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Over the past decade, functional magnetic resonance imaging (fMRI) has emerged 
as a widely adopted in vivo imaging technique for examining neural activity in 
the brain. A common preprocessing step in fMRI analysis is spatial smoothing, 
which helps in detecting cluster-like active regions. The use of a heuristically 
selected Gaussian filter for spatial smoothing is frequently preferred due to its 
simplicity and computational efficiency. Neurons in the cerebral cortex are located 
within a thin sheet of gray matter at the surface of the brain, and the human 
brain’s gyrification results in a complex gray matter anatomy. For task-based fMRI 
activation analysis, isotropic Gaussian smoothing can reduce spatial specificity, 
introducing spatial blurring artifacts where inactive voxels near active regions are 
mistakenly identified as active. This blurring is beneficial for group-level analysis as 
it helps mitigate anatomical variability across subjects and inaccuracies in spatial 
normalization. However, it poses challenges in subject-level analysis, particularly 
in clinical applications such as presurgical planning and fMRI fingerprinting, which 
demand high spatial specificity. Previous studies have proposed several adaptive 
spatial smoothing techniques to address these issues. In this study, we introduce 
a versatile deep neural network (DNN) that builds on the strengths of previous 
approaches while overcoming their limitations. This method can incorporate 
additional neighboring voxels for estimating optimal spatial smoothing without 
significantly increasing computational costs, making it suitable for ultrahigh-
resolution (sub-millimeter) task fMRI data. Furthermore, the proposed neural network 
incorporates brain tissue properties, enabling more accurate characterization of 
brain activation at the individual level.
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Introduction

Blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) is 
an imaging technique developed to capture time-varying changes in deoxyhemoglobin 
concentration within the brain (Arthurs and Boniface, 2002). Unlike resting-state fMRI, which 
examines spontaneous signal synchronicity across brain regions without requiring active tasks 
from participants, task fMRI requires participants to engage in specific tasks, making it 
valuable for localizing brain regions involved in certain functions.

Since its introduction in the 1990s, fMRI has become a prominent tool in cognitive 
neuroscience, clinical psychology, and surgical planning due to its non-invasive nature, high 
spatial resolution, and reasonable temporal resolution. However, the BOLD signal in fMRI 
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time series is often contaminated with both structured and 
unstructured noise from various sources (Liu, 2016). Moreover, the 
BOLD contrast in higher-order cognitive tasks can be quite small—
less than 1%—which diminishes the sensitivity and reliability of fMRI 
during statistical analyses (Huettel et al., 2004). To address this, spatial 
smoothing is commonly used as a preprocessing step to enhance the 
signal-to-noise ratio (SNR) of the data. The Gaussian filter, with a 
heuristically chosen full-width at half maximum (FWHM), remains 
the dominant method for smoothing fMRI data due to its simplicity 
and computational efficiency. Gaussian smoothing is universally 
applied to all voxels to derive smoothed time series, and then a 
univariate general linear model (GLM) is carried out for fMRI 
activation analysis. Spatial smoothing can be seen as a low-pass spatial 
filtering process that removes high-frequency components. This 
technique is effective in suppressing thermal noise and improving 
sensitivity to detecting BOLD signals, facilitating the identification of 
active regions (Hartvig and Jensen, 2000).

The variability in cortical gyrification (the pattern and degree of 
cortical folding) between subjects and imperfections in spatial 
normalization from individual to template space are the hurdles 
compromising group analysis; Gaussian smoothing facilitates the 
analysis at the cost of compromised spatial specificity at the individual 
level. Considering that the cortex is highly folded with variable 
granularity of activation profiles (i.e., spatial patterns, orientations, 
and contrast-to-noise ratio), applying a fixed isotropic Gaussian filter 
inevitably dilates active regions and leads to false active voxels at the 
subject level (Kamitani and Sawahata, 2010). This limitation is 
particularly problematic for applications where activation at the 
subject level is of particular interest, such as surgical planning (Silva 
et al., 2018) (i.e., estimate the location of cortical areas involved in 
speech and language (Signorelli et  al., 2001; Bizzi et  al., 2008) in 
relationship to brain tumors for safe resection) and fMRI 
fingerprinting, although current fMRI fingerprinting studies are 
mainly focused on resting state data due to its wider accessibility (Finn 
et al., 2015).

To address these challenges, several adaptive spatial smoothing 
methods have been proposed (Cordes et al., 2012; Zhuang et al., 2017; 
Yang et al., 2018). These methods aim to improve spatial specificity at 
the subject level by tailoring the smoothing parameters for each voxel 
based on the time series of surrounding voxels. The multivariate 
extension of GLM, such as canonical correlation analysis (CCA) 
(Zhuang et al., 2020), has been developed for this purpose. CCA is 
applied to derive a set of coefficients to maximize the correlation 
between the task design matrix and the unsmoothed time series from 
a voxel and its neighboring voxels. The optimized coefficients of 
unsmoothed time series are treated as the contribution of neighboring 
voxels in deriving smoothed time series of the center voxel, and the 
coefficients of the task design matrix represented the estimated activity 
of the center voxel under the task conditions (Friman et al., 2003). 
Conventional CCA can be  solved efficiently with an analytical 
solution. Since CCA was introduced for fMRI activation analysis in 
2001 (Friman et al., 2001), it was soon recognized that a constraint on 
neighboring time series is required to alleviate the spatial blurring 
artifact induced by the extra degree of freedom. To address this issue, 
multiple constraints on the weights of the neighboring voxels were 
introduced in previous studies (Cordes et al., 2012; Zhuang et al., 
2017; Yang et al., 2018). However, these constraints either eliminate 
the analytical solution for CCA or make it dependent on an 

exponentially increasing number of subproblems (e.g., 2^26 
sub-problems for 3 × 3 × 3 neighboring voxels), leading to longer 
computation times than the numerical solution (Cordes et al., 2012; 
Zhuang et  al., 2017). Including more neighboring voxels in the 
analysis leads to substantially increased computational time cost; 
therefore, the constrained CCA was initially proposed to include only 
the nearest neighboring voxels in the same slice (3 × 3) (Cordes et al., 
2012), and it was later extended to include voxels from neighboring 
slices with a more efficient optimization algorithm (Yang et al., 2018). 
Alternatively, the original time series can be anisotropically smoothed 
by a set of pre-specified oriented filters, and then a constrained CCA 
is applied to determine the optimal smoothing orientation, but not the 
shape, of each voxel (Yang et al., 2018), although the constraint applied 
to these filters compromises their ability to fit an arbitrary orientation 
(Rydell et al., 2006).

The technical development of fMRI acquisition has improved 
the contrast-to-noise ratio and made it feasible to collect 
meaningful data with higher spatial resolution. In contrast to the 
typical voxel size of 3 × 3 × 3 mm3 in early fMRI studies, smaller 
voxel sizes at the millimeter level or even submillimeter level 
(Huber et al., 2020; Lawrence et al., 2019) are more commonly 
used. The higher spatial resolution allows cognitive neuroscientists 
to detect the subtle activity difference between anatomically close 
regions or subregions in complex tasks (Yassa and Stark, 2011). 
Since the BOLD signal in smaller voxels is weaker than the signal 
in larger voxels due to less deoxyhemoglobin in smaller voxels, 
spatial smoothing remains necessary for most fMRI studies. In 
addition, including more neighboring voxels for adaptive fMRI 
smoothing is beneficial due to the finer resolution of the data. 
However, considering more neighboring voxels substantially 
increases the computational cost of these constrained CCA 
methods (Yang et al., 2018).

In this study, we aim to develop a deep neural network (DNN) 
model to adaptively estimate the optimal spatial smoothing for the 
task fMRI data at the subject level. By deepening the convolutional 
layers in the model, more neighboring voxels are taken into 
consideration in a time-efficient manner. In addition, instead of 
pre-specifying a set of filters, the filters in the model are estimated 
from the data itself, which could fit any shape as demonstrated in 
natural and medical image processing (Garcia-Garcia et al., 2017; 
Razzak et al., 2018). We hypothesize that the proposed method 
provides a more accurate estimation of brain activation.

Methods

Brief overview of GLM and CCA

GLM is the most commonly used approach to detect brain 
activation in task fMRI data, which is formulated as

 β ∈= +y X  (1)

×∈ 1Ty   represents the time series of a voxel, which is usually spatially 
smoothed with a heuristically selected Gaussian filter instead of the 
original unsmoothed time series. ×∈ T NX   is the design matrix 
modelling the BOLD response stimulated by the N  types of stimuli in 
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the task, which is computed by convolving binary task design with the 
canonical hemodynamic response function. T  is the number of fMRI 
volumes. The coefficient vector ( )β β β ×= … ∈ 1

1, , N
N   in Equation 1 

is estimated by linear regression such that the Frobenius norm of the 
residual term ∈ β= −y X  is minimized, which is equivalent to 
maximizing the correlation ρ  between y  and βX , namely 

( )
β

ρ βmax ,y X . Each element of the coefficient vector β  represents the 

activity strength of the voxel corresponding to the task stimulus, and 
ρ  indicates how strongly a voxel is relevant to the task across all task 
stimuli modeled in the design matrix X .

Spatial smoothing can be treated as a weighted summation of the 
time series from a voxel and its neighboring voxels, formulated as 

α α≡ =∑ i iiy Y y . For Gaussian smoothing, the spatial weight 
coefficient α  is a constant vector across all voxels, and its value is solely 
determined by the FHWM. As to the aforementioned CCA methods, 
α  is estimated together with β  by maximizing the correlation

 
( )

α β
ρ β α≡

,
max , ,wherey X y Y

 
(2)

where Y  is comprised of unsmoothed time series from a certain voxel 
and its neighboring voxels. The CCA method formulated in Equation 2 
can be treated as the multivariate extension of the univariate GLM 
model (Thompson, 2005). Y  is of the dimension ×9T  when only the 
in-slice 2D ×3 3 nearest neighboring voxels are considered (Friman 
et  al., 2003), and it is of the dimension ×27T  when 3D × ×3 3 3 
neighboring voxels are included (Yang et  al., 2018). The activity 
estimated from the equation is assigned to the center voxel. If the 
original fMRI data is first anisotropically smoothed by a set of filters 
(Yang et  al., 2018), and then the filtered time series are fed into 
Equation 2. In this case, each element in α  represents the weight of 
individual filters for the center voxel. While CCA can derive a voxel-
specific spatial smoothing strategy, it is prone to spatial blurring 
artifacts due to the extra degree of freedom unless proper constraints 
are applied to the weight coefficient α .

When CCA was applied to fMRI activation analysis, a 
non-negative constraint on α  was first proposed and was solved 

analytically (Friman et  al., 2003), and then the later proposed 
constraints were solved analytically (Cordes et  al., 2012) or 
numerically (Zhuang et al., 2017; Yang et al., 2018). When the in-plane 
×3 3 nearest neighboring voxels were considered in the analysis, the 

sum constraint was illustrated to have the best performance (Zhuang 
et al., 2017), where the weight of the center voxel was no less than the 
sum of the weights of all neighboring voxels, and the weights of all 
voxels were non-negative. Although CCA with a sum constraint on 
× ×3 3 3 neighboring voxels can still be solved with reasonable time 

cost, further increasing neighboring voxels leads to a substantially 
increased computational burden (Yang et  al., 2018). Given these 
challenges, we propose a deep neural network (DNN) that utilizes the 
advantages of CCA while improving computational efficiency and 
scalability. Instead of using predefined filters, our DNN model learns 
spatial filters from the data, thus allowing for more flexible smoothing 
strategies. The convolutional layers in the model capture spatial 
information from neighboring voxels, while the fully connected layers 
optimize the weights of the smoothed time series to improve 
activation detection.

Architecture of DNN

The DNN model consists of multiple 3D convolutional layers 
followed by fully connected layers, as illustrated in Figure  1. The 
model is trained using unsmoothed fMRI data and outputs the 
DNN-smoothed time series. The 3D convolutional layers act as the 
data-driven spatial filters learnt from the data itself, allowing for 
flexible adaptation to various data characteristics. In contrast, the 
shapes and orientations of the anisotropic filters used in previous 
studies are pre-specified (Yang et al., 2018). The fully connected layers 
in the DNN model assign weights to the smoothed time series from 
the convolutional layers, ensuring that the model produces an 
optimized smoothed time series.

To reduce the memory load, fMRI data are partitioned into 
smaller batches through a data generator and then fed to the model 
with the shape of × × × × ×1n T x y z , where n is the batch size, T  is the 
length of fMRI time points, 1 is the number of channels, and × ×x y z  

FIGURE 1

Architecture of the proposed deep neural network for adaptive smoothing. The 3D convolutional layers are applied to the spatial space. The fully 
connected layers are applied on the final output channel from the last convolutional layer. A sum constraint is applied on the convolutional layers and 
a non-negative constraint is applied to the fully connected layers.
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(31×31×31 in this study) is the 3D spatial dimension of the cropped 
fMRI data.

The 3D convolutional layers have a kernel size of 3 × 3 × 3, and 
the output time series from each filter are assigned to the center voxel. 
In this way, the output time series from a convolutional layer contains 
the information from the nearest neighboring voxels. By stacking an 
extra convolutional layer, the information from the second nearest 
neighboring voxels can propagate to the center voxel and so forth. 
Compared to a convolutional layer with a larger kernel size, stacking 
multiple layers with smaller kernel sizes has the advantage of 
computational efficiency (Yang et al., 2020a). Let ω − × × × ×∈ 1 3 3 3i iF F

i   
denote the weight of the filters in one convolutional layer, where iF  
represents the number of filters in the i-th convolutional layer and 
−1iF  is the number of filters in the previous layer. For the first 

convolutional layer in the model ( =1i ), −1iF  equals to the number of 
channels of input fMRI data, namely =0 1F . Similar to the 
conventional CCA requiring constraints on the neighboring voxels 
to reduce spatial blurring artifacts, constraints are applied on the 
convolutional layers. Considering that CCA with a sum constraint 
has the best performance for fMRI activation analysis (Zhuang et al., 
2017), the center element of the kernel is required to be no less than 
the summation of the rest 26 elements, and all elements in the kernel 
are non-negative, which is formulated as

 

( ) ( )ω ω− −

= = =

≥ ∑1 1
, ,

2

,2,2,2, , , , , ,i i i i i i
m n q

except m n q

f f f m n q f

 { } { }− −= … = …1 11, , , 1, ,i i i if F f F

 ( )ω − ≥1and , , , , 0.i i if m n q f

The fully connected layers are then applied to determine the 
weights of the spatially filtered time series from the last convolutional 
layers. The last fully connected layer has only one channel, and its 
output is the final time series after DNN spatial smoothing. The 
weights in the fully connected layers are required to be non-negative. 
The non-negative constraint in the fully connected layers is used for 
two reasons. First, the DNN model should not artificially flip the sign 
of the time series, which can lead to the risk of erroneously identifying 
an activated (β > 0) region as deactivated (β < 0) and vice versa. 
Second, spatial smoothing is intended to work as a low-pass spatial 
filter to improve the SNR, having a negative weight on certain spatial 
filters no longer preserves this property and it may exacerbate the 
following statistical analysis.

The DNN model is optimized with a customized cost function. 
Identifying robust brain activity in regions involved in the task is a 
crucial step in analyzing task fMRI data; therefore, the proposed DNN 
model should better suppress the noise in the data and have stronger 
statistical power to identify active brain regions. At the same time, the 
brain activity in the regions not involved in the task should not 
be overestimated, leading to lower spatial specificity with more false 
active voxels. When the neuron cells in the gray matter are engaged in 
the task, it causes an increased BOLD signal, which is detected by 
fMRI. Considering that most of the brain activity, if not all, is expected 
to occur within the gray matter, the cost function for the DNN model 

is defined as the ratio of brain activity strength between gray matter 
(GM) and non-gray matter (non-GM; including both white matter 
and cerebrospinal fluid), which is formulated as

 
( ) ( )

( )−
= −

,
, .

,
GM

non GM

r Y X
Y X

r Y X


The brain activity strength is characterized by the average 
correlation r from GLM analysis between DNN-output time series (Y ) 
and task design matrix (X ) in each iteration. The brain tissue mask is 
generated from T1 structural MRI data and then coregistered to fMRI 
space. The non-GM mask is eroded twice to avoid the contribution of 
gray matter due to the partial volume effect. Considering that not all 
regions in the gray matter are active during the task, there is a concern 
that no penalty on these inactive GM regions in the cost function 
could lead to false active regions. However, if brain activity is 
“artificially” induced in inactive GM regions, the same phenomenon 
is expected to occur within the non-GM tissue since the same model 
is used across all voxels regardless of their brain tissue property. 
Therefore, the cost function could indirectly suppress false active 
regions in GM tissue. A few recent studies argued that white matter 
might contain functional signals (Schilling et al., 2023; Courtemanche 
et  al., 2018). However, its hemodynamic response function was 
distinct from the canonical hemodynamic response function, and the 
magnitude was substantially lower than in gray matter (Li et al., 2019). 
Therefore, the proposed cost function remains valid for activation 
detection in gray matter.

MRI data

The structural and functional data used in the study were obtained 
from the Human Connectome Project (HCP) Young Adult (https://
www.humanconnectome.org/study/hcp-young-adult). The 3 T MRI 
imaging data from 88 subjects were used in this study. All subjects 
were males with ages in the range of 26–30 years, having complete T1, 
resting-state fMRI, and task fMRI scans. The demographic criteria 
were heuristically selected to have a proper sample size for comparing 
the methods used in the study. The structural T1 images were acquired 
with a resolution of 260 × 311 × 260 to yield 0.7 mm × 0.7 mm ×  
0.7 mm isotropic voxel size. The working memory task fMRI data 
were acquired with 405 time points from a gradient-echo fast EPI 
sequence with these parameters: multiband factor 8, TR/
TE = 720/33.1 ms; flip angle = 52 degrees; 72 slices; spatial 
resolution = 2 mm × 2 mm × 2 mm and imaging matrix = 104 × 90. 
The resting-state fMRI data were acquired with an identical pulse 
sequence except with 1,200 time points.

The first 15 volumes of working memory fMRI data were 
discarded to avoid data with unsaturated T1 signals. Minimally 
preprocessed fMRI data (in standard MNI space) (Glasser et al., 2013) 
after an additional linear detrending step to remove signal intensity 
drift (Tanabe et  al., 2002) were treated as raw fMRI data in our 
analysis. Regressors modeling movement or physiological noise were 
not used in the processing steps since including these regressors did 
not show any evidence of improvement with the HCP data (Barch 
et al., 2013). The task itself represented an event-related task design 
consisting of targets, non-targets, and lure conditions. Within each 
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working memory task fMRI run, four different stimulus types, 
including places, tools, faces, and body parts, were presented in 
separate blocks. ½ of the blocks used a 2-back working memory task 
and ½ used a 0-back working memory task for each run. Further 
details of the HCP 3 T MRI protocols and task designs can be found 
in (Barch et al., 2013). The task design matrix ×∈ 3TX   was computed 
by convolving binary task conditions with the canonical hemodynamic 
response function.

Simulation

A set of 20 simulated task fMRI sessions was generated with 
resting-state fMRI data from 20 randomly selected subjects, together 
with the working memory task design matrix, to mimic real fMRI data 
for evaluating the performance of different denoising techniques. The 
resting-state fMRI data were truncated to match the length of task 
fMRI data and then wavelet-resampled in the time domain to keep the 
same spatial arrangement (Zhuang et al., 2020), denoted as ry , which 
was treated as the signal irrelevant to the task. The gray matter voxels 
within six bilateral regions in the AAL atlas (Tzourio-Mazoyer et al., 
2002), including the anterior cingulate cortex, precentral gyrus, 
inferior frontal gyrus, insula, middle frontal gyrus, and middle 
temporal gyrus, were simulated to be active. Each region was specified 
with one certain weight vector β for the task conditions. The signal of 
an active voxel was computed as ( )β ∈= +s X , where ò  was a random 
vector matching the size of β with value ranging from −0.1 to 0.1. For 
an active voxel, the simulated time series was generated as 
= + ∗ry y f s , where f  was a constant value across all active voxels. 

For inactive voxels, ry  was the simulated time series for each voxel, 
namely = ry y . In this study, the weight vector β was defined with 
three situations covered: (1) only involved in one task condition, e.g., 
[1 0 0], [0 1 0], and [0 0 1]; (2) involved in two conditions, e.g., [0.3 1 
0] and [0.45 0 0.95]; and involved in all three conditions, e.g., [1 
0.3 0.3].

Analysis

With both simulated and real fMRI data, multiple analysis 
methods were carried out to derive the correlation between fMRI time 
series and task design matrix, including GLM without spatial 
smoothing, GLM with full width at half maximum (FWHM) = 6 mm 
Gaussian smoothing (S6GLM), conventional CCA without a 
constraint, CCA with a sum constraint (sumCCA), and the proposed 
DNN method. The computation was run on a Xi computer (https://
www.xicomputer.com/) with 2 × Intel Xeon Silver 4,208 processors 
(32 cores in total) and 2 × NVIDIA GeForce RTX 3090 graphical 
cards. In-house MATLAB (The MathWorks, Inc., version R2022a) 
scripts were used to run GLM, S6GLM, CCA, and sumCCA. GLM 
and S6GLM took approximately 80 s per subject without parallel 
computing. Following previous studies (Zhuang et al., 2017; Yang 
et al., 2018), CCA and sumCCA were run with the nearest neighboring 
voxels considered, namely 3 × 3 × 3 neighboring voxels. Parallel 
computing with 24 cores was enabled for CCA and sumCCA. It took 
2 min to run a conventional CCA and 15 min to run sumCCA per 
subject. DNN was conducted with two 3D conventional layers, which 
was equivalent to 5 × 5 × 5 neighboring voxels. TensorFlow 2.11.1 

(https://www.tensorflow.org/) was used to run the DNN model. It 
took approximately 10 min per subject to train the DNN model on a 
single graphical card. Note that it took approximately 70 min per 
subject for sumCCA if 5 × 5 × 5 neighboring voxels were considered.

With the known activation status of each voxel in the simulated 
data, a receiver operating characteristic curve (ROC) was used to 
evaluate the overall sensitivity and specificity of each analysis method. 
The area under the ROC curve (AUC) was computed with a limited 
false-positive rate (FPR) range of 0–0.1 instead of a full range of 0–1. 
Considering that inactive voxels were usually strictly controlled in 
fMRI analysis, the AUC value computed with a limited FPR range was 
more meaningful than the value obtained with the full FPR range.

With the real fMRI data from 88 subjects, we first used a 2D 
histogram to evaluate the relationship of the correlation values 
obtained from voxel-wise GLM analysis and methods. The correlation 
value could be treated as the estimated strength of how strongly a 
voxel was involved in the task. The 2D histogram could help visualize 
how different methods estimate activation across a range of voxel 
correlations, from low to high, in the GLM. With the hypothesis that 
low-correlation voxels in GLM were less likely to be active and high-
correlation voxels in GLM were more likely to be active, an approach 
that consolidated the strength of active voxels and had less or no 
influence on inactive voxels could help better discriminate active 
voxels from inactive voxels.

Because parametric statistic tests (e.g., t statistics) were not 
applicable to constrained CCA (Zhuang et al., 2017), a non-parametric 
permutation test was used to compare different methods. Resampling 
fMRI data and then replicating the analysis as with original data were 
used to generate a null distribution and then determine the 
significance level in fMRI analysis. In this study, we took wavelet-
resampled resting-state fMRI data and then ran analysis with different 
analysis methods. To reduce computational time, only one set of 
resampled data was generated for each subject. The distribution of 
correlation from null data was computed separately for each subject, 
and then the correlation value at the 99.9 percentile, denoted as pr , was 
recorded, which approximated the magnitude at the significance level 
of p = 0.001 for each method. This value could be  treated as an 
assessment of how the spatial smoothing strategy influenced the null 
data, which was important for evaluating if a time-consuming 
non-parametric permutation test was needed to determine the 
statistical significance of the activation map. More importantly, the 
magnitude difference of pr  between one certain spatial smoothing 
method and GLM without spatial smoothing, namely Ä pr , reflected 
how strongly the smoothing strategy exaggerated the correlation of 
inactive voxels.

Results

Simulated data

The correlation map from a single simulated fMRI session is 
shown in Figure 2, together with the ground truth activation map. 
Without spatial smoothing, the active regions in the GLM-derived 
spatial map appeared to be obsolete and barely differentiated from 
inactive voxels. In a comparison of S6GLM vs. GLM, Gaussian 
smoothing significantly enhanced the activation map, making the 
active regions more distinguishable. Similarly, the active regions 
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derived from conventional CCA were also more discriminative 
compared to GLM without spatial smoothing. At the same time, CCA 
had higher correlation values across the entire brain than other 
methods regardless of the activation status; such a phenomenon was 
alleviated when the sum constraint was implemented. The proposed 
DNN method had a comparable correlation magnitude with GLM in 
the inactive regions, but it provided better contrast between inactive 
regions and active regions. The mean AUC values in the FPR < =0.1 
range (max value 0.1) were 0.035, 0.063, 0.064, 0.066, and 0.070 for 
GLM without spatial smoothing, S6GLM, conventional CCA, 
sumCCA, and DNN, respectively. The AUC values calculated from all 
20 simulated fMRI sessions are shown in Figure 3.

Real data

The 2D histograms of the correlation map from GLM and the 
other methods are shown in Figure 4, with the color representing the 
number of voxels in each bin. The bins above the diagonal line 
indicated that the method on the y-axis had a higher correlation than 
the method on the x-axis, and the bins below the diagonal line 
indicated that the method on the y-axis had a lower correlation than 
the method on the x-axis. Gaussian smoothing consolidated the 
correlation strength for the active voxels, with the observation of more 
voxels above the diagonal line. However, a noticeable fraction of 
inactive voxels in GLM also had higher correlation after Gaussian 
smoothing (top left corner in Figure 4a). The CCA methods had higher 
correlations than GLM for nearly all voxels, and the sum constraint 
alleviated the overestimated correlation for highly inactive voxels 
(correlation values close to 0). Different from Gaussian smoothing that 
weakened the correlations for a fraction of voxels (blue oval in 
Figure 4a), conventional CCA and sumCCA showed a shift toward 
higher correlation, which was expected since the CCA approaches 
estimated the spatial smoothing by maximizing the correlation value, 
and no smoothing was one solution candidate (α = 0i  for all 
neighboring voxels and α =1i  for the center voxels). Since the spatial 

weight coefficient α  for certain voxels in conventional CCA did not 
necessarily satisfy the sum constraint, the spatial filtering with lower 
correlations was adopted in sumCCA, and thus, the up shift in 
sumCCA was not as much as in conventional CCA. As to the proposed 
DNN method, it further restrained the voxels with low correlations in 
GLM from achieving higher correlations, and most of them were along 
the diagonal lines in the low correlation range, indicating that DNN 
did not lead to noticeable over-estimated activation for inactive voxels. 
Such a discrepancy between DNN and CCA approaches was because 
of their different cost functions. As for voxels with intermediate to high 
correlations in GLM, most of them had higher correlations in DNN 
than in GLM. Collectively, DNN showed an upshift of correlation for 
voxels that were more likely to be active but did not show a clear shift 
for voxels that were less likely to be active, which was beneficial for 
discriminating active voxels from inactive voxels.

With wavelet-resampled null data, the correlation values at the 
99.9 percentile, namely pr , were computed for all analysis methods. 
Figure 5 shows the difference of pr  between other analysis methods 
and GLM without spatial smoothing. CCA without constraint had pr  
increased by approximately 0.2 compared to GLM. A sum constraint 
substantially suppressed the difference and had the correlation 
difference slightly more than 0.05. Gaussian smoothing had the 
average pr  slightly increased with a larger variability between 

FIGURE 2

Simulated activation patterns and the corresponding correlation maps derived from analysis methods, including GLM without spatial smoothing, GLM 
with FWHM = 6 mm Gaussian smoothing, conventional CCA, CCA with a sum constraint (sumCCA), and the proposed DNN method.

FIGURE 3

AUC values from different methods for 20 simulated fMRI sessions.
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resampled fMRI sessions. In contrast, the proposed DNN model had 
the pr  value negligibly different from GLM with a small variability 
between resampled fMRI sessions.

We then counted the number of voxels correlating the cutoff value 
pr  within gray matter or non-gray matter. GLM, as an approach 

without spatial smoothing, had the least number of voxels within gray 
matter or non-gray matter tissue (Figures 6a,b). All other methods had 
more voxels above the cut-off value for both gray matter and non-gray 
matter. We then computed the ratio of the number of voxels between 
gray matter and non-gray matter. Gaussian smoothing with 
FWHM = 6 mm had the lowest ratio (Figure 6c). CCA had a higher 
GM/non-GM ratio, and the value was further improved by 
implementing a sum constraint on neighboring voxels. The proposed 
DNN model had the highest GM/non-GM ratio compared to the 
Gaussian smoothing and CCA approaches, and its value was 
comparable to GLM without spatial smoothing. The activation map 
above the cutoff value pr  (orange color) overlaid on the gray matter 
mask (blue color) from a single subject is shown in Figure  7. As 
marked by red arrows, DNN alleviated the blurring artifact as in 
traditional spatial smoothing approaches.

Discussion

In this study, we introduced a DNN-based adaptive smoothing 
framework for task fMRI data. The proposed DNN framework 
inherits the flexibility of the local CCA family (Zhuang et al., 2017) in 

FIGURE 4

2D histograms of correlations obtained from GLM without spatial smoothing (x-axis) and other methods (y-axis), including GLM with FWHM=6 
Gaussian smoothing (a; S6GLM), conventional CCA (b), CCA with a sum constraint (c; sumCCA), and the proposed DNN model (d). The bins above the 
diagonal line indicated that correlation obtained from the other method was greater than the correlation obtained from GLM (>r_GLM); and the bins 
under the diagonal line indicated that the correlation obtained from the other method was less than the correlation obtained from GLM (>r_GLM). The 
color represented the number of voxels in each bin.

FIGURE 5

Difference in rp values between other methods and GLM. Wavelet-
resampled resting-state fMRI data were generated as the null data 
for each subject, and then the correlation values were computed 
with each method. The correlation value at the 99.9 percentile from 
the null data was denoted as rp. The ∆rp value was calculated as the 
difference of rp from one method compared to GLM, which 
reflected how strongly a method exaggerated the correlation of 
inactive voxels compared to GLM without spatial smoothing.
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implementing spatial constraints on local neighboring voxels; at the 
same time, it provides a time-efficient way to consider more 
neighboring voxels during the process of determining optimal 
parameters for spatial smoothing. We have applied this technique, 
together with previously developed methods, to simulated and real 
task fMRI data, demonstrating its feasibility and robustness for task 
fMRI activation analysis.

As the ancestor of the proposed DNN method, sumCCA shares 
some similarities with the DNN method. First, both methods are 
adaptive spatial smoothing approaches without pre-specified spatial 
filters. Second, a constraint can be applied on neighboring voxels to 
alleviate the spatial blurring artifact. Besides the sum constraint, other 
constraints used in CCA, including the non-negative constraint and 
the dominance constraint (Cordes et al., 2012), can also be easily 
implemented in the DNN framework. Third, without considering 

computational efficiency, both methods are ideally applicable to 
various fMRI acquisition schemes. For example, for data acquired 
with fine in-slice resolution but large slice thickness (e.g., 
1 mm × 1 mm × 5 mm), in-slice 3 × 3 neighboring voxels, or even 
more in-slice neighboring voxels, might be preferred over including 
voxels from neighboring slices (e.g., 3 × 3 × 3 neighboring voxels). To 
restrict the DNN to in-slice neighboring voxels, the 3 × 3 × 3 
convolutional filters can be replaced with 3 × 3 × 1 filters, while the 
rest of the algorithm remains unchanged for analysis.

At the same time, the proposed DNN method is distinct from 
traditional CCA methods in multiple aspects. First, different from 
sumCCA, which is carried out at each voxel independently and 
repetitively across the entire brain, DNN takes advantage of the 
convolutional layers to derive a set of filters from the data itself for all 
the voxels and then used the fully connected layers to optimize the 

FIGURE 6

Number of voxels in non-gray matter (a) and gray matter tissue (b) above the cut-off value rp in each subject. The ratio of voxels between gray matter 
and non-gray matter was calculated within each subject and is shown in (c).

FIGURE 7

Active map with the cutoff value rp from a single subject. Gray matter mask is overlaid in the image as marked in blue. The areas showing a substantial 
reduction of bleeding artifacts are marked by red arrows.
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weights of the output time series from the convolutional layers. 
Including more neighboring voxels can be  achieved by stacking 
additional convolutional layers or increasing the window size of the 
filters, which is much more computationally efficient compared to 
sumCCA, whose computational time substantially increases with the 
number of neighboring voxels included in the analysis (Yang et al., 
2018). Second, these two methods have different criteria to optimize 
the spatial smoothing parameters. The contribution of neighboring 
voxels in sumCCA is optimized to maximize the correlation between 
filtered time series and task design matrix regardless of the anatomical 
information. The correlation between the filtered time series and task 
design matrix is also computed in the DNN framework, but instead 
of maximizing the correlation for all voxels, it maximizes the ratio of 
the mean correlation between gray matter and non-gray matter tissue. 
The task-related BOLD activity is expected to be mainly, if not all, 
located in gray matter. When spatial blurring artifacts occur, the 
BOLD signal in the non-gray matter tissue surrounding active gray 
matter voxels, as assessed by correlation, is artificially increased. A 
spatial smoothing strategy that suppresses the noise in gray matter, 
leading to stronger correlation and having no or less impact on 
non-gray matter tissue, is preferred. For this reason, the ratio, instead 
of the correlation itself, is used for optimizing the DNN model. Third, 
unlike sumCCA requires non-parametric tests for the statistical 
analysis, parametric statistical tests are suggested to be applicable for 
the DNN method. It is found that the correlation at 99.9 percentile, 
namely pr , from resampled data after DNN has a negligible deviation 
from the resampled data without any spatial smoothing, in contrast to 
a substantial increase as observed with CCA methods. This finding 
suggests that the null distribution without spatial smoothing well 
approximates the null distribution after DNN spatial smoothing; 
therefore, the parametric statistical tests used in GLM are applicable 
to DNN-processed data, which is more time efficient than 
non-parametric tests.

Utilizing anatomical information to assist with fMRI smoothing 
is not exclusive to the DNN method. With the assistance of structural 
MRI data, 3D volumetric fMRI data can be first projected to the 
surface of the brain, and smoothing is carried out with the surface-
based data. This approach can help reduce signal blurring between 
different cortical areas (e.g., across sulcal banks) (Brodoehl et al., 
2020); however, it is limited by its reliance on precise anatomical 
registration and accurate projection of volumetric fMRI data onto the 
cortical surface (Tucholka et al., 2012). FMRI data contain artifacts 
due to geometric distortion in the EPI sequence, which are not fully 
corrected during preprocessing (Hutton et al., 2002). In addition, the 
typical resolution of fMRI data makes it challenging to project 
volumetric fMRI data accurately on the cortical surface due to the 
thin cortical thickness and the close proximity of opposing banks 
within a sulcus (Operto et al., 2008). In laminar fMRI research, where 
the dependence of activity on cortical depth is of particular interest, 
the boundary between gray matter and white matter or cerebrospinal 
fluid is used as the basis to delineate cortical layers. Spatial smoothing 
in laminar fMRI studies takes advantage of the anatomical 
information of cortical layers to smooth data within each cortical 
layer (Huber et  al., 2017) or across a few neighboring layers 
(Blazejewska et al., 2019). The spatial smoothing used in surface-
based fMRI and laminar fMRI is purely based on anatomical 
information, and the same smoothing parameter is used for all 
vertices. These factors make the signal blurring between neighboring 

vertices inevitable. In contrast, the DNN method is a volume-based 
smoothing strategy with spatial smoothing parameters depending on 
the functional signal difference between brain tissues, which 
adaptively optimizes smoothing for each voxel. Although anatomical 
information is also required in DNN, erosion is used in defining the 
non-GM mask for computing the customized cost function, which 
reduces the risk of GM voxels being included. A small fraction of 
voxel misclassification is unlikely to have a fundamental effect on the 
model. In addition, DNN does not involve the process of relying on 
anatomical structure for data interpolation. Developing a method to 
integrate the information of cortical layers/surface and the signal 
difference between brain tissues would be  a future direction of 
the study.

Despite being fundamentally different from the DNN method, 
various non-smoothing-based methods can, in principle, be used to 
suppress noise components in fMRI time series, including temporal 
autocorrelation correction (Olszowy et al., 2019), motion correction 
(Zaitsev et al., 2017), and ICA/PCA-based or deep learning-based 
denoising strategies (Pruim et al., 2015; Vizioli et al., 2021; Yang et al., 
2020b). These approaches can be used together with DNN. Performing 
a thorough comparison under all possible combinations of these 
methods is beyond the scope of this study. The primary aim of this 
study is to introduce a flexible adaptive smoothing framework for 
task fMRI.

There are a few limitations to the study. First, the DNN method 
assumes that the task-related neuronal activity is well-modeled in the 
design matrix. A canonical hemodynamic response function was 
used in the study to model neuronal response after the stimuli. 
Previous studies demonstrated the variability of the hemodynamic 
response function between subjects or even between regions 
(Handwerker et al., 2004; Aguirre et al., 1998). Inspecting the result 
from traditional methods such as GLM with/without Gaussian 
smoothing to evaluate if the task-related neuronal response is well 
captured with canonical hemodynamic response function before 
applying DNN is recommended. Instead of using a canonical 
hemodynamic response function, deriving a subject-specific 
hemodynamic response function to model task response could be an 
alternative approach (Lindquist et  al., 2009). Second, as a deep 
learning-based approach, the proposed DNN approach requires a 
large number of voxels to train the model. When fMRI data is 
acquired with partial brain coverage or with a coarse resolution, its 
feasibility needs to be examined before extensively applying DNN for 
analysis. Third, the spatial smoothing is optimized based on the 
correlation of time series with task design matrix between gray 
matter and non-gray matter tissues. Therefore, the activity for the 
task conditions not modeled in the design matrix might 
be suboptimal. As for the resting-state fMRI data, the task design 
matrix can possibly be replaced by the time series from given seed 
regions. However, because the time series from the seed regions is 
contaminated by various noise, using it to train the DNN model 
might be detrimental instead of being beneficial for the follow-up 
statistical analysis. Future research is warranted to investigate the 
potential utility of this approach on resting-state fMRI data.

In summary, an efficient DNN-based adaptive spatial 
smoothing strategy is proposed for task fMRI activation analysis. 
Stacking multiple convolutional layers can efficiently consider 
more neighboring voxels during the adaptive spatial smoothing 
process, which overcomes the limitation of computational burden 
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in CCA approaches. At the same time, a family of constraints used 
in CCA can be easily implemented in the proposed method, which 
makes the approach highly flexible and can be revised for various 
fMRI acquisition schemes. Furthermore, the novel cost function 
introduced in the DNN method does not exaggerate the activation 
of inactive voxels, which suggests that the parametric statistical 
test used for GLM can be  used to determine the statistical 
significance of brain activation derived from DNN-smoothed 
time series.
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