AUTHOR=Yang Zhengshi , Zhuang Xiaowei , Lowe Mark J. , Cordes Dietmar TITLE=A deep neural network for adaptive spatial smoothing of task fMRI data JOURNAL=Frontiers in Neuroimaging VOLUME=Volume 4 - 2025 YEAR=2025 URL=https://www.frontiersin.org/journals/neuroimaging/articles/10.3389/fnimg.2025.1554769 DOI=10.3389/fnimg.2025.1554769 ISSN=2813-1193 ABSTRACT=Over the past decade, functional magnetic resonance imaging (fMRI) has emerged as a widely adopted in vivo imaging technique for examining neural activity in the brain. A common preprocessing step in fMRI analysis is spatial smoothing, which helps in detecting cluster-like active regions. The use of a heuristically selected Gaussian filter for spatial smoothing is frequently preferred due to its simplicity and computational efficiency. Neurons in the cerebral cortex are located within a thin sheet of gray matter at the surface of the brain, and the human brain’s gyrification results in a complex gray matter anatomy. For task-based fMRI activation analysis, isotropic Gaussian smoothing can reduce spatial specificity, introducing spatial blurring artifacts where inactive voxels near active regions are mistakenly identified as active. This blurring is beneficial for group-level analysis as it helps mitigate anatomical variability across subjects and inaccuracies in spatial normalization. However, it poses challenges in subject-level analysis, particularly in clinical applications such as presurgical planning and fMRI fingerprinting, which demand high spatial specificity. Previous studies have proposed several adaptive spatial smoothing techniques to address these issues. In this study, we introduce a versatile deep neural network (DNN) that builds on the strengths of previous approaches while overcoming their limitations. This method can incorporate additional neighboring voxels for estimating optimal spatial smoothing without significantly increasing computational costs, making it suitable for ultrahigh-resolution (sub-millimeter) task fMRI data. Furthermore, the proposed neural network incorporates brain tissue properties, enabling more accurate characterization of brain activation at the individual level.