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Low-field MRI is gaining interest, especially in low-resource settings, due to its

low cost, portability, small footprint, and low power consumption. However, it

su�ers from significant noise, limiting its clinical utility. This study introduces

native noise denoising (NND), which leverages the inherent noise characteristics

of the acquired low-field data. By obtaining the noise characteristics from corner

patches of low-field images, we iteratively added similar noise to high-field

images to create a paired noisy-clean dataset. A U-Net based denoising

autoencoder was trained on this dataset and evaluated on three low-field

datasets: the M4Raw dataset (0.3T), in vivo brain MRI (0.05T), and phantom

images (0.05T). The NND approach demonstrated improvements in signal-to-

noise ratio (SNR) of 32.76%, 19.02%, and 8.16% across the M4Raw, in vivo and

phantom datasets, respectively. Qualitative assessments, including di�erence

maps, line intensity plots, and e�ective receptive fields, suggested that NND

preserves structural details and edges compared to random noise denoising

(RND), indicating potential enhancements in visual quality. This substantial

improvement in low-field imaging quality addresses the fundamental challenge

of diagnostic confidence in resource-constrained settings. By mitigating the

primary technical limitation of these systems, our approach expands the clinical

utility of low-field MRI scanners, potentially facilitating broader access to

diagnostic imaging across resource-limited healthcare environments globally.
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1 Introduction

Magnetic resonance imaging (MRI) is a critical component of modern medicine,

contributing considerably to advances in both fundamental research and clinical patient

treatment. However, over 85% of the MRI on the market are high-field (HF) scanners

(B0 ≥ 1.5T) which are relatively expensive, occupy large footprints, and consume high

power, rendering them inaccessible especially in low-income settings (Anazodo et al.,

2023). This has drawn a renewed interest in low-field (LF) MRI, operating at magnetic

fields (B0 < 1T), owing to their low cost, portability, small footprint, and low power
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consumption. However, LF MRI scanners suffer significantly from

reduced signal-to-noise ratio (SNR) per unit scanning time (Arnold

et al., 2023; Marques et al., 2019; Geethanath and Vaughan, 2019).

Achieving higher SNR on such scanners requires longer scan times

constrained by patient tolerance and clinical needs (Marques et al.,

2019). Consequently, images acquired with low-field (LF) MRI are

typically low-resolution, with limited clinical utility (Arnold et al.,

2023). There is, thus, a need to develop mechanisms to improve the

image quality of LF MRI while maintaining their affordability and

clinical feasibility.

One approach to improve the SNR of LF MRI images is to

reduce the noise using image-denoising methods. Traditionally,

simple linear Gaussian and average filters, and non-linear

median and bilateral filters have been used to denoise brain

MRI images (Saladi and Prabha, 2017; Suhas and Venugopal,

2017; Shedbalkar et al., 2021). Some approaches adopt more

involved algorithms such as adaptive filters, k-SVD, non-local

means, anisotropic diffusion, and PCA-based methods to improve

denoising performance (Tong et al., 2016; Saladi and Prabha, 2017).

Despite their robustness, traditional approaches heavily rely on

manually selected hyperparameters, which results in suboptimal

denoising models, and often require re-optimization at test time,

which is time-consuming (Zhang et al., 2017).

Over the past two decades, deep learning approaches have

been proposed for LF MRI denoising, outperforming traditional

methods (El-Shafai et al., 2023; Lee et al., 2017). These approaches

require a paired dataset of noisy and corresponding clean MRI

images to be trained. However, given that over 85% of the MRI

scanners on the market are HF scanners, there is a lack of LF

MRI, and even more scarce paired LF and HF MRI data (Anazodo

et al., 2023). As a result, various proposed LF denoising approaches

rely on simulating noisy LF data from the abundant open-source

HF data (Le et al., 2021; Vega et al., 2023). These approaches

generally simulate random noise following a Gaussian distribution

with the expectation that this noise is representative of the noise

in the LF images. However, noise in LF MRI follows a Rician

distribution, as shown in Figure 1, andmodels trained on LF images

simulated with Gaussian noise are bound to achieve suboptimal

performance (Gudbjartsson and Patz, 1995).

Geethanath et al. (2021) proposed a native noise denoising

network (NNDnet) that leverages the native noise inherent in low-

field MRI images. In this approach, the noise is obtained directly

from the low-field MRI images and iteratively added to the high-

field data to generate a training dataset to train the NNDnet. Their

approach achieves a PSNR of over 38dB on the simulated data

and image entropy greater than 4.25 on actual 0.36T MRI images.

This work shows promising performance for using native noise,

however, further investigation is required to assess the performance

of such native noise-denoising approaches at very low-field MRI

(0.05T), for both in- and out-of-distribution images.

In this work, we extend and demonstrate native noise denoising

to 0.05T by analyzing and modeling noise from a 0.05T scanner

and using it to train a robust deep-learning algorithm for denoising

very low-field MRI images. We evaluate the algorithms on in-

distribution and out-of-distribution data and demonstrate that;

(1) models trained on native noise outperform those trained on

Gaussian noise, and (2) patch-wise denoising outperforms image-

wise denoising.

2 Methods

Our approach consists of three stages: noise modeling, model

training, and inference, as shown in Figure 2. In the noise modeling

stage, we determine the noise characteristics of the target LF MRI

images and simulate this noise in HF MRI images to create a

paired dataset of simulated noisy HF images and original clean

HF images. During the model training stage, we employ a patch-

wise approach where patches of size N ×N are randomly extracted

from the simulated noisy HF images and their corresponding

clean HF patches. This method ensures diverse training samples,

enhancing the model’s robustness to various noise variations in the

MRI images.

The denoising algorithm is trained on these patches to learn

effective noise reduction for small image regions. In the inference

stage, the entire LF image from either of the three datasets is input

into the trained model for denoising, leveraging the patch-wise

training to enhance overall image quality. This full-image inference

approach avoids potential artifacts from stitching denoised patches

together, ensuring seamless and accurate denoising.

2.1 Noise simulation

Noise in low-field MRI is predominantly thermal noise arising

from the resistance in the radio frequency (RF) coils, with the body

noise being negligible (Koonjoo et al., 2021). This noise follows

a Gaussian distribution in the real and imaginary components

of LF MRI images due to the linearity and orthogonality of the

Fourier transform (Chaudhari and Kulkarni, 2021; Gudbjartsson

and Patz, 1995). However, upon non-linear transformation from

a complex to a magnitude image, this noise generally adopts a

Rician distribution (Chaudhari and Kulkarni, 2021; Gudbjartsson

and Patz, 1995).

Low-field MRI is also affected by electromagnetic interference

(EMI), which can alter the underlying noise distribution, and

EMI correction remains an active area of research (Bian et al.,

2024). This study focuses on reducing thermal noise and assumes

minimal EMI.

2.1.1 Native noise modeling
To accurately simulate Rician noise (referred to as Native noise

in this work), we iteratively add random noise to the real and

imaginary components of the HF complex image until the SNR of

the simulated LF image matches that of the LF images of interest.

We assume that adding noise in a single step might not yield

accurate simulations due to potential variations in signal levels

across different images in the clean dataset, even if generated by the

same scanner. This iterative process allows us to closelymonitor the

SNR and make precise adjustments, which we believe could result

in better simulations.

Determining the step size for each iteration involved

experimenting with different values. This ensured that the SNR

of each simulated image was within a close range of our target

SNR. Additionally, we aimed to balance simulation speed, ensuring

it was optimal for precise and efficient noise addition. This
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FIGURE 1

Noise characteristics in MRI images across di�erent field strengths: the top row displays brain MRI images, while the bottom row shows

corresponding histograms of pixel intensities from four corner patches. From left to right: First column shows a high-field (3T) image with minimal

noise. Second and third columns display multi-channel acquisitions at 0.3T using 3 NEX and 1 NEX respectively, both exhibiting Gaussian-like noise

distributions. Fourth column presents a single-coil acquisition at 0.3T, demonstrating a shift toward Rician distribution. Fifth and sixth columns show

in vivo and phantom images at very low field (0.05T), both following Rician distributions. This comparison illustrates how noise characteristics vary

with field strength, acquisition method, and number of excitations in MRI.

FIGURE 2

Overview of the native noise denoising approach, divided into three key stages: (a) modeling native noise – simulation of noise characteristics from

low-field (LF) MRI images followed by adding the simulated native noise to the clean high-field (HF) MRI images to generate a noisy-clean paired

dataset. (b) training denoising-model – the model uses the noisy-clean paired dataset to process the noisy images and attempt to recover the clean

images, which are then compared to the ground truth using a loss function (c) denoising LF images – application of the trained model to various

low-field MRI datasets, including M4Raw, in vivo, and phantom images, to assess its denoising performance on unseen data.

dynamic adjustment of step size is intended to ensure accurate and

consistent noise simulation, potentially leading to simulated LF

images that closely match the characteristics of real LF images.

We adapt the open-source LF simulator from the Intelligent

MR Framework lab for the noise simulation (Aggarwal et al., 2023).

The image SNR is obtained by dividing the mean of the signal in

the region of interest by the standard deviation of the noise in the

corner patches (Dougherty, 2009). At each iteration, random noise,

scaled by a factor ρ, is added to the complex HF image following

Equations 1, 2. The choice of ρ determines the speed and accuracy

of the simulated noisy images with a lower ρ yieldingmore accurate

noise simulation but at a higher time cost as shown in Figure 3. The
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FIGURE 3

E�ect of ρ on speed and accuracy for a single slice: accuracy is

measured as the absolute error between the simulated SNR and the

target SNR. Generally, lower values of ρ yield more accurate

simulations of the target SNR but at an increased simulation time.

The error curve also highlights the stochasticity of the noise

simulation.

final simulated LF magnitude image, Is, is obtained from the real

and imaginary components at the last iteration (Equation 3).

Iri = Iri−1 + ρ · n1σ
(1)

Imi = Imi−1 + ρ · n2σ
(2)

Isi =
√

Ir2i + Im2
i (3)

where n1 and n2 are drawn from zero-mean Gaussian distributions

with the same standard deviation σ given by Equation 4. Two

Gaussian distributions are used to ensure that the noise added to

each component is independent.

p(x) = 1√
2πσ 2

exp
− x2

2σ2 (4)

In scenarios where only magnitude HF images are available, a

complex image is approximated from the HF images with Ir0 =
Im0 = Ic/

√
2. Note that Ic is scaled appropriately to ensure that

it can be obtained back using the magnitude of the estimated

complex image.

2.1.2 Random noise modeling
To simulate Gaussian noise (referred to as random noise

in this study), we add noise directly to the magnitude images.

Specifically, the random noise is generated using a zero-mean

normal distribution with standard deviation σ . The noise N is

added to the magnitude image Im to produce a noisy image I′m. This
process can be expressed by the following equation:

I′m = Im + N (5)

where N is a random noise component drawn from a zero-mean

Gaussian distribution:

N ∼ N (0, σ 2) (6)

The resulting noisy image I′m obtained by directly adding the

noise N to the original magnitude image Im. This method contrasts

with native noise simulation, where noise is added to the real

and imaginary components of the complex image before taking

the magnitude. The simulated noisy data for random noise and

native noise thus have different distributions. Our study compares

the performance of models trained on these two types of noise to

evaluate their effectiveness in denoising LF MRI images.

2.2 Model training

The simulated LF data is paired with the cleanHF data and used

to train a denoising autoencoder to learn a non-linear mapping

from the noisy images to the clean image (Goodfellow et al.,

2016). Ideally, any suitable denoising autoencoder can be used,

but we adopt the U-Net architecture (Ronneberger et al., 2015)

originally developed for medical imaging applications and is robust

for variousmedical image-to-image prediction tasks (Zbontar et al.,

2019). The U-Net is a fully convolutional neural network consisting

of a contracting path, that extracts features from the input image,

and an expanding path that reconstructs the desired output from

the features as shown in Figure 4.

The model has skip-connections between corresponding

contracting and expanding paths to propagate high-resolution

information from the contracting path to the expansion path.

We follow a patch-wise training approach, with square patches

of size 64, for the model to learn the noise distribution rather than

the brain structure in the HF data. The patch size was determined

empirically and yielded the best results as shown in Table 1. In the

U-Net architecture, the number of channels is doubled every after

the max-pooling operation. The original U-Net used 64 channels

in the first layer for input images of size of 572 × 572. However,

since we use patches of size 64× 64 (about 8 times smaller than 572

× 572) as inputs to the model, we correspondingly scale down the

number of channels in the first convolutional block by a factor of 8.

The model was trained on the IXI dataset which contained

1,952 image slices with dimensions 256 × 256, which yielded

1,0525 image patches of size 64 × 64. The dataset was split into

85% training, 5% validation, and 10% testing. The model was

trained with the mean squared error (MSE) loss function, Adam

optimizer (Kingma and Ba, 2017) with the default learning rate of

0.001, and a batch size of 64–limited by computational constraints.

MSE measures pixel-wise intensity differences between the model

prediction, ŷ, and the ground truth clean image, y, following

Equation 7:

MSE(ŷ, y) = 1

N

∑

(ŷi − yi)
2, (7)

where N is the number of pixels in each image. PSNR measures the

power of themaximumpossible intensity in the ground truth image

relative to the power of the MSE between the model prediction and

ground truth, following Equation 8:

PSNR(ŷ, y) = 10 log10
max(y)2

MSE(ŷ, y)
. (8)

We select the model that yields the highest peak-signal-to-noise

ratio (PSNR) on the validation dataset during training. We also use
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FIGURE 4

U-Net architecture: the model takes as input a square patch of size 64 × 64, extracts features through the contracting path, and reconstructs the

denoised image through the expanding path. We use 8 channels in the first convolution block and double the channels after each block, similar to

the original U-Net architecture.

TABLE 1 Test results: patch-wise training achieves a better SSIM on

unseen HF test data across all models, regardless of the noise and dataset

used.

Datasets Patch size PSNR SNR SSIM

(a) Random noise denoising (RND)

Phantom 64 40.34 56.54 0.97

128 40.73 57.61 0.96

256 38.8 58.17 0.85

In vivo 64 32.34 54.47 0.91

128 32.71 52.35 0.90

256 31.29 45.99 0.64

(b) Native noise denoising (NND)

Phantom 64 40.71 56.97 0.97

128 41.39 57.00 0.97

256 37.95 48.86 0.72

In vivo 64 31.57 51.55 0.91

128 32.24 55.32 0.90

256 31.11 54.37 0.64

Corresponding peak signal-to-noise ratio (PSNR) and signal-to-noise ratio (SNR) in dB are

also included.

the structural similarity index (SSIM) to assess model performance

on the high-field images. The SSIM between two images, x and y, is

calculated as (Horé and Ziou, 2010):

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ 2
x + σ 2

y + C2)

where µx and µy are the mean intensities, σ 2
x and σ 2

y are the

variances, σxy is the covariance of the image patches, and C1 and

C2 are constants to stabilize the division.

We developed the model using the TensorFlow

framework (Abadi et al., 2015) and trained on Google Colab’s

Tesla T4 12GB graphical processing units (Bisong, 2019).

2.3 Evaluation

We used three open-source datasets in this study: the IXI

brain development dataset, the 0.3T in vivo M4Raw dataset (Lyu

et al., 2023), and a 0.05T phantom dataset. We also evaluated

with a sample 0.05T in vivo dataset collected locally. The IXI

dataset is publicly available and can be accessed at https://brain-

development.org/ixi-dataset/. The dataset consists of 600 MR

images collected from normal healthy subjects at three different

hospitals in London using 1.5T and 3T scanners.

The data was collected for various MRI sequences but in this

study, we used only the T2W images given that the low-field data

available consisted of only T2W images. We randomly selected

15 volumes due to computational constraints. Each volume had

about 120 slices resulting in a total of 1,812 images. Throughout

the proceeding text, we refer to this data as the high-field

(HF) MRI data. This data was used for training the machine

learning algorithms.

The M4Raw dataset (Lyu et al., 2023) was obtained from 183

healthy volunteers using a four-channel 0.3T head coil. It comprises

T1-weighted, T2-weighted, and fluid-attenuated inversion recovery

(FLAIR) axial multi-repetition images.

In this study, we used the single-channel images to match

the single-channel acquisition at low field. The single-channel
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FIGURE 5

Noise simulation: this figure shows SNR and noise levels plotted as a function of slice number for three di�erent datasets (M4Raw, in vivo, and

Phantom), along with their respective simulated counterparts. The first row compares SNR across slices for the M4raw, in vivo, and phantom

datasets, while the second row presents the corresponding noise levels. The third and fourth rows illustrate the same metrics as the plots above

respectively for the simulated datasets. Shaded regions represent the standard deviation around the mean SNR, highlighting variability across slices.

The results reveal di�erences in SNR trends and noise consistency between the real and simulated datasets.

FIGURE 6

Patch-wise training: here, we show qualitative results for di�erent patch sizes used during training. Models trained patch-wise preserve brain

structure for both random noise denoising (RND) and native noise denoising (NND). The models trained on the full image (patch size of 256 × 256)

distort the structure in the images as seen in the white matter regions.
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TABLE 2 Performance on low-field data: native noise denoising (NND) achieves higher average SNR values as compared to random noise denoising

(RND) across all three datasets.

Approach M4Raw In vivo Phantom

SNR SNR Gain SNR SNR Gain SNR SNR Gain

RND 38.80 (38.53, 39.08) +22.32 35.32 (32.14, 38.51) +15.46 31.24 (30.76, 31.70) +4.89

NND 51.51∗ (51.31, 51.71) +35.03 42.04* (40.49, 43.58) +22.17 33.79* (33.27, 34.27) +7.43

% improvement +32.76% +19.02% 8.16%

∗Indicates statistically significantly higher performance (p < 0.05). % improvement = (NND− RND)/RND.

TABLE 3 Detailed in vivo performance: NND exhibits consistent and reliable performance across di�erent views of the in vivo data, unlike RND whose

performance drastically drops for sagittal view.

Approach Axial Sagittal Coronal

SNR SNR Gain SNR SNR Gain SNR SNR Gain

RND 45.68 (43.73, 47.64) +24.41 14.09 (12.53, 15.65) –3.19 46.20* (45.16, 47.25) +25.16

NND 46.22 (43.73, 47.64) +24.95 38.03* (35.08, 40.99) +20.76 41.86 (39.82, 43.89) +20.81

% improvement +1.18% +170.00% –9.39%

∗Indicates statistically significantly higher performance (p < 0.05). % improvement = (NND− RND)/RND.

images have an average SNR of 7.15 (17.06 dB) and noise standard

deviation of 0.024 as shown in the first column, second row

(Figure 5).

The 0.05T human brainMRI dataset was obtained from a single

healthy subject, after informed consent, using the same scanner as

the phantom data with a three-dimensional (3D) turbo-spin echo

(TSE) with a repetition time (TR) of 2500ms and an echo time

of 250ms. The data consisted of three orientations; axial, sagittal,

and coronal, with a resolution of 2 × 2 × 5 mm3. Throughout

the proceeding text, this data is referred to as the in vivo dataset.

The data has an average SNR of 4.17 and a noise standard

deviation of 0.04 as shown in the second column, second row

(Figure 5).

The phantom dataset comprises T1-weighted axial Pro-MRI

phantom images acquired using a single-coil 0.05T Multiwave

MGNTQMRI scanner during a repeatability study (Aggarwal P. P.

K. et al., 2023). The images used were not corrected for geometric

distortion. We refer to this dataset as phantom data throughout the

proceeding text. The images in the phantom dataset have an average

SNR of 20.96 and a noise standard deviation of 0.018 as shown in

the third column, second row (Figure 5). All the LF data was used

to simulate noise in the HF data.

3 Results and discussion

3.1 E�ect of patch size

Models trained using a patch-wise approach preserve brain

structure while those trained on full images tend to distort brain

structure as shown in Figure 6. Models trained using a patch size

of 64 yielded the highest structural SSIM on the test data as seen in

Table 1.

This performance can be attributed to the model’s limited

field of view, forcing it to learn to remove noise within a

local region as opposed to learning the brain structure. It can

also be noted that SSIM gradually decreases with increasing

patch size.

3.2 Performance on LF data

The weights of the models trained with patches of 64 × 64

were frozen and evaluated on the LF datasets. We tabulate the

mean (95% CI) slice-wise SNR(dB) for both methods across the

different in Table 2. We performed a paired t-test, with a p-

value threshold of 0.05, to compare the performance of NND and

RND. Native noise denoising (NND) achieves significantly higher

SNR compared to RND across all the datasets. Specifically, NND

outperforms RND by 32.76%, 19.02%, and 8.16%, on the M4Raw,

in-vivo, and phantom datasets, respectively. The NND model was

also evaluated on out-of-distribution axial, coronal, and sagittal

views of the in vivo dataset as shown in Table 3. Despite RND

outperforming NND on the coronal view, NND yields consistent

performance across all three views.

Qualitative assessment of the models shows the superiority of

NND over RND in preserving image structure across all three

datasets, as seen in Figures 7, 8. Difference maps (Figure 7) indicate

that NND maintains sharper tissue boundaries while effectively

reducing noise, particularly at the white-gray matter interface.

The line intensity plots further confirm that NND preserves

steep gradient transitions at tissue boundaries, whereas RND

tends to smooth these transitions, potentially leading to structural

information loss. Additionally, the effective receptive field (ERF)

analysis (Figure 7) shows that NND activates more distinctly along

anatomical structures, whereas RND exhibits diffuse activations,

further demonstrating its advantage in structural preservation.

Furthermore, qualitative evaluation of NND across individual

plane views of the vivo dataset further highlights the superiority

of NND over RND (see Figure 9) where we see vague boundaries

for RND as compared to NND, with RND yielding utterly hazy

boundaries for the sagittal view.
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FIGURE 7

Qualitative evaluation on low-field MRI data. The figure compares denoising performance across three datasets (M4Raw, in vivo, Phantom). The first

column shows the Input image patch, followed by di�erence maps for the Random Noise Denoising (RND-Di�) and Native Noise Denoising

(NND-Di�). The fourth and fifth columns depict the E�ective Receptive Fields (ERF) corresponding to these di�erence maps, with the NND model

demonstrating structural preservation, particularly around edges and the region of interest. The color scale reflects activation intensity, from high

(red) to low (blue).

We further evaluated the models trained with noise from the

in vivo dataset, on the phantom dataset to qualitatively assess

how well they would preserve structure in the images. It can be

seen from Figure 10 that the model distinctly activates for the

background including within the phantom itself. It can also be

seen that even when the mesh in the phantom is marred by noise,

NND still manages to activate in such a way that the background

mesh structure is preserved while greatly reducing the noise in the

surrounding regions. From the line intensity plots in Figure 10,

it can be seen that NND achieves sharper cut-offs at the edges

compared to RND where the transition between the image and the

background is more gradual. Such slight differences in gradient can

result in rather significant differences in perceived image quality.

4 Discussions and conclusions

This study extends the application of native noise modeling

in denoising low-field MRI images. We evaluated the native noise

denoising (NND) approach across three datasets: the 0.3T M4Raw

dataset, 0.05T in vivo brain MRI, and 0.05T phantom images. Our

results demonstrate that the NND approach generally outperforms

random noise denoising (RND), achieving statistically significant

SNR improvements of 32.76%,19.02%, and 8.16% for the M4Raw,

in vivo and phantom datasets respectively. Qualitative assessments

further confirm NND’s superior capability in preserving structural

details and edges, particularly evident in the effective receptive

fields and the difference maps analysis (Figures 7, 8).
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FIGURE 8

Comparison of denoising techniques across di�erent MRI datasets for full images. The figure displays results from three datasets: (a) M4Raw, (b) In

vivo, and (c) Phantom. Each dataset includes the Input image (top row), followed by outputs from the Random noise Denoising (RND, middle row)

and the Native noise Denoising (NND, bottom row). The figure also depicts their respective di�erence maps to highlight the denoising e�cacy.

FIGURE 9

Out-of-distribution evaluation: the model trained on in vivo axial noise was evaluated on sagittal and coronal images. The di�erence maps indicated

NND’s (bottom row) superiority over RND (top row) in preserving brain structure across all views distinctly evident around the edges.

While conventional denoising approaches for low-field MRI

(<0.1T) primarily rely on Gaussian noise assumptions, our work

demonstrates the advantages of modeling the inherent Rician

distribution characteristic of single-coil acquisitions (Figure 1).

This approach addresses a critical gap in current methods, where

traditional Gaussian-based denoising techniques often fail to

account for the unique noise characteristics of very low-field

systems. Our results indicate the importance of accurate noise

modeling in improving image quality, particularly in systems where

SNR is inherently limited (Tables 2, 3)

However, our approach has several important limitations that

have to be considered. First, we assume minimal EMI noise,

which may not reflect various real-world imaging environments,

particularly in settings without magnetic shielding. Second, the

scarcity of large low-field MRI datasets compared to high-field

MRI (B0 ≥ 1.5T) limits comprehensive validation. Third, our
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FIGURE 10

Edge preservation assessment: the model trained with noise from in vivo data is evaluated on phantom data from the same scanner. The results in

the image above show a comparison between native noise denoising (NND) and random noise denoising (RND). In the top row, zoomed regions

from a sample image demonstrate edge preservation for both NND and RND after model prediction. Comparatively, NND shows better edge

preservation than RND, as evidenced by the e�ective receptive fields. In the bottom row, line intensity plots across the noisy patch (blue line) and

corresponding patches from the predictions (orange line) for both NND and RND further show that NND yields sharper edge roll-o�s (black arrows).

evaluation currently lacks pathological cases, as we have focused

primarily on healthy subjects and phantom data. This limitation is

particularly significant for clinical translation because pathological

conditions can present unique imaging challenges–lesions, tumors,

and other abnormalities may alter local tissue contrast and

introduce additional complexity to the denoising task. The absence

of such cases in our validation means that we cannot yet guarantee

NND’s performance in preserving subtle pathological features that

could be critical for diagnosis. In addition, different pathologies

may present varying noise characteristics that our current model

is not trained to handle.

Building on these initial findings, our current work focuses

on evaluating NND across multiple neural network architectures

(including transformers, GANs, and ResNets) to validate that the

benefits of native noise modeling are architecture-independent and

to identify optimal architectures for different clinical scenarios. We

are expanding our evaluation to include a larger cohort of in vivo

subjects–both healthy volunteers and patients–and extending the

application of NND to other anatomical regions beyond the brain,

such as the knee. These ongoing studies aim to refine our denoising

approach and confirm its robustness and versatility.

Future work will involve integrating NND into real-time

image reconstruction pipelines and assessing its clinical utility in

multi-site settings, particularly in resource-limited regions. Our

current established collaborations with a newly established

MRI research laboratory in Uganda and Bangladesh will

facilitate the deployment of these advancements, ultimately

improving the accessibility and quality of low-field MRI for

underserved populations.
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