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To facilitate high spatial–temporal resolution fMRI (≦1mm3) at more broadly available 
field strengths (3T) and to better understand the neural underpinnings of joy, 
we used SE-based generalized Slice Dithered Enhanced Resolution (gSLIDER). 
This sequence increases SNR efficiency utilizing sub-voxel shifts along the slice 
direction. To improve the effective temporal resolution of gSLIDER, we utilized 
the temporal information within individual gSLIDER RF encodings to develop 
gSLIDER with Sliding Window Accelerated Temporal resolution (gSLIDER-SWAT). 
We first validated gSLIDER-SWAT using a classic hemifield checkerboard paradigm, 
demonstrating robust activation in primary visual cortex even with stimulus frequency 
increased to the Nyquist frequency of gSLIDER (i.e., TR = block duration). gSLIDER 
provided ~2× gain in tSNR over traditional SE-EPI. GLM and ICA results suggest 
improved signal detection with gSLIDER-SWAT’s nominal 5-fold higher temporal 
resolution that was not seen with simple temporal interpolation. Next, we applied 
gSLIDER-SWAT to investigate the neural networks underlying joy using naturalistic 
video stimuli. Regions significantly activated during joy included the left amygdala, 
specifically the basolateral subnuclei, and rostral anterior cingulate, both part 
of the salience network; the hippocampus, involved in memory; the striatum, 
part of the reward circuit; prefrontal cortex, part of the executive network and 
involved in emotion processing and regulation [bilateral mPFC/BA10/11, left MFG 
(BA46)]; and throughout visual cortex. This proof of concept study demonstrates 
the feasibility of measuring the networks underlying joy at high resolutions at 3T 
with gSLIDER-SWAT, and highlights the importance of continued innovation of 
imaging techniques beyond the limits of standard GE fMRI.
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Introduction

Whole brain functional magnetic resonance imaging (fMRI) at 
high spatial–temporal resolution (≦1mm3) is invaluable for studying 
smaller subcortical structures like the amygdala and the brain’s 
laminar and columnar functional organization (Yacoub et al., 2007, 
2008; Kashyap et al., 2018). However, given that the tSNR is generally 
insufficient for sub-millimeter fMRI at 3T, these studies have been 
limited to ultra-high field strengths (≥7T) that are prohibitively 
expensive in most parts of the world. Furthermore, standard fMRI 
technology relies on GE-EPI that, especially at higher field strengths 
and resolutions, suffers from large vein bias and susceptibility-induced 
signal dropout (Engel et al., 1997; Norris et al., 2002; Parkes et al., 
2005) in brain regions essential in emotion processing (Townsend and 
Altshuler, 2012). This limits our ability to acquire true, whole brain, 
high resolution fMRI. Even with advanced acceleration techniques, 
scanning the entire brain at high resolution currently requires 
unacceptably long repetition times (TR > > 3 s).

Originally developed for sub-millimeter diffusion MRI at 3T 
(Setsompop et al., 2018), we found that spin-echo based generalized 
Slice Dithered Enhanced Resolution (gSLIDER) is a promising 
technique for enabling high-resolution fMRI at 3T (Beckett et al., 
2021; Torrisi et  al., 2023). It reduces both large vein bias and 
susceptibility-induced signal dropout relative to GE-EPI, and more 
than doubles SNR efficiency relative to traditional spin-echo based 
fMRI (Vu et al., 2018; Setsompop et al., 2018). However, for spins to 
properly relax between gSLIDER shots, the effective repetition time 
(TR) of gSLIDER is long (~18 s), which is incompatible with most 
fMRI paradigms and leaves the sequence vulnerable to blurring from 
head motion. To address the inherently low temporal resolution of 
gSLIDER fMRI, we developed a novel reconstruction method: Sliding 
Window Accelerated Temporal resolution (SWAT) that provides up 
to a five-fold increase in gSLIDER temporal resolution (TR ~ 3.5 s).

After validating gSLIDER-SWAT for high spatial–temporal 
resolution fMRI with a basic visual task, we applied it to investigate 
the neural networks underlying the emotion joy. Frontotemporal-
limbic regions may benefit particularly from the enhanced spatial 
resolution and improved signal quality of this SE-based technique, as 
these regions are prone to susceptibility-induced signal dropout and 
geometric distortions with standard GE techniques due to their 
proximity to air-tissue interfaces (Ojemann et al., 1997; Beckett et al., 
2020; Townsend et al., 2010, 2019; Yacoub et al., 2008). This integrated 
approach enables us to validate the gSLIDER-SWAT technique and 
demonstrate its application to address important neuroscientific 
questions that have been limited by conventional imaging approaches.

Emotion processing involves complex neural networks that detect, 
evaluate and regulate affective and visceral responses to environmental 
stimuli (Barrett et al., 2007). Emotions are characterized by specific 
patterns of neural and autonomic activation, coordinated through 
reciprocal connections between corticolimbic structures and systems 
governing physiological arousal. fMRI emotion studies show 
significant activation in the amygdala, insula, anterior cingulate cortex 
(ACC), medial prefrontal cortex (mPFC) and ventrolateral prefrontal 
cortex (vlPFC) (Phillips et al., 2003a). The amygdala is part of the 
salience network and is involved in emotion detection and processing, 
while medial and lateral regions of the PFC are critical for emotion 
modulation and regulation (Ochsner et al., 2012; Townsend et al., 
2013). Recent work further describes the role of amygdala subregions 

in different emotions (Labuschagne et  al., 2024), highlighting the 
importance of ultra-high resolution in this region.

Positive emotions also activate regions associated with reward 
processing (Schultz et  al., 1997), including the ventral striatum, 
nucleus accumbens, ACC and orbitofrontal cortex (Wager et al., 2015; 
Suardi et al., 2016; Yang et al., 2020). Recent studies show that positive 
emotions encompass emotions with discrete neural representation 
(ex: joy vs. awe vs. sexual desire) (Cowen and Keltner, 2017; Saarimäki 
et al., 2016, 2018), which has been shown across a range of stimuli 
(Cowen and Keltner, 2018, 2020; Cowen et al., 2019). fMRI studies 
examining joy in the context of music have found activation in these 
same reward-related regions (Koelsch and Skouras, 2014; Skouras 
et al., 2014). This neural evidence aligns with Buddhist contemplative 
traditions, which recognize joy (muditā) as one of four fundamental 
qualities of mind that can be intentionally cultivated and expanded 
(Davidson and Lutz, 2008; Esch, 2022). While traditional emotion 
research predominantly has focused on negative emotions, these 
ancient contemplative insights and innovative neuroscience methods 
motivate our investigation into the neural mechanisms underlying 
positive emotions, specifically joy.

Studies using naturalistic stimuli have begun to reveal the 
brain’s hierarchical temporal processing involving the hippocampus, 
attentional mechanisms, and basic and social emotional processing 
(Dayan et al., 2018; Jääskeläinen et al., 2021). There has only been 
one study to date investigating the neural underpinnings of joy 
using naturalistic video stimuli, despite its importance in studying 
emotion. A recent fMRI study decoded 27 categories of emotions 
(Horikawa et  al., 2020). While decoding joy using standard GE 
sequence at 3T, they show significant cortical regions, but not 
subcortical regions like the amygdala. This was surprising given that 
the amygdala is activated in response to positive emotions in 
general (Bonnet et al., 2015; Townsend et al., 2017). Given the GE 
sequence, signal dropout in these inferior regions may have 
contributed to the lack of significant activity; thus, we investigated 
whether we  see significant limbic activity with these same 
naturalistic joy stimuli using gSLIDER.

We hypothesize that gSLIDER-SWAT will provide a gain in 
temporal resolution by recapturing high frequency information and 
will increase the tSNR relative to traditional SE-EPI, resulting in 
improved detection of functional networks at high resolutions at 3T.

Methods

The study protocol was approved by the institutional review board 
at the University of California, San Francisco; each participant gave 
written informed consent before initiating the study. Due to scanner 
availability at the time, fMRI data was acquired from 2 healthy 
volunteers initially on a Siemens 3T Prisma using a 64ch head/neck 
coil, and then from 6 volunteers (age= 42 ± 13; 1F/4M) on a Siemens 
3T Skyra using a 32ch head coil. Data from one volunteer was 
excluded due to excessive motion.

Sequence parameters

FOV = 220 × 220 × 130  mm3; resolution = 1 × 1 × 1  mm3, 
PF = 6/8; GRAPPA 3; TE = 69 ms; TR = 18 s (3.6 s per dithered 
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volume). To achieve this resolution for gSLIDER factor 5, 26 thin-
slabs (5 mm thick) were acquired, each acquired 5× with a 
different slice phase (Figures 1A,B). 1mm3 iso SE-EPI tSNR scans 
were acquired for comparison using matched to the gSLIDER scan 
parameters (TR = 18 s). A short GE-EPI scan was run for image 
quality comparison using the same imaging parameters but with 
TE = 35 ms.

gSLIDER reconstruction SWAT

We used custom MATLAB reconstruction code using magnitude, 
phase and B1 maps. The thin, 1 mm slices are reconstructed from the 
five sequentially acquired thin-slabs using standard linear regression 
with Tikhonov regularization: z = (ATA + λI)−1 ATb = Ainvb, where A is 
the forward transformation matrix containing the spatial RF-encoding 
information, λ is the regularization parameter (set to 0.1), b is the 
concatenation of the acquired RF-encoded slab data, and z is the high-
resolution reconstruction. Bloch simulated slab profiles were used to 
create the forward model (A) which allows the reconstruction to 
account for the small cross-talk/coupling between adjacent slabs 
(Setsompop et al., 2018).

For illustrative purposes, the matrix A for 5×-gSLIDER can 
be roughly approximated as: [−1 1 1 1 1; 1 −1 1 1 1; 1 1 −1 1 1; 1 1 1 
−1 1; 1 1 1 1 −1]. This presumes that the underlying signal is 
stationary. While true for anatomical imaging like diffusion MRI, for 
fMRI imaging, each of the sequentially acquired slabs contains useful 
temporal information amenable to a sliding window reconstruction 
(Figure 1C), where for example the next TR could be reconstructed 
using the following shifted A matrix: [1 −1 1 1 1; 1 1 −1 1 1; 1 1 1 −1 
1; 1 1 1 1 −1; −1 1 1 1 1]. We call this “view-sharing” approach Sliding 
Window Accelerated Temporal resolution (SWAT) and evaluate the 
expected 5× gain in temporal resolution and resultant statistical 
power. The sliding window reconstruction in gSlider-SWAT acts as a 
temporal frequency-domain filtered upsampling that unaliases and 
recovers, albeit at an attenuated level, higher-frequency hemodynamic 
components. This is done by exploiting the unique spatial–temporal 
information from the five RF excitation profiles per slab, which should 

enable detection of BOLD activity changes not visible with the original 
gSLIDER method.

Task 1 Hemifield

Initial evaluation of the gSLIDER-SWAT sequence was performed 
using a visual hemifield localizer stimulus consisting of alternating left 
vs. right visual hemifield flickering checkerboards: 36 s per hemifield 
block, T = 72 s, 9 repeats per run; 2 runs per subject (Figure  2). 
Subsequent testing increased the stimulation frequency to the Nyquist 
frequency of gSLIDER (18 s per hemifield block, T = 36 s, 18 repeats 
per run). Stimuli were presented using PsychoPy3 and an Avotec 
SV-6060 Projector. Throughout the hemifield stimulus, volunteers 
were tasked with focusing on a fixation dot at the center of the screen 
and to press a button each time the dot turned yellow.

Task 2 Joy

Positive Emotion video stimuli (from Cowen and Keltner, 2017; 
clustered by emotion vector to group clips with the highest average 
cosine similarity; presented groups of clips with highest valence, 
arousal and joy category ratings; identical timing as task 1, alternating 
videos on and rest). The problem of clustering together video clips is 
defined as follows: given a collection of video clips, each with a 
duration and emotions vector, group the clips such that each group 
contains clips with similar emotions vectors and the total duration of 
each group is ~60s. To group the video clips, we  use a greedy 
algorithm, an approach that makes the locally optimal choice at each 
step. To build a group, we greedily add the video clip with the highest 
average cosine similarity to the group that also satisfies the group’s 
maximum duration constraint with some slack. This process is 
repeated until the total duration of the group reaches approximately 
1 min, after which a new group is created. Videos with the highest joy 
vectors and highest valence (example clips: Corgi puppies running in 
grass, babies playing with toys, a blind man seeing for the first time; 
ave. valence = 7.13; arousal = 5.93; joy rating = 0.25) were selected for 

FIGURE 1

gSLIDER factor 5 acquisition uses five thin-slab volumes that are five times the thickness of the final slice resolution (e.g., 5 mm slab - > 1 mm slices). 
Each of the five thin-slab volumes are acquired with different slice phase–dither encoding (A) and then combined to create the high-resolution image 
(B). SWAT gSLIDER reconstruction for 5× gain in temporal resolution (C). Blue Image (1) and Red Image (2) represent two adjacent timepoints of the 
original gSLIDER method each made up of five of their own dithered RF excitations.
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video clips, with 54 s on alternating with 36 s rest (cross-hair fixation) 
for a total of 6 cycles = 540 s/run.

Ljung-Box test

To validate use of FILM to account for the temporal 
autocorrelation in the fMRI time series, we performed Ljung-Box tests 
on the GLM residuals for gSLIDER (GS) and gSLIDER-SWAT. The 
Ljung-Box tests whether autocorrelations of the residuals are 
significantly different from zero for a given number of lags (Ljung and 
Box, 1978). Given the hemodynamic response function is on the order 
of 30–40s, we selected a 36 s window; with TR_GS = 18 s and TR_
SWAT = 3.6 s, we tested lags GS nlag = 2, SWAT nlag = 10 capture 
both short- and long-range temporal dependencies (Yue et al., 2024).

fMRI analysis Hemifield

FMRI data processing was performed using FEAT (FMRI Expert 
Analysis Tool) v6.00; FSL (FMRIB’s Software Library, www.fmrib.
ox.ac.uk/fsl). Independent Component Analysis (ICA) was performed 
on gSLIDER with and without SWAT reconstructions using FSL’s 
MELODIC with signal and noise components manually identified. 
Pre-processed data were whitened and decomposed into sets of 
vectors to describe signal variation across temporal and spatial 
domains (Beckmann and Smith, 2004). GLM analysis was performed 
on the fast 18 s block stimuli data using FSL’s FEAT which included 
pre-whitening using FILM (Woolrich et al., 2001).

As a control comparison to ensure that the observed benefits 
of SWAT reconstruction are not artificially inflated due merely to 
the presence of additional time points (i.e., up-sampled 
interpolation), we also performed simple 5-fold interpolation of 
the gSLIDER time series utilizing MATLAB’s interpolation 
function (which inserts zeros into the original signal and then 
applies a lowpass interpolation filter at half the Nyquist frequency 
to the expanded sequence). This implementation allows the 
original data to pass through unchanged, without adding any 
additional temporal information, and interpolates to minimize the 
mean-square error between the interpolated points and their 
ideal values.

fMRI Analysis Joy

GLM analysis preprocessing included: 2 mm smoothing, high 
pass filter (90s), FILM, 6 motion parameters regressors, and 
registration to MNI 2 mm atlas. For random effects group analyses, 
n = 6 runs were included. Z (Gaussianised T/F) statistical images 
were thresholded using clusters determined by Z > 1.7 and a 
(corrected) cluster significance threshold of p = 0.05 (Worsley, 2001), 
unmasked.

Results

As expected, gSLIDER showed significant tSNR gains (~2×) over 
traditional SE (Figure 3A), along with improved signal coverage in 
regions of signal dropout, such as inferior frontal and temporal 
regions, compared to traditional GE-EPI (Figure 3B).

Ljung-Box

This test is used to assess temporal autocorrelation, and gSLIDER 
demonstrated no significant autocorrelations with or without FILM 
pre-whitening (all p > 0.29). In contrast, SWAT exhibited significant 
autocorrelations without pre-whitening (all p < 0.001), which were 
successfully mitigated with FILM (all p > 0.3). Consequently, all 
subsequent analyses incorporate FILM pre-whitening.

Hemifield

Figure 3 demonstrates the advantage of gaining high frequency 
information with the higher temporal sampling provided by 
gSLIDER-SWAT. With the 5-fold increase in temporal sampling 
frequency with SWAT, independent components corresponding to 
individual visual hemifield activation patterns are resolved, while 
the original reconstructed 18 s temporal resolution gSLIDER data 
is only able to resolve merged visual activity (Figure  3C; 
Supplementary Figure S1). From the gSLIDER-SWAT data, 
MELODIC detected ~3× more independent components compared 
to both original gSLIDER and to the 5-fold simple interpolation of 

FIGURE 2

Task designs. Task 1: Visual hemifield localizer stimulus (36 s or 18 s blocks corresponding to 2 or 1 TRs). Task 2: Positive Emotion Joy naturalistic video 
stimuli (from Cowen and Keltner, 2017). Videos were clustered by emotion vector to group clips with the highest average cosine similarity. Groups of 
clips with the highest joy category and valence ratings were presented.
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the gSLIDER data (i.e., as a control). Figure 3D shows the time 
courses of a physiological noise component with and without 
SWAT. The power spectra of the gSLIDER-SWAT time series 
(bottom) clearly shows power above the Nyquist frequency of 
gSLIDER without SWAT (vertical dashed black line). For reference, 
the 36 s block hemifield task frequency is indicated by the vertical 
dotted green line. As expected, simple interpolation of gSLIDER 
data did not introduce power above the Nyquist frequency 
(Supplementary Figure S1A). Importantly, when the stimulus 
frequency was increased to the Nyquist frequency of gSLIDER 
(TR = block duration = 18 s), gSLIDER-SWAT was still able to 
detect robust activity throughout visual cortex while original 
gSLIDER was not (Figure 3E).

Joy

Initial GLM analysis showed less CNR with SE 1mm3 compared 
to gSLIDER-SWAT during the Joy task, with SE showing minimal 
activation restricted to visual cortex (Figure 4A). Unlike with SE, 
gSLIDER-SWAT showed significant activation in the extended 
amygdala and medial prefrontal and orbitofrontal cortex, and 
throughout visual cortex. Next, group random effects analyses 
revealed significant activation in frontal and occipital regions with 
both gSLIDER and SWAT: bilateral frontal (superior/middle 
frontal gyri, BA10/11, including rostral PFC; anterior cingulate 
BA32); and bilateral occipital (primary visual, middle occipital gyri 
including V4 and V5 and temporo-parieto-occipital junction). 
With SWAT, additional significant activation was seen in the left 
extended amygdala/hippocampus (basolateral amygdalar nucleus; 
Z = 3.33), with no differences reaching significance with direct 
comparison. For point of comparison between the reconstructions, 

the ACC (BA32) was significant at Z = 2.13 with GS and z = 2.99 
with SWAT; a 28% gain in this a priori region located inferiorly 
near susceptible regions. At the individual subject level (Z > 2), 
significant results were also seen in the reward network, including 
the right nucleus accumbens and striatum; however, these 
activations did not reach statistical significance at the group level 
due to the limited sample size.

Discussion

This is the first high spatial–temporal resolution fMRI study at 
3T using gSLIDER-SWAT, which seeks to improve coverage and 
detection in areas of high signal dropout near critical brain 
structures like the amygdala. The amygdala, a complex structure 
with more than a dozen nuclei, is conserved across vertebrates and 
situated deep and medial in the temporal lobe in primates (Kim 
et  al., 2011). Additionally, joy has recently been discussed 
conceptually across species as intense, brief, and event-driven 
(Nelson et al., 2023). High-resolution (≤1 mm iso) is essential for 
investigating the functionally distinct amygdalar subnuclei, which 
are small, have unique neuroanatomical connectivity and serve 
discrete functions. Here, we  found significant activation of the 
basolateral (BL) nucleus of amygdala during the viewing of Joy 
stimuli. The BL nucleus is composed of glutamatergic pyramidal 
neurons (~80–90%) and GABAergic neurons, and BL interneurons 
receive extensive sensory inputs from cortical and thalamic 
regions. It has been implicated in emotional learning and memory, 
fear conditioning and anxiety through projections to areas like the 
central amygdala, prefrontal cortex and hippocampus (McDonald, 
2020) and reward processing through direct excitatory connections 
to the nucleus accumbens (Ambroggi et al., 2008).

FIGURE 3

Advantages of gSLIDER SWAT. (A) Improved (×2) tSNR relative to SE-EPI. (B) Improved signal in inferior frontal and temporal regions compared to 
traditional GE. (C) Using FSL’s MELODIC analysis of visual hemifield task data, gSLIDER SWAT resolves individual hemispheric activations into two 
separate ICs, while gSLIDER without SWAT does not. (D) Time courses of a physiological noise component are shown without SWAT (top) and with 
SWAT (middle). The power spectra of the gSLIDER SWAT time series (bottom) clearly shows power above the Nyquist frequency of gSLIDER without 
SWAT (vertical dashed black line). For reference, the hemifield task frequency is indicated by the vertical dotted green line. (E) BOLD activations (Z > 3.1) 
for hemifield localizer task with stimulus frequency set to the Nyquist frequency of gSLIDER (TR = block duration = 18 s) for gSLIDER-SWAT (top) and 
gSLIDER (bottom).
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Additionally, at the single subject level during joy, we saw 
significant activation in the nucleus accumbens and striatum, key 
regions in the dopaminergic reward system. These findings align 
with prior research on the mesolimbic system, providing evidence 
of its involvement in joy. Dopaminergic neurons from the ventral 
tegmental area (VTA) primarily contribute to the mesolimbic and 
mesocortical pathways, projecting dopamine to the NAc and PFC 
(Schultz et al., 1997; Young and Nusslock, 2016). The NAc serves 
as a hub that links reward-related behavior, integrating inputs 
from cortical areas involved in executive functions (PFC) with 
emotional and sensory information from the limbic system. This 
integration facilitates goal-directed behavior, motivation and 
learning, and has been implicated in up-regulating positive 
emotions (Rueschkamp et al., 2019).

The neural circuitry of emotion is critical to study as its 
dysfunction contributes to various neuropsychiatric conditions 
including mood disorders characterized by emotion dysregulation 
(Phillips et al., 2003b; Altshuler et al., 2005). Understanding how 
these neural networks operate in healthy and clinical populations 
can provide important insights into the neural basis of emotion 
processing and its disruption in psychiatric illness (Townsend 
and Altshuler, 2012; Njau et  al., 2020). The amygdala and 
prefrontal cortex share bidirectional connections, and the BL 
amygdala has extensive reciprocal projections with the medial 
and orbital prefrontal regions - a circuit critical for emotional 
processing, learning and regulation. Studies have shown that 
disrupted connectivity between these regions is associated with 
impaired emotion regulation and mood dysregulation (Townsend 
et al., 2013). Advancing our understanding of emotion circuitry 
requires robust high-resolution neuroimaging methods that can 
reliably capture neural activity in regions like the orbitofrontal 
cortex and amygdala. We hope this study spurs further innovation 
in sequence development and other alternatives to traditional GE 
sequences for affective neuroscience fMRI.

With GE, fMRI signal acquisition in the amygdala and the 
orbitofrontal cortex/PFC, can be  compromised due to 
susceptibility artifacts arising from the adjacent air-filled cavities, 
particularly the sphenoid sinus and petrous portion of the 
temporal bone. These artifacts at the tissue-air interfaces lead to 
signal dropout and geometric distortions in the affected regions, 
limiting accurate measurement and localization. By incorporating 
novel SWAT reconstruction into gSLIDER, we  were able to 
achieve both the spatial resolution necessary to resolve these 
small brain structures and the temporal resolution required for 
typical fMRI.

One recent study did apply gSLIDER to fMRI (Han et al., 2020). 
However, in order to achieve a high temporal resolution 
(TR = 1.5 s), they were limited to a gSLIDER factor of 2 and 1.5mm3 
spatial resolution. In contrast, our study utilizes a gSLIDER factor 
of 5 that provides a theoretical gain of 58% higher SNR efficiency, 
which facilitates the factor of 3.4× finer volumetric resolution and 
opens the door to high-resolution fMRI at 3T. Importantly, although 
our initial testing utilized 1mm3 resolution without multiband to 
facilitate rapid image reconstruction, optimization and evaluation 
of our scan protocols, we anticipate that future work will be able to 
utilize higher resolutions (≤0.8 mm isotropic) in conjunction with 
multiband acceleration so as to maintain the same gSLIDER-SWAT 
TR of ~3.6 s.

SWAT is an effective novel gSLIDER reconstruction method 
that can further enhance BOLD signal detection by reclaiming 
additional high frequency temporal information. The 
incorporation of SWAT reconstruction into gSLIDER is a 
significant improvement as it accelerates and adapts an originally 
slow, diffusion MRI technique (TR = 18 s) to one with sufficient 
temporal resolution for most high-resolution fMRI applications 
(TR = 3.6 s). We  validated the benefit of this faster sampling 
afforded by SWAT through several approaches including using 
visual stimulation at the Nyquist frequency of gSLIDER 

FIGURE 4

Joy. We first demonstrate improved CNR detection of the neural substrates of Joy - Fixation with gSLIDER-SWAT (A, circled) compared to SE. Random 
effects analyses (B. bottom table/panels, n=6 runs) reveal significant activation in occipital and frontal regions using gSLIDER, and with gSLIDER-SWAT 
additionally in left hippocampus/extended amygdala-basolateral subregion (circled) (3T 1mm3; Z>1.7 cluster corrected, p<0.05, no masking).
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(Figure 3E). As expected when sampling at the Nyquist frequency, 
the ability to detect BOLD activity becomes extremely sensitive 
to the temporal alignment of the BOLD response and the 
acquisition of individual slices. This explains why just a single 
slice of the original gSLIDER showed significant BOLD activity. 
Importantly, while the broad width of the sliding window results 
in a temporal point-spread-function that attenuates higher spatial 
frequencies, it does not eliminate them (Figure  3D; 
Supplementary Figure S1). This is consistent with the findings of 
high-resolution fMRI studies evaluating the impact and 
optimization of spatial blurring versus sampling resolution on the 
ability to resolve mesoscale functional organization (Yacoub 
et al., 2008; Vu et al., 2018).

We also confirmed that the observed improvement in 
statistical power afforded by SWAT was not merely due to the 
faster sampling rate available (e.g., via simple 5-fold interpolation) 
since results using simple interpolation were similar to that of the 
original gSLIDER (Supplementary Figures S1–S3). However, 
accounting for temporal autocorrelation, a known characteristic 
of fMRI data, in the fMRI model for gSLIDER-SWAT is essential 
as they may result in inflated statistics and false positives 
(Supplementary Figure S4). Future investigation into the impact 
of different autocorrelation mitigation methods on Type 1 and 
Type 2 errors in the context of SWAT may be of interest. In this 
study the LjungBox test confirmed that use of FSL’s FILM 
pre-whitening was effective at removing the autocorrelations 
introduced by SWAT.

gSlider fMRI is an evolving technology that holds promise for 
advancing high-resolution neuroscience research at 3T by 
combining the benefits of SE with enhanced tSNR. Further 
refinement is required to address the current limitation of slab-
boundary artifacts observed every fifth slice (Figure 1B). Future 
incorporation of novel techniques like pseudo Partition-encoded 
Simultaneous Multislab (pPRISM, Chang, 2023) may help to 
mitigate these limitations and facilitate continued optimization 
of gSLIDER for fMRI.

Conclusion

This study is the first to demonstrate the feasibility of high 
spatial–temporal resolution (≦1 mm3) fMRI at 3T using gSLIDER-
SWAT, a novel gSLIDER reconstruction technique that shortens 
the effective TR to values typically used in fMRI and offers one 
alternative approach to traditional GE and SE sequences. When 
applied to investigate the neural correlates of joy using naturalistic 
stimuli in this pilot sample, gSLIDER-SWAT revealed activation in 
the salience network and emotion processing regions including the 
basolateral amygdala, anterior cingulate and prefrontal cortex; in 
visual regions; and in reward network regions like the nucleus 
accumbens and striatum at the individual subject level. While 
further optimization is needed to address the slab-boundary 
artifacts to make it a viable alternative, this study hopes to advance 
the field of high-resolution fMRI at 3T and spur additional 
sequence innovation. Combining gSLIDER-SWAT’s enhanced 
spatial and temporal resolution and reduced susceptibility artifacts 
may open possibilities for investigating functional organization in 
regions traditionally challenged by signal dropout.
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SUPPLEMENTARY FIGURE S1A

FSL’s MELODIC results for visual hemifield task data (36s blocks) from an 
example subject (Subject 1) for original gSLIDER (top), 5-fold simple 
interpolated gSLIDER (middle), and gSLIDER-SWAT (bottom).

SUPPLEMENTARY FIGURE S1B

FSL’s MELODIC results for visual hemifield task data (36s blocks) from an 
additional subject (Subject 2) for original gSLIDER (top), 5-fold simple 
interpolated gSLIDER (middle), and gSLIDER-SWAT (bottom).

SUPPLEMENTARY FIGURE S2

FSL’s FEAT GLM results for visual hemifield task data (36s blocks) from Subject 
1 with versus without FILM pre-whitening for original gSLIDER (top), 5-fold 
simple interpolated gSLIDER (middle), and gSLIDER-SWAT (bottom).

SUPPLEMENTARY FIGURE S3

Example voxel time courses for the visual hemifield task data (36s blocks) from 
Subject 1 with FILM pre-whitening for original gSLIDER (top), 5-fold simple 
interpolated gSLIDER (middle), and gSLIDER-SWAT (bottom).

SUPPLEMENTARY FIGURE S4

FSL’s FEAT GLM results for visual hemifield task data (36s blocks) from Subject 
1 comparing SE-EPI (left), gSLIDER (middle), and gSLIDER-SWAT (right).
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