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Abnormalities and alterations in the glycolytic pathway in the pathology of 
neurodegenerative diseases and brain aging have received much attention, as 
clinical applications of proton-based magnetic resonance spectroscopy (MRS) have 
recently illuminated the elevation of lactate concentrations in the brains of patients 
with neurodegenerative diseases, including Alzheimer’s disease. Hyperpolarized 
[1-13C]pyruvate MRS has shown promise for neurological applications because it 
enables the real-time in vivo detection of glycolysis and oxidative phosphorylation 
flux. In studies of the mouse brain using hyperpolarized [1-13C]pyruvate, there are few 
reports that the signal of [13C]bicarbonate, a product of oxidative phosphorylation 
metabolized from [1-13C]pyruvate, was detected using MR spectroscopic imaging 
(MRSI) that allows spatial mapping of metabolism, although there have been 
reports of [13C]bicarbonate signals being detected by pulse-acquire sequences 
in the entire brain. In the present study, we compared hyperpolarized [1-13C]
pyruvate metabolism between the brains of awake and isoflurane-anesthetized 
mice using a custom-made awake mouse restraint device with MRSI. Although 
the signal for [1-13C]lactate, a product of glycolysis metabolized from [1-13C]
pyruvate, was detectable in multiple brain regions that include the orbitofrontal 
cortex and hippocampus in both awake and anesthetized mice, the signal for 
[13C]bicarbonate metabolized from [1-13C]pyruvate was only detectable in the 
brains of awake mice. Moreover, a comparison of hyperpolarized [1-13C]pyruvate 
metabolism in young and aged mouse brains using awake MRSI detected age-
related decreases in oxidative phosphorylation flux in brain regions that include 
the hippocampus with variations in the extent of these changes across different 
brain regions. These results demonstrate that hyperpolarized [1-13C]pyruvate MRSI 
under awake conditions is useful for the spatial detection of abnormalities and 
alterations in glycolysis and oxidative phosphorylation flux in the brains of mice. 
Thus, the use of hyperpolarized [1-13C]pyruvate MRSI has potential in pathological 
and mechanistic studies of brain diseases and brain aging.
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1 Introduction

Magnetic resonance spectroscopy (MRS) can distinguish between 
several individual metabolites based on their chemical shifts, allowing 
for the non-invasive assessment of the metabolic state of tissues. 
Abnormalities and alterations in the glycolytic pathway in the 
pathology of neurodegenerative diseases and brain aging have 
received much attention, as clinical applications of proton-based MRS 
have recently illuminated the elevation of lactate concentrations in the 
brains of patients with Alzheimer’s disease and progressive 
supranuclear palsy (Hirata et al., 2024a, 2024b). 13C MRS provides 
detailed information about metabolic flux, owing to its ability to 
provide information on the conversion of injected 13C-labeled 
substrates to metabolites (Shulman and Rothman, 2001). However, the 
low sensitivity and relatively low concentrations of metabolites, which 
make spatial mapping of metabolism almost impossible, have been a 
weakness of 13C MRS. Recently, hyperpolarization methods, such as 
dissolution dynamic nuclear polarization (dDNP), have improved the 
transient sensitivity of 13C-labeled substrates and metabolites by more 
than 10,000-fold, making it possible to detect and image their 
metabolic flux in real time using 13C MRS (Ardenkjaer-Larsen et al., 
2003; Eichhorn et al., 2013).

Pyruvate plays a central role in the glycolytic pathway as a 
crossing point between anaerobic and aerobic metabolism at the end 
of the pathway. The neurological applications of hyperpolarized (HP) 
[1-13C]pyruvate MRS have shown great promise, and preclinical 
development and clinical applications are currently underway (Le 
Page et al., 2020; Li et al., 2021; Chaumeil et al., 2024). Human studies 
using HP [1-13C]pyruvate suggest that brain pyruvate metabolism 
through the formation of both lactate and bicarbonate, products of 
glycolysis and oxidative phosphorylation, respectively, is 
systematically observed (Park et al., 2018; Grist et al., 2019, 2020; 
Hackett et al., 2020; Lee et al., 2020). In a mouse brain study using HP 
[1-13C]pyruvate, there were few instances whereby the signal of [13C]
bicarbonate metabolized from [1-13C]pyruvate was detected using MR 
spectroscopic imaging (MRSI) that allowed spatial mapping of 
metabolism, although there have been reports of signals of [13C]
bicarbonate metabolized from [1-13C]pyruvate being detected using 
pulse-acquire sequences in the entire brain (Eichhorn et al., 2013; 
Choi et  al., 2018). One potential explanation for the differences 
between species in the detection of HP [1-13C]pyruvate metabolite 
signals in the brain is anesthesia. In clinical HP 13C MRS studies, 
patients are usually awake, whereas in preclinical studies, animals are 
anesthetized for immobilization. However, anesthesia can have 
profound effects on energy metabolism. The side effects of isoflurane 
anesthesia include depressed heart and breathing rates, dose-
dependent vasodilation leading to elevated cerebral blood flow (CBF), 
and depression of brain metabolism (Lukasik and Gillies, 2003; Josan 
et al., 2013; Hyppönen et al., 2022). A previous study comparing the 
metabolic states of HP [1-13C]pyruvate in the rat brain under awake 
with anesthetized conditions, using slice-selective pulse imaging, 
showed that pyruvate-bicarbonate and pyruvate-lactate labeling rates 
were lower in isoflurane-anesthetized animals than in awake animals 
(Hyppönen et al., 2022).

The aim of this study was to investigate the effects of anesthetic 
agents and aging on [13C]bicarbonate metabolism in the mouse brain 
using hyperpolarized [1-13C]pyruvate MRSI under awake conditions. 
We sought to determine the feasibility of detecting [13C]bicarbonate 

signals in specific brain regions and to explore the regional and 
age-dependent variations in oxidative phosphorylation flux.

2 Materials and methods

2.1 Animals

All animal procedures were performed according to the National 
Research Council Guide for the Care and Use of Laboratory Animals. 
The protocols for animal experiments were approved by the Animal 
Ethics Committee of the National Institutes for Quantum Science and 
Technology (approval number: 22-1012-4). Ten adult male C57BL/6 N 
mice (Japan SLC, Inc., Shizuoka, Japan) and 18 adult C57BL/6J mice 
(male, The Jackson Laboratory Japan, Inc., Kanagawa, Japan) were 
used for the MR experiments in this study (Supplementary tables). All 
mice were maintained in a 12-h light/dark cycle with ad libitum access 
to a standard diet and water.

To compare the brain metabolism of HP [1-13C]pyruvate in awake 
and isoflurane-anesthetized mice, we  developed a measurement 
system by making an awake mouse restraint device and a head plate 
to place the mice on the device (Figure 1; Supplementary Figure S1). 
For the surgical procedure, the animals were anesthetized with a 
mixture of air, oxygen, and isoflurane (2% w/v for induction and 1% 
w/v for surgery) via a facemask, and a custom-made headplate 
(Figure 1) was attached to the cranium using a dental bond (Gluma 
Bond Universal, Kulzer GmbH, Hanau, Germany) and resin 
(LuxaFlow Star, DMG Chemisch-Pharmazeutische Fabrik GmbH, 
Hamburg, Germany). The animals were anesthetized with 1.5% (w/v) 
isoflurane, and a tail vein catheter was inserted for the injection of HP 
[1-13C]pyruvate (Supplementary Figure S2). The mice were 

FIGURE 1

(A) Graphic images of a custom-made awake mouse restraint device 
for a 3 T (left) and 7 T (right) preclinical magnetic resonance (MR) 
scanner. (B) A headplate placed on the cranium of a mouse and a 
schematic diagram of a mouse placed in the awake mouse restraint 
device for in vivo hyperpolarized 13C MR spectroscopy (MRS).
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anesthetized with 1–2% (w/v) isoflurane for less than 20 min during 
cannulation and positioning in the magnetic resonance imaging 
(MRI)/MRS-compatible awake mouse restraint device via the 
headplate (Figure 1; Supplementary Figure S2), and the device was 
subsequently inserted inside the scanner. During MRI/MRS under 
anesthesia, 1.5 ± 0.3% (w/v) isoflurane was supplied to mice through 
a mask installed on the awake mouse restraint device, and mouse 
physiology was monitored. The body temperature was stabilized 
between 37 and 38°C, while the respiration rate was maintained at 
80–100 min−1 by adjusting the isoflurane dose. For awake mouse 
experiments, the isoflurane supply to the mice was turned off for at 
least 5 min before imaging. Imaging was performed after confirming 
that the mice were awake using a respiration monitor.

2.2 Pyruvate hyperpolarization

[1-13C]Pyruvic acid (18 μL; Cat# 677175; Sigma-Aldrich, St Louis, 
MO, United  States), containing 15 mmol/L of OX63, was 
hyperpolarized at 1.3 K, 6.7 T, and 187.77 GHz for 1 h in a SpinAligner 
(Polarize Aps, Frederiksberg, Denmark) according to the 
manufacturer’s instructions. The hyperpolarized sample was rapidly 
dissolved in 3.2 mL of a superheated alkaline buffer consisting of 
40 mmol/L tris(hydroxymethyl)aminomethane (Cat# 819620, MP 
Biomedicals, Irvine, CA, United  States), 50 mmol/L of sodium 
chloride (Cat# 191-01665, FUJIFILM Wako, Osaka, Japan), 
0.27 mmol/L of EDTA (Cat# 195173, MP Biomedicals, Irvine, CA, 
United States), and 80 mmol/L of sodium hydroxide (Cat# 31511-05, 
Nacalai Tesque, Kyoto, Japan). The HP [1-13C]pyruvate solution 
(80.7 mmol/L) was confirmed to be near pH 7, and was intravenously 
injected into mice through a tail vein catheter (10 μL/g body weight).

2.3 In vivo hyperpolarized 13C MRS and 
imaging

All hyperpolarized MR studies were performed using a BioSpec 
3 T preclinical MR scanner (Bruker Biospin) with a 1H-13C dual-
tuned surface transmit/receive coil. The 13C coil was loop-shaped 
(18 × 22 mm) and bent along its 18 mm axis to conform to a 
cylindrical surface with a diameter of 24 mm. The 1H coil was 
butterfly-shaped (32 × 24 mm) and bent along its 32 mm axis to fit 
the same cylindrical surface (diameter: 24 mm). After the mouse had 
been positioned inside the magnet, a series of axial, sagittal, and 
coronal two-dimensional images were acquired using a RARE 
sequence (TR = 2,400 ms, TE = 12 ms, RARE factor = 10, number of 
averages = 4, number of repetitions = 1, field of view = 24 × 24 mm, 
matrix = 192 × 192, flip angle = 90°). A volume of interest (VOI) for 
pulse-acquire sequences or a slab for MRSI was positioned across the 
coronal plane to cover the whole brain (Supplementary Figure S3). 
The targeted regions were shimmed to reduce the localized proton 
linewidth to 20 Hz, using the B0 map-based shim and local shim 
sequences provided by Bruker. For pulse-acquire sequences, the 
acquisition was started at the end of the dissolution, and non-selective 
RF pulse 13C acquisitions were sequentially recorded every 3 s using 
10° radiofrequency pulses. Localization was achieved by placing a 
surface coil on top of the mouse’s head. For the analysis of the pulse-
acquire sequences, Fourier transformation was applied to the free 

induction decay (FID) to generate spectra, which were displayed in 
absorption mode using Mnova (Mestrelab Research, Galicia, Spain). 
An apodization function with a 2 Hz exponential line broadening 
was applied, followed by automatic phase correction. A total of 30 
peaks, beginning with the onset of the first pyruvate peak, were 
integrated, and their peak heights were quantified. To map 
metabolites, starting 4 s after the injection of HP [1-13C]pyruvate, HP 
13C FID chemical shift images were obtained with a flip angle of 10°, 
a TR of 85 ms, a TE of 1.245 ms, and five repetitions from an 8 mm 
coronal slice of the brain. The field of view was 24 × 24 mm2 with a 
matrix size of 12 × 12, resulting in a total scan time of 61 s. An HP 
13C metabolite map was produced by measuring the peak value of 
each metabolite and overlaying it on a proton T2-weighted image. 
The spectrum for quantification was obtained by summing all five 
repetitions. The MRSI data were analyzed in both magnitude mode 
and absorption modes (Supplementary Figures S4, S5) using custom-
built programs written in MATLAB (MathWorks, Natick, MA, 
United  States). After evaluating the advantages of each analysis 
method, the results were displayed in magnitude mode. Specifically, 
the FID data were subjected to Fourier transformation, and spectra 
from the regions of interest were extracted. When spectra were 
obtained from multiple regions, they were summed. Finally, the 
relative ratios of individual metabolites were quantified based on 
their peak heights.

2.4 Cerebral perfusion measurements

MRI data were acquired using a horizontal 7.0 T Bruker BioSpec 
70/40 MRI system with an 86 mm volume transmit and a 4-channel 
phased array receive-only cryoprobe (Bruker Biospin, Ettlingen, 
Germany). The software and console of the MRI scanner used were 
ParaVision 360 and AVANCE NEO, respectively. Following standard 
adjustment routines, pilot scans (tripilot sequence) were used to 
accurately position the animal head inside the magnet. CBF images 
were obtained using a 2D flow-sensitive alternating inversion recovery 
RARE pulse sequence with the following parameters: inversion 
recovery time = 20, 200, 300, 500, 800, 1,400, 1,700, and 2,000 ms, 
repetition time = 12,000 ms, effective echo time = 44 ms, RARE 
factor = 16, field of view = 24 × 16 mm2, matrix size = 96 × 64, 
in-plane resolution = 0.25 × 0.25 mm2, number of slices = 1, slice 
thickness = 1 mm, and number of averages = 1. CBF data analysis 
(Sumiyoshi et al., 2022) was performed using software custom-written 
in MATLAB (MathWorks, Natick, MA, United  States), which 
consisted of calculations of the selective T1 map (T1sel), global T1 map 
(T1nonsel), and perfusion map (CBF). The calculations for T1sel and 
T1nonsel were performed using non-linear least-squares fit to the data 
for each voxel in the images with different inversion recovery times 
(eight images each). CBF was calculated from the measurements of 
T1sel and T1nonsel, which were obtained using the equation: CBF 
(mL/100 g/min) = λ * T1nonsel/T1blood * (1,000/T1sel – 1,000/T1nonsel), 
where λ is the blood–brain partition coefficient, i.e., the ratio between 
the water concentration per gram of brain tissue and per milliliter of 
blood. λ was set to 4,980. T1blood was set to 2.3, which was derived from 
the measurements of rat blood at 7.0 T. CBF images were evaluated for 
the region of interest (region placement is displayed in 
Supplementary Figure S6) using PMOD image analysis software 
(PMOD Technologies Ltd.).
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2.5 Statistics

The data were analyzed using GraphPad Prism version 6.0 
(GraphPad, San Diego, CA, United  States). Unpaired t-tests were 
performed to compare two groups, assuming equal group variances 
(p < 0.05). The results are reported as the mean ± standard deviation.

3 Results

An awake mouse restraint device was designed to supply 
isoflurane through the mask. [1-13C]Lactate signals were consistently 
observed following [1-13C]pyruvate injection in awake and isoflurane 
anesthesia protocols using an awake mouse restraint device. Therefore, 
the constructed measurement system was deemed suitable for the 
dDNP experiments.

In the assessment of pulse-acquire sequences, the signals of 
[1-13C]lactate and [13C]bicarbonate metabolized from [1-13C]pyruvate 
were detectable in both 1.5 ± 0.3% (w/v) isoflurane-anesthetized and 
awake mouse brains (Figures 2A,B). The ratios of [1-13C]lactate to 

[1-13C]pyruvate, [13C]bicarbonate to [1-13C]pyruvate, and [13C]
bicarbonate to [1-13C]lactate were significantly higher in awake mice 
compared to isoflurane-anesthetized mice (Figures  2C–E; [1-13C]
lactate to [1-13C]pyruvate ratio: p = 0.0451; [13C]bicarbonate to [1-13C]
pyruvate ratio: p = 0.0004; [13C]bicarbonate to [1-13C]lactate ratio: 
p = 0.0004). Regarding MRSI, the signal of [1-13C]lactate metabolized 
from [1-13C]pyruvate was detectable in multiple brain regions that 
include the orbitofrontal cortex (OFC) and hippocampus in both 
1.5 ± 0.3% (w/v) isoflurane-anesthetized and awake mice 
(Figures  3A–D). The [1-13C]lactate to [1-13C]pyruvate ratio was 
significantly higher in awake mice than in isoflurane-anesthetized 
mice in brain regions that include the OFC (p = 0.0483) and 
hippocampus (p = 0.0304) in assessments using MRSI, consistent with 
the findings from pulse-acquire sequences assessment. On the other 
hand, the signal of [13C]bicarbonate metabolized from [1-13C]pyruvate 
was below the detection limit in brain regions that include the OFC 
and hippocampus of 1.5 ± 0.3% (w/v) isoflurane-anesthetized mice, 
while it was detectable in awake mouse brains (Figures 3B–E). No 
significant differences were observed in the [13C]bicarbonate to [1-13C]
lactate ratio between brain regions that include the OFC and 

FIGURE 2

In vivo real-time pyruvate metabolism evaluated using pulse-acquire sequences in isoflurane-anesthetized and awake C57BL/6 N mouse brains. In vivo 
13C MR data recording was initiated prior to the injection of a [1-13C]pyruvate solution (80.7 mmol/L, 10 μL/g body weight). (A,B) Series of 13C spectra 
recorded every 3 s after acquisition start (lower, display from 0 to 135 s) and the sum of 30 peaks (upper), beginning with the onset of the first pyruvate 
peak, in the brain of 2-month-old isoflurane-anesthetized (A) and awake (B) C57BL/6 N mice. (C–E) Quantification of the [1-13C]lactate to [1-13C]
pyruvate ratio (C), the [13C]bicarbonate to [1-13C]pyruvate ratio (D), and the [13C]bicarbonate to [1-13C]lactate ratio (E) in the brains of 2-month-old 
isoflurane-anesthetized (n = 4) and awake (n = 5) C57BL/6 N mice. *p < 0.05, ***p < 0.0005.
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FIGURE 3

In vivo real-time pyruvate metabolism evaluated using MRSI in isoflurane-anesthetized and awake C57BL/6 N mouse brains. In vivo 13C MR data were 
recorded following the injection of a [1-13C]pyruvate solution (80.7 mmol/L, 10 μL/g body weight). (A) A horizontal T2-weighted MR image of a 

(Continued)
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hippocampus in assessments using MRSI (Figure 3F: p = 0.4816). At 
this time, CBF was significantly higher in the whole brain (p < 0.0001), 
the OFC (p < 0.0001), and the hippocampus (p < 0.0001) of 1.5 ± 0.3% 
(w/v) isoflurane-anesthetized mice compared to awake mice 
(Figures 4A,B).

Using MRSI in awake mice, which allows spatial mapping of the 
metabolism of HP [1-13C]pyruvate to lactate and bicarbonate, 
we  evaluated the alterations in glycolysis and oxidative 
phosphorylation flux with aging in the mouse brain. No significant 
differences were detected in the [1-13C]lactate to [1-13C]pyruvate or 
the [13C]bicarbonate to [1-13C]lactate ratio in brain regions that 
include the OFC ([1-13C]lactate to [1-13C]pyruvate ratio: p = 0.1229; 
[13C]bicarbonate to [1-13C]lactate ratio: p = 0.9246) and hippocampus 
([1-13C]lactate to [1-13C]pyruvate ratio: p = 0.2739; [13C]bicarbonate 
to [1-13C]lactate ratio: p = 0.3097), between young (2.5-months-old) 
and aged mice (19-months-old; Figures  5A–D). There was no 
significant difference in the [13C]bicarbonate to [1-13C]pyruvate ratio 
in brain regions that include the OFC between young and aged mice 
(p = 0.0618). However, the [13C]bicarbonate to [1-13C]pyruvate ratio 
in brain regions that include the hippocampus was significantly lower 
in aged mice than in young mice (p = 0.0323; Figures 5A–D). At this 
time, CBF in the whole brain, the OFC, and the hippocampus of 
awake C57BL/6J mice did not differ significantly between young and 
aged mice (Figures 5E,F; whole brain: p = 0.2369, OFC: p = 0.4568, 
hippocampus: p = 0.0752). These results demonstrated that MRSI 
evaluation of HP [1-13C]pyruvate metabolism in awake mice is useful 
for the spatial detection of abnormalities and alterations in glycolysis 
in the brains of mice.

4 Discussion

In the present study, HP [1-13C]pyruvate metabolism in the brains 
of isoflurane-anesthetized and awake C57BL/6 N mice was compared 
using pulse-acquire sequences assessments. Both [1-13C]lactate to 
[1-13C]pyruvate and [13C]bicarbonate to [1-13C]pyruvate ratios were 
significantly higher under awake than isoflurane-anesthetized 
conditions (Figures  2C,D). One of the factors responsible may 
be increased CBF caused by isoflurane anesthesia. A previous study 
using slice-selective pulse imaging to compare the metabolic states of 
HP [1-13C]pyruvate in awake and anesthetized rat brains found that 
anesthesia-induced hemodynamic changes likely explain why the 
[1-13C]lactate to [1-13C]pyruvate and [13C]bicarbonate to [1-13C]
pyruvate ratios were significantly higher in awake brains compared to 
those under isoflurane anesthesia (Hyppönen et  al., 2022). The 

transport of HP [1-13C]pyruvate through the blood–brain barrier 
(BBB), with both active and passive components, has been identified 
as the rate-limiting step for 13C labeling of downstream metabolites 
(Hurd et al., 2010; Takado et al., 2018; Miller et al., 2018). In particular, 
because HP [1-13C]pyruvate transport through the BBB was expected 
to saturate throughout the experiment, the amount of HP [1-13C]
pyruvate in the blood and the amount of blood in the voxel affected 
the observed apparent metabolite labeling rates (Josan et al., 2013). 
Thus, it is suggested that the apparent metabolic rate of pyruvate to its 
product is reduced in the brain under isoflurane anesthesia, as blood 
flow is increased (Hyppönen et al., 2022). The fact that CBF increased 
in the whole brain of C57BL/6 N mice under isoflurane-anesthetized 
conditions compared to awake conditions in the present study 
(Figure 4B) suggests the possibility that hemodynamics may influence 
the apparent labeling rate from HP [1-13C]pyruvate to metabolites 
observed in the pulse-acquire sequences assessment.

Furthermore, when the OFC and hippocampus of C57BL/6 N mice 
were evaluated separately, CBF was significantly increased in these 
regions under isoflurane-anesthetized conditions compared with the 
awake condition (Figure 4B). Thus, the fact that the [1-13C]lactate to 
[1-13C]pyruvate ratio was significantly higher in the VOIs that include 
the OFC or hippocampus of C57BL/6 N mice under awake conditions 
compared to isoflurane-anesthetized conditions in the present MRSI 
evaluation suggests that hemodynamic factors may influence the 
apparent rate of pyruvate-to-product metabolism (Figures 3C,D). This 
is consistent with findings from assessments using pulse-acquire 
sequences. In contrast, CBF alterations alone may not fully explain why 
the [13C]bicarbonate signal in the MRSI was undetectable in the VOIs 
that include the OFC and hippocampus of isoflurane-anesthetized 
C57BL/6 N mice but become detectable under awake conditions 
(Figure 3E). This suggests not only CBF alterations but also potential 
intracellular metabolic changes induced by anesthesia (Shulman et al., 
1999). Supporting this, the [13C]bicarbonate to [1-13C]lactate ratio, 
which is considered less sensitive to HP [1-13C]pyruvate perfusion, was 
significantly altered between isoflurane-anesthetized and awake mouse 
brains in pulse-acquire sequences assessment (Figure  2E). Recent 
studies have reported that the brain uptake of 18F-FDG is lower in 
isoflurane-anesthetized mice than in awake mice and that high-
concentration isoflurane anesthesia treatment induces a decrease in 
mitochondrial membrane potential levels involved in oxidative 
phosphorylation in mouse hippocampal neurons (Toyama et al., 2004; 
Zhang et al., 2012). Previous studies have indicated that glycolysis, 
lactate production, and respiration are stimulated in astrocytes in 
response to neuronal activation (Juaristi et al., 2019). Calcium signaling 
is the principal pathway through which astrocytes respond to neuronal 

C57BL/6 N mouse brain, with red and blue squares indicating representative volumes of interest (VOIs) that include the orbitofrontal cortex (OFC) and 
hippocampus, respectively. (B) Representative metabolic maps for [1-13C]pyruvate, [1-13C]lactate, and [13C]bicarbonate in isoflurane-anesthetized 
(upper) and awake (lower) C57BL/6 N mouse brains, superimposed on a horizontal T2-weighted MR image. (C) Summed 13C spectra from 0 to 60 s 
after acquisition start in the VOIs that include the OFC in 2-month-old isoflurane-anesthetized (left) and awake (middle) C57BL/6 N mice, with 
quantification of the [1-13C]lactate to [1-13C]pyruvate ratio in the VOIs that include the OFC of 2-month-old isoflurane-anesthetized (n = 4) and awake 
(n = 4) C57BL/6 N mice. (D) Summed 13C spectra from 0 to 60 s after acquisition start in the VOIs that include the hippocampus in 2-month-old 
isoflurane-anesthetized (left) and awake (middle) C57BL/6 N mouse, with quantification of the [1-13C]lactate to [1-13C]pyruvate ratio in the VOIs that 
include the hippocampus of 2-month-old isoflurane-anesthetized (n = 4) and awake (n = 4) C57BL/6 N mice. (E) Quantification of the [13C]bicarbonate 
to [1-13C]pyruvate ratio in the VOIs that include the OFC and hippocampus in 2-month-old isoflurane-anesthetized (n = 4) and awake (n = 4) 
C57BL/6 N mice. (F) Quantification of the [13C]bicarbonate to [1-13C]lactate ratio in the VOIs that include the OFC and hippocampus of 2-month-old 
awake (n = 4) C57BL/6 N mice. *p < 0.05.

FIGURE 3 (Continued)
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activity, and isoflurane anesthesia has been shown to markedly suppress 
calcium transients in neocortical astrocytes (Thrane et  al., 2012). 
Therefore, it may be  important to include analysis under awake 
conditions, as in many clinical studies, in preclinical HP 13C MRS 
evaluations of changes in brain glycolysis and oxidative phosphorylation 
flux associated with physiological states and pathological conditions. 
On the other hand, HP [1-13C]pyruvate solution is typically 
administered to humans at doses of 35 mL or more in clinical studies 
(Larson et al., 2024), whereas in this study it was administered to mice 
at 10 μL/g body weight, approximately 10 times the dose by body 
weight. Given that the stress response to bolus infusion of HP solution 
under awake conditions may be greater in mice than in humans, further 
validation of the metabolic impact of the stress response in preclinical 
HP 13C MRS evaluation under awake conditions is warranted.

The present results comparing HP [1-13C]pyruvate metabolism in 
the brains of aged and young C57BL/6J mice using MRSI under awake 
conditions showed that the [13C] bicarbonate to [1-13C]pyruvate ratios 
in brain regions that include the hippocampus were significantly lower 
in aged mice than in young mice (Figure 5D). At that time, CBF in the 
whole brain, the OFC, and the hippocampus of awake C57BL/6J mice 
did not differ significantly between young and aged mice (Figure 5F), 
suggesting that the changes in the [13C]bicarbonate to [1-13C]pyruvate 
ratio shown in the MRSI may reflect differences in oxidative 
phosphorylation flux in brain regions that include the hippocampus 
between young and aged mice. A clinical study examining the changes 
in [1-13C]pyruvate uptake and metabolism in the human brain with 
aging showed that [13C]bicarbonate production decreases with age 
and that the rate of change varies by brain region (Uthayakumar et al., 
2023). Our previous findings suggest that [1-13C]pyruvate metabolism, 
especially in oxidative phosphorylation flux, in the mouse brain 
reflects metabolic changes caused by calcium transients in astrocytes 
(Ono et al., 2024). Previous studies have shown that spatiotemporal 
reorganization of calcium ion events in mouse astrocytes and 
mitochondrial dysfunction in human astrocytes occurs with aging 
(Popov et al., 2021; Popov et al., 2023; Verkhratsky and Nedergaard, 
2018). A recent study using a mouse model of pyruvate dehydrogenase 
deficiency in astrocytes demonstrated decreased bicarbonate signals 
following HP [1-13C]pyruvate injection, suggesting that astrocytes 
may be the source of bicarbonate derived from HP [1-13C]pyruvate 

(Marin-Valencia et al., 2024). Furthermore, clinical applications of 
proton-based MRS have recently revealed a correlation between 
elevated lactate concentrations and astrocyte activity markers in the 
brains of patients with neurodegenerative diseases (Hirata et  al., 
2024b). However, the results of CBF evaluation in the present study of 
awake C57BL/6J mice showed a trend toward greater individual 
differences in young mice than in aged mice (Figure 5F). Because the 
possibility of hemodynamic effects on the apparent labeling rate of HP 
[1-13C]pyruvate to metabolites remains to be  considered, the 
relationship between HP [1-13C]pyruvate metabolism and CBF should 
be examined in the future by kinetic analysis using pulse-acquire 
sequences in awake C57BL/6J mice. In recent clinical studies, 
combined HP [1-13C]pyruvate and [13C, 15N2]urea MRS have been 
used for simultaneous metabolic and perfusion imaging (Qin et al., 
2022; Liu et al., 2022), and it is important to investigate methods to 
simultaneously measure cerebral metabolism and CBF using mouse-
awake MRSI. Currently, the low resolution of HP 13C MRSI presents 
a significant limitation. In this study, we used a method to detect 
metabolic changes by selecting voxels (2 × 2 × 8 mm3 per voxel) that 
predominantly contained specific brain regions. However, the selected 
VOIs also included signals from adjacent regions. Future 
advancements in hyperpolarization research could mitigate this issue 
by enabling smaller voxel sizes through approaches such as increasing 
sensitivity with cryo coils or optimizing 13C MRSI sequences. Despite 
this limitation, the awake MRSI for [1-13C]pyruvate metabolism 
established in this study holds significant potential for future 
applications in disease model mice. By integrating data on transporter 
expression levels and metabolic enzyme activity, these methods could 
substantially advance the analysis of abnormalities and alterations in 
glycolysis and oxidative phosphorylation flux, as well as their 
underlying mechanisms in neurodegenerative diseases and 
brain aging.

In conclusion, our results demonstrate the feasibility of spatial 
mapping of the metabolism of HP [1-13C]pyruvate to lactate and 
bicarbonate in awake mice. Furthermore, a decrease in oxidative 
phosphorylation flux in brain regions that include the hippocampus 
with aging was detected, and the extent of these changes varied across 
different brain regions. The present study demonstrated that HP 
[1-13C]pyruvate MRSI under awake conditions is useful for the spatial 

FIGURE 4

Cerebral blood flow (CBF) evaluated using flow-sensitive alternating inversion recovery (FAIR) arterial spin labeling techniques in isoflurane-
anesthetized and awake C57BL/6 N mouse brains. (A) Representative perfusion maps of 4-month-old isoflurane-anesthetized and awake C57BL/6 N 
mice. (B) Quantification of CBF in the whole brain (left), OFC (middle), and hippocampus (right) of 4-month-old isoflurane-anesthetized (n = 5) and 
awake (n = 5) C57BL/6 N mice. ***p < 0.0005.
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detection of abnormalities and alterations in glycolysis and oxidative 
phosphorylation flux in the brains of mice, which are currently widely 
used as disease model animals. Therefore, the use of HP [1-13C]
pyruvate MRSI has potential in pathological and mechanistic studies 
of brain diseases and brain aging, as well as for the evaluation of 
disease-modifying drugs for neurodegenerative diseases.
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FIGURE 5
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mice. (B) Quantification of the [1-13C]lactate to [1-13C]pyruvate ratio (left), the [13C]bicarbonate to [1-13C]pyruvate ratio (middle), and the [13C]bicarbonate 
to [1-13C]lactate ratio (right) in the VOIs that include the OFC of 2.5-month-old (young, n = 9) and 19-month-old (aged, n = 9) C57BL/6J mice. 
(C) Summed 13C spectra from 0 to 60 s after acquisition start in the VOIs that include the hippocampus of 2.5-month-old (young, left) and 19-month-
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(middle), and the [13C]bicarbonate to [1-13C]lactate ratio (right) in the VOIs that include the hippocampus of 2.5-month-old (young, n = 9) and 
19-month-old (aged, n = 9) C57BL/6J mice. (E) Representative perfusion maps from 2.5-month-old (young) and 19-month-old (aged) awake 
C57BL/6J mouse brains. (F) Quantification of CBF in the whole brain (left), OFC (middle), and hippocampus (right) of 2.5-month-old (young, n = 9) and 
19-month-old (aged, n = 9) awake C57BL/6J mouse. *p < 0.05.
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