

Section 2.2

3 Assemble the (reduced)

linear system matrix

[AA] and right-hand side

vector [BB] using the

rearrangement and

vectorization scheme.

Equations 8–11,

Section 2.1

4 Solve the resulting linear

system [AA][xx] = [BB]

either directly or via

SVD-based

regularization with

adaptive thresholding.

Figure 1, Section 2.3

5 Reconstruct the spatial

field from the estimated

Fourier coefficients.

Equation 12, Section 2.4

3 Results

The developed method was tested on a Windows system with

AMD Ryzen 9 7950X 16-Core processor and 128 GB of memory.

3.1 Verification benchmarks

To verify the proposed method, we defined three benchmark

problems spanning from one to three spatial dimensions

Frontiers inNeuroimaging 04 frontiersin.org

https://doi.org/10.3389/fnimg.2025.1480807
https://www.frontiersin.org/journals/neuroimaging
https://www.frontiersin.org


Karimi et al. 10.3389/fnimg.2025.1480807

TABLE 2 Implementation details and hyperparameter settings.

Category Parameter Value/description

Hardware CPU AMD Ryzen 9 7950X

16-Core processor

GPU NVIDIA GeForce RTX 3060

RAM 128 GB

OS Windows 10

Environment Python 3.9, NumPy 1.26,

JAX 0.4.20 (for SVD)

Fourier fitting Number of Fourier

modes (Nx , Ny , Nz)

Ni = 11 in each spatial

direction for all benchmarks

and Ni = 4 for deformation

data

Benchmark function

parameters

a = 5, b = 0.2, c = 1.5π

(Ackley-type function)

Grid resolution 200 (1D), 200× 200 (2D),

200× 200× 200 (3D)

Padding 10%

Masking pattern Structured block-wise masks

(see Figures 2–8)

Regularization Initial singular value

truncation threshold

Singular values below 0.1

Error-based

refinement criterion

Triggered if

max
∣

∣[AA · coef− BB]
∣

∣ >

3× 10−3

Adjustment strategy Increase number of retained

singular values by 2% until

error criterion is satisfied

based on the Ackley function (normalized to a [0, 1] range),

which is a common test function for global optimization

methods. The full hardware configuration and implementation

hyperparameters used for all benchmarks are summarized

in Table 2.

3.1.1 1D benchmark
Let f1D(x) be defined as follows:

f1D(x) =

− a exp(−b|x|)− exp

(

1

a
cos(cx)

)

+ a+ exp(1)
(13)

on x :[−5, 5]. The interval is discretized into 200 points and it is

assumed that no data is available for x :[−3.5,−2.5]∪ [−0.5, 0.5]∪
[2.5, 3.5]. The reconstruction results (parameters: a = 5, b = 0.2,

c = 1.5π , Nx = 11) are shown in Figure 2. Figure 3 displays

the histogram of the reconstruction error for the domains inside

and outside the mask. The quality metrics and compute times

are specified in Table 3, which includes results for the 2D and 3D

benchmarks as well.

3.1.2 2D benchmark
Let f2D(x, y) be defined as follows:

f2D(x, y) =− a exp

(

−b

√

x2 + y2

2

)

− exp

(

cos(cx)+ cos(cy)

2

)

+ a+ exp(1)

(14)

on x, y :[−5, 5] × [−5, 5]. The interval is discretized into

200×200 points and it is assumed that no data is available for

x, y :[−0.5,−0.5]×[−0.5, 0.5]∪[−0.5, 0.5]×[2.0, 3.0]∪[2.0, 3.0]×
[2.0, 3.0]. The reconstruction results (parameters: a = 5, b = 0.2,

c = 1.5π , Nx = Ny = 11) are shown in Figure 4. Figure 5

displays the histogram of the reconstruction error, normalized

to the oscillation magnitude of the function, for the domains

inside and outside the mask. Figure 6 shows corresponding results

obtained using slower oscillations (c = 0.8π).

3.1.3 3D benchmark
Let f3D(x, y, z) be defined as follows:

f3D(x, y, z) =− a exp



−b

√

x2 + y2 + z2

3





− exp

(

cos(cx)+ cos(cy)+ cos(cz)

3

)

+ a+ exp(1)

(15)

on x, y, z :[−5, 5]×[−5, 5]×[−5, 5]. The interval is discretized into

200×200×200 points and it is assumed that no data are available

for x, y, z :[−0.5,−0.5] × [−0.5, 0.5] × [−0.5, 0.5] ∪ [−0.5, 0.5] ×
[2.0, 3.0]× [−0.5, 0.5]∪ [2, 3]× [2, 3]× [−0.5, 0.5]∪ [−0.5, 0.5]×
[−0.5, 0.5]× [2.0, 3.0]. The reconstruction results (parameters: a =
5, b = 0.2, c = 1.5π , Nx = Ny = Nz = 11) are shown in Figure 7.

Figure 8 displays the histogram of the reconstruction error, for the

domains inside and outside the mask.

3.2 Application to deformation data

Deformation imaging reveals how the brain pulsates over

a cardiac cycle due to transfer of blood and CSF between

cranial and spinal compartments, which affects anatomical

geometry and dielectric tissue properties, modulating the

head impedance. In consequence, measurement of head

impedance modulation can potentially be used to derive

non-invasive CC surrogates. Deformation imaging reveals

how the brain pulsates over a cardiac cycle due to transfer

of blood and CSF between cranial and spinal compartments,

which affects anatomical geometry and dielectric tissue

properties, modulating the head impedance. In consequence,

measurement of head impedance modulation can potentially

be used to derive non-invasive CC surrogates. Experimental

and modeling work by Spiegelberg et al. (2022) confirmed that

head impedance variations can be measured and are at least

partially of intracranial origin. A follow-up study Boraschi
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FIGURE 2

(a) Target function, masked raw data, and Fourier reconstructed data (Nx = 11). (b) Reconstruction deviations for the 1D benchmark (Equation 13

with a = 5, b = 0.2, c = 1.5π ).

FIGURE 3

Absolute di�erence between the target function and the Fourier reconstructed data for the 1D benchmark presented in Equation 13. (a) Distribution

of deviations within the mask. (b) Deviations in the reconstructed regions, where no data were available (“holes”). Note: The value range is 1.

et al. (2023) demonstrated posture-dependent changes in

the non-invasively measured intracranial pulse waveform,

providing further evidence that head impedance contains

physiologically relevant information. These findings provide

strong support for the feasibility of deriving meaningful,

biophysically grounded surrogates of CC from surface

electrode measurements. To translate this concept into a

quantitative method, a computational biophysical model was

developed Karimi et al. (2023) that relates small intracranial

displacements and dielectric property changes to features

of transient multi-contact head impedance variations. The

computational model combines brain surface displacement

fields over the cardiac cycle with electromagnetic simulations

to derive resulting transient impedance variations, before

deriving relationships between pulsation characteristics and

the measurable signal—hence the necessity to extract surface

motion fields from volumetric image data. However, deformation

imaging is notoriously unreliable at the brain-CSF interface

due to motion artifacts, dielectric-contrast-related noise, and

flow-related imaging distortions. To improve the low signal-

to-noise ratio of deformation data and replace unreliable data

TABLE 3 Summary of required computation times and reconstruction

deviation metrics for the three benchmarks, providing information about

speed and accuracy of the presented method.

Metric 1D 2D 3D

Fourier base fitting time 1.18 ms 49.5 ms 144’000 ms

Reconstruction time 0.19 ms 24.3 ms 1070 ms

Max. deviation in mask 0.003 0.05 0.04

Std. deviation in mask 0.002 0.01 0.007

Max. deviation outside

mask

0.04 0.09 0.05

Std. deviation outside mask 0.01 0.04 0.01

The reconstruction deviations can be interpreted in comparison to the value range of 1.

near brain-CSF interfaces, first masking is applied. Masking

excludes data outside the brain and within 3mm of its borders

(cortical surface and interface to ventricles). Subsequently, the

Fourier reconstruction method is employed for smoothing and

extrapolation-based reconstruction.
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FIGURE 4

Reconstruction deviations for the 2D benchmark (Equation 14 with a = 5, b = 0.2, c = 1.5π ). (a) Target function, (b) Masked raw data, (c) Fourier

reconstructed (Nx = Ny = 11) data, (d) Reconstruction deviations. Note the di�erent scale in (d).

FIGURE 5

Normalized absolute di�erence between raw data and reconstructed data for the 2D benchmark presented in Equation 14, expressed in terms of

oscillation range (i.e., 1). (a) Error within the mask. (b) Error within the holes.

The deformation data were acquired using a 7T MR scanner

and the DENSE method (Adams et al., 2020), for right-left,

anterior-posterior, and cranial-caudal gradient orientations (two

opposite gradient polarities were recorded per direction). The

resulting 4D data were large, comprising 320*190*320 pixels, 20

snapshots over the cardiac cycle, and 6 polarities. Background noise

was reduced by subtracting the data from two opposite polarities.

The Fourier basis fitting approach was applied for each time step

during the cardiac cycle and each direction (right-left, anterior-

posterior, and cranial-caudal). Figure 9 shows masked original

deformation data and the smoothed and reconstructed one (setting

Nx = Ny = Nz = 4) for one illustrative time step and brain slice.
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FIGURE 6

Reconstruction deviations for the 2D benchmark (Equation 14 with a = 5, b = 0.2, c = 0.8π ). (a) Target function, (b) masked raw data, (c) Fourier

reconstructed (Nx = Ny = 11) data, (d) reconstruction deviations. Note the di�erent scale in this figure (d). In this case, the maximal absolute

deviations were 0.006 and 0.053 within the masked domain and outside (“holes”), respectively, while the corresponding standard deviations were

0.001 and 0.009. The total value range is 1.

Fitting the Fourier basis took 1.9 s for computing the [A] matrix

(see Equation 8) and its SVD, which needs to be performed only

once, regardless of how many imaging time steps and movement

components need to be reconstructed. Computing the [B] matrix

and solving Equation 8 (i.e., base fitting) and reconstruction each

took 0.5 s per time step and directional component.

Importantly, image-based motion reconstruction is only

required during the development and validation of the CC

monitoring approach—once the required relationships have been

established, clinical applications of the non-invasive method will

no longer require personalized deformation imaging, which is

not readily available (certainly not in continuous monitoring

scenarios). Instead, readily accessible head impedance recordings

will be sufficient for measuring CC in individual patients.

4 Discussion

4.1 Complexity and timing

4.1.1 Exponential function evaluation
By precomputing the exponential functions, we reduce the

number of corresponding evaluations from (4Nx + 1) · (4Ny + 1) ·
(4Nz + 1) · Lx · Ly · Lz + (2Nx + 1) · (2Ny + 1) · (2Nz + 1) · Lx ·

Ly · Lz to (4Nx + 1) · Lx + (4Ny + 1) · Ly + (4Nz + 1) · Lz . The
required number is further reduced if some of the axes have equal

length. In addition, the operations can be efficiently vectorized in

NumPy, involving the exponential of three outer products.Without

precomputing the exponential functions, the matrix assembly time

in our implementation increases by about 50%.

4.1.2 Matrix computation
The calculations in Equation 10 involve Lx ·Ly · (4Nz+1)+Lx ·

(4Ny + 1) · (4Nz + 1) + (4Nx + 1) · (4Ny + 1) · (4Nz + 1) scalar

products, which is already an important complexity improvement

when compared to the Lx · Ly · Lz · (4Nx + 1) · (4Ny + 1) · (4Nz + 1)

complexity of a naive implementation. In addition, the Lx · Ly
scalar products used to compute Mz(x, y) involve the same vector

[ejkzi z1D ] and Nx of the scalar products have the vector [ejkyi y1D ]

in common. Thanks to current CPU architectures and advanced

compiler logics, these operations can be efficiently vectorized and

parallelized as 4Nz + 1, 4Ny + 1, and 4Nx + 1 tensor product

operations (tensordot fromNumPy) that each performs a reduction

along a spatial direction of Lx ·Ly ·Lz , Lx ·Ly · (4Nz+1), respectively

Lx · (4Ny + 1) · (4Nz + 1)-sized arrays. Similar considerations also

apply to Equation 11.
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FIGURE 7

Reconstruction deviations for the 3D benchmark (Equation 15 with a = 5, b = 0.2, c = 1.5π ). (a) Target function, (b) masked raw data, (c) Fourier

reconstructed (Nx = Ny = Nz = 11) data, (d) reconstruction deviations. All results are shown on the z = 0 plane.

FIGURE 8

Normalized absolute di�erence between raw data and reconstructed data for the 3D benchmark presented in Equation 15, expressed in terms of

oscillation range (i.e., 1). (a) Error within the mask. (b) Error within the holes.

4.1.3 Solving
We resort to SVD to ensure robust operation even when

the matrix conditioning prevents direct solving. SVD complexity

scales with the third order of the matrix dimension, i.e.,
(

(2Nx + 1)(2Ny + 1)(2Nz + 1)
)3
. Note, however, that this only

depends on the number of considered Fourier base vectors, which

is typically much smaller than the number of points in the spatial

domain. As mentioned earlier, SVD only needs to be performed

once, regardless of how many imaging time steps and movement

components need to be reconstructed.
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FIGURE 9

Masked deformation data and reconstructed one using Fourier base fitting (with Nx = Ny = Nz = 4) for one time step and one slice in the brain for

right-left, anterior-posterior, and cranial-caudal components. The white parts in the masked data are CSF close-by regions which need to be

extrapolated.

4.1.4 Repeated application
As mentioned earlier, it is only necessary to compute S and

[AA], and to perform the SVD and matrix inversion once for a

dataset with a constant mask, even if there are multiple time-steps,

deformation vector components, etc.

4.1.5 Performance and vectorization
The dimension dependence of the benchmark timings

presented in Table 3 reflects the increase in the number of points

from 200 to 2003 (in our specific case where Lx = Ly = Lz = 200)

and in the number of Fourier base vectors from 23 (2Nx + 1, with

Nx = 11) to 233. The latter aspect quickly dominates algorithmic

performance, since the complexity of SVD is O(n3), when n

represents thematrix dimension. Indeed, comparison of the 2D and

3D benchmark timings reveals an exponent of 2.5, which is slightly

lower than 3.0 (likely because of the non-negligible contribution

of better scaling algorithm components and of computational

overhead). A closer examination of timings revealed that the SVD

operation (implemented using JAX NumPy’s linalg svd) in the 3D

benchmark accounts for over 92% (133 s) of the computation time.

The remaining 8% (11 s) is spent precomputing the exponential

functions and calculating the various matrix and vector elements

of the linear system. Without vectorization, the duration of this

part increases to a dominant 843 s, which represents a 75-fold

slowdown. The significantly reduced run-time of the deformation

data processing, compared to the 3D benchmark—despite the

increased number of points—is due to the reduced number of

considered Fourier modes (Ni = 4). When varying the number of

Fourier modes in the 3D benchmark from (2 · 11 + 1)3 = 12167

to (2 · 10 + 1)3 = 9261 and (2 · 8 + 1)3 = 4913, a scaling

exponent of 3.5 (R2 = 99%) is found for the SVD part and a
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FIGURE 10

The time required for computing the SVD and performing the other

parts of the Fourier fitting procedure for the 3D benchmarks. The

x-axis represents the number of Fourier modes

((2Nx + 1)(2Ny + 1)(2Nz + 1)). The data is presented in a log-log plot

together with linear regression lines whose slopes reveal the

complexity orders of the implemented methods.

scaling exponent of 1.0 for the rest (mostly matrix/vector element

computations), in close agreement with the theoretical complexities

of 3 and 1 (see Figure 10). After compensating the SVD and matrix

assembly timings of the benchmarks for their expected scaling as

a function of the number of points and Fourier modes—assuming

unsuccessful vectorization—we obtain strongly negative regression

slopes (−1.3 as a function of the number of Fourier modes, -0.8

as a function of the number of spatial points). These values are a

testimony to the gain offered by vectorization.

4.2 Choice of N and padding

The choice of Nx, Ny, and Nz is application-specific. Increasing

these values reduces smoothing, increases fitting fidelity (higher

spacial frequencies are captured), and permits more accurate

extrapolation, (albeit generally over shorter distances; interpolation

is typically more robust). On the other hand, using fewer modes

enhances robustness to noise through low-pass filtering and

reduces computational cost. In other words, cut-off selection

involves a trade-off between robustness, noise suppression, and

computational efficiency versus achievable resolution and fidelity,

and is often guided by knowledge about relevant physiological

and/or anatomical length scales, e.g., in clinical applications.

As expected, the periodicity of the Fourier basis results in

fitted functions that reflect that periodicity. When performing

extrapolation, it is therefore important to insert sufficient padding

to avoid overly constraining the extrapolation by forcing it to fit

a periodic boundary condition. The padding in turn increases the

length of the spatial Fourier basis oscillations relative to the extent

of the data, such that large padding can necessitate an increase of

Ni. In the case of the deformation data processed here, a grid extent

increase by 10% was found to yield satisfactory results.

4.3 Robustness to di�erent missing data
patterns

In practical applications, data incompleteness may arise

in various forms—ranging from random dropout, to spatially

structured missingness, or large contiguous gaps. The developed

method is capable of handling all of these, as long as the

characteristic length-scale of relevant features is not smaller than

the gap size. If critical high-frequency content is absent—due

to large contiguous gaps –, accurate reconstruction becomes

fundamentally unattainable. This limitation is not unique to our

method and can only be overcome if additional prior knowledge

is available. Therefore, the size and spatial distribution of the

missing regions, as well as the expected spectral content of the

underlying data, must be considered before applying this method.

The maximum tolerable block size before significant degradation

occurs is application-specific and depends on both the frequency

characteristics of the data and the desired level of reconstruction

detail or smoothness.

4.4 Limitations

While the proposed method is robust and efficient for

structured grids with arbitrary masking, the following main

limitations should be noted. First, the method assumes that the

underlying distribution can be well represented by a truncated

Fourier basis. This acts as an inherent low-pass filter, which is

beneficial for denoising but may limit the ability to reconstruct

high-frequency features or sharp discontinuities when they are

genuinely present in the data. Second, the optional SVD-based

regularization step, while effective in stabilizing ill-conditioned

systems, becomes computationally demanding as the number of

Fourier modes increases, and may present a bottleneck for large-

scale applications. It is also important to note that the method

is designed specifically for structured (voxel-based) data, where

acceleration strategies such as vectorization and precomputation

are most effective. Generalizing it to unstructured grids would

require a reformulation of the matrix construction and solution

process and is not within the current scope of this work.

5 Conclusion

When fitting a Fourier basis to structured data known or

defined on a subset of the grid points (mask), a minimization

problem must be solved, the Fourier basis loses its unitary

property, and determination of the Fourier coefficients becomes

non-trivial and computationally expensive. To address this,

we developed a library that reduces the number of required

operations, minimizes the evaluation of costly non-linear

functions, and permits the exploitation of computationally efficient

vectorization of vector and matrix operations while reducing the

memory footprint. SVD can optionally be employed as part of
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the solving step to provide regularization when needed—as is

often the case. However, SVD quickly becomes the performance

limiting factor, as the number of considered Fourier modes

increases. The developed method was verified using Ackley

function benchmarks and demonstrated in a deformation

image processing application. The library has been made

publicly available.

Data availability statement

Implementation of the library is available on GitHub,

providing open access to the source code. The repository includes

documentation to guide users in installing, configuring, and

utilizing the library effectively. Researchers and developers can

access the library at https://github.com/ITISFoundation/MIFT.

Additionally, real deformation data has been published at https://

doi.org/10.5281/zenodo.10590047, providing data for utilizing the

library in real-world applications.
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