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Introduction: Functional connectivity (FC) is a metric of how di�erent brain

regions interact with each other. Although there have been some studies

correlating learning and memory with FC, there have not yet been, to date,

studies that use machine learning (ML) to explain how FC changes can be

used to explain behavior not only in healthy mice, but also in mouse models

of Alzheimer’s Disease (AD). Here, we investigated changes in FC and their

relationship to learning and memory in a mouse model of AD across disease

progression.

Methods: We assessed the APP/PS1 mouse model of AD and wild-type controls

at 3-, 6-, and 10-months of age. Using resting state functional magnetic

resonance imaging (rs-fMRI) in awake, unanesthetized mice, we assessed FC

between 30 brain regions. ML models were then used to define interactions

between neuroimaging readouts with learning and memory performance.

Results: In the APP/PS1 mice, we identified a pattern of hyperconnectivity

across all three time points, with 47 hyperconnected regions at 3 months, 46

at 6 months, and 84 at 10 months. Notably, FC changes were also observed

in the Default Mode Network, exhibiting a loss of hyperconnectivity over time.

Modeling revealed functional connections that support learning and memory

performance di�er between the 6- and 10-month groups.

Discussion: These ML models show potential for early disease detection by

identifying connectivity patterns associated with cognitive decline. Additionally,

ML may provide a means to begin to understand how FC translates into learning

and memory performance.
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Alzheimer’s disease, rs-fMRI, functional connectivity, modeling, behavior, mouse model

1 Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder impairing

cognitive function and memory (Scheltens et al., 2021). A conclusive AD diagnosis

requires postmortem examination to confirm the presence of Aβ plaques, tau tangles, and

atrophy (McLean et al., 1997). In living patients, a probable diagnosis involves cognitive

assessments, plasma Aβ measurements, and PET imaging to assess Aβ plaque and tau

tangle deposition (Coupé et al., 2019; Cullen et al., 2021; Manera et al., 2023). Despite

these indirect tests, there is no definitive diagnostic available for early and accurate AD

diagnosis (Burnham et al., 2024). However, advancements in neuroimaging techniques that

can detect deficits prior to significant accumulation of pathological features and cognitive
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decline would aid early detection, diagnosis, and potential

therapeutic intervention of AD (Gauthier, 2005; Jagust, 2018; Leuzy

et al., 2019; Olivari et al., 2020).

Magnetic resonance imaging (MRI) has emerged as a promising

diagnostic technique for neurodegenerative disease, offering the

ability to non-invasively measure both anatomical and functional

connectivity (FC). Resting state functional MRI (rs-fMRI) is a type

of functional MRI that is task independent and uses blood oxygen

level detection (BOLD) to map FC, the correlation of activity that

occurs between spatially separated brain regions.

In both AD patients and mouse models, rs-fMRI has revealed

deficits in FC in brain regions that are involved in memory

functions (Wang et al., 2013; Xu et al., 2024). Understanding

patterns of resting-state connectivity provides insights into

brain function, cognitive processes, and potential mechanisms

underlying various neurological disorders (Horin et al., 2021;

Weingarten and Strauman, 2015). Alterations in FC have been

shown to emerge prior to cognitive deficits or significant Aβ plaque

or tau tangle accumulation, underscoring their potential as early

markers of AD progression (Chen et al., 2022; Kesler et al., 2018;

Morrissey et al., 2022).

Several specific FC changes have been identified through

rsfMRI studies in individuals with AD. One prominent alteration

involves the default mode network (DMN), a network of brain

regions associated with introspection, memory retrieval, and self-

referential processing (Andrews-Hanna et al., 2014; Buckner and

DiNicola, 2019). This network is highly conserved across several

mammalian species including humans, non-human primates, rats,

and mice, suggesting its fundamental role in cognitive processes

and resting state functions (Pagani et al., 2023). Changes in DMN

connectivity have been observed in AD patients, correlating with

cognitive decline and disease progression (Ibrahim et al., 2021;

Petrella et al., 2011). Neuropathological studies have revealed

the accumulation of Aβ plaques and tau tangles in key DMN

regions, contributing to neuronal dysfunction and cognitive decline

(Giorgio et al., 2024; Palmqvist et al., 2017).

Changes in rsFC have been linked to the underlying

histopathological hallmarks of AD, including the accumulation

of Aβ plaques and tau tangles. Recent human PET imaging

studies also reveal a correlation between tau tangle accumulation

and functional hypoconnectivity in the brain, with Aβ plaque

deposition being associated with functional hyperconnectivity

(Schultz et al., 2017; Sepulcre et al., 2017; Sintini et al., 2021;

Wales and Leung, 2021). Since PET tracers bind to protein

aggregates, PET imaging studies are unable to assess effects of

hyperphosphorylated tau or Aβ before aggregation, which limits

its utility as an early diagnostic method (Mathis et al., 2017). Early

diagnosis, prior to the aggregation of these proteins, is crucial

for developing effective interventions and potentially slowing

disease progression.

This study established changes in FC and investigated the

relationship between FC and cognitive decline in an Aβ mouse

model of AD, Cg-Tg(APPswe,PSEN1dE9)85Dbo (APP/PS1)

throughout disease progression, including before plaque

deposition, at the beginning stage of plaque deposition, and after

significant plaque deposition throughout the brain. Importantly,

we conducted all rs-fMRI studies in awake, unanesthetized mice

to minimize the confounding factors associated with the use of

anesthetic agents. Using a machine learning model, we defined the

interactions between neuroimaging readouts with learning and

memory deficits across disease progression in control mice and

the APP/PS1 mouse model of AD (Figure 1). We provide novel

insights into how FC changes can be used explain spatial learning

and memory performance. Additionally, these neuroimaging

readouts show diagnostic and clinical significance by providing a

method for early disease detection.

2 Materials and methods

All experimental protocols were approved by the Institutional

Animal Care and Use Committee (IACUC) at Baylor College of

Medicine and were in accordance with the guidelines published

in the National Institutes of Health Guide for Care and Use of

Laboratory Animals. Animals weremaintained in standard housing

conditions with a 12-h light/dark cycle and received food and

water ad libitum throughout the study. The mice used for this

study were purchased from the Jackson Laboratory (strain B6;C3-

Tg(APPswe,PSEN1dE9)85Dbo/Mmjax; #34832). These mice are

double transgenic mice co-expressing a chimeric mouse/human

amyloid precursor protein harboring the Swedish K670M/N671L

mutations (Mo/HuAPP695swe) and human presenilin 1 with the

exon-9 deletion mutation (PS1dE9), and they begin to show plaque

deposition at about 6months of age.Wild type (WT)mice consisted

of the C57BL/6 background strain. Bothmale and female mice were

used in the study.

2.1 Experimental design and statistical
analyses

2.1.1 Morris Water Maze
Spatial learning and memory were assessed using the Morris

Water Maze assay. Briefly, mice completed 4 days of training trials

and a probe trial on the final day. Mice were acclimated in the

testing room for 30min before the start of the experiment. On Day

1, mice underwent a training session before their first trial wherein

they were briefly placed on the platform, tested to insure they could

climb onto the hidden platform, and allowed to swim briefly (10 s)

around the pool. Mice performed 2 blocks of 4 trials per day (60 s

maximum per trial with 1-h inter-block interval) for 4 consecutive

days. Latency to escape was recorded for each trial. On Day 4, after

all training trials were completed, mice performed a probe trial, in

which the hidden platform was removed, and mice were allowed

to swim for 60 s. The time spent in each quadrant was recorded in

the probe trial. The time spent in the target quadrant (percent of

total time) was reported. The animals’ trajectories were recorded

with a video tracking system (Noldus EthoVision, Wageningen, the

Netherlands). A 2-way ANOVA was used to compare WT and APP

training and probe trial data. Significant results were followed by

Tukey’s post-hoc t-test.

2.2 Acclimation for awake imaging

Mice underwent a five-day conditioning paradigm to acclimate

them to the awake imaging mouse holder, environment, and

scanner sounds. Mice were briefly anesthetized with 0.5–1%
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FIGURE 1

Overview of experimental approach. First, Morris Water Maze was conducted to test spatial learning and memory, followed by rs-fMRI in awake mice

to measure functional connectivity changes. All assays were conducted in 3-, 6, and 10-month APP/PS1 mice and WT controls. Using a machine

learning model, the relationships between learning and memory and functional connectivity were assessed. Created in BioRender, Hipskind, E. (2025)

https://BioRender.com/mqc3bdg.

isoflurane and placed in the restraint holder in an acclimation

chamber, which is designed to mimic the environment of the

MR scanner. Delivery of 0.5–1% isoflurane continued until mice

were fully secured into the holder, then discontinued. Mice were

given a minimum of 5min to become fully awake (based on

respiration rates returning to physiologically normal levels). On

day one of acclimation, animals spent 10min fully awake in

the holder. Ten additional minutes were added each subsequent

day, so that on day five of acclimation, mice remained in the

holder for 50min. During acclimation, respiration, heart rate,

and temperature were monitored (Kent Scientific, Torrington,

CT USA) and maintained at 37◦C with an air-heating system.

Following acclimation, mice were again briefly anesthetized for

removal from the holder (Fadel et al., 2022).

2.3 Magnetic resonance imaging

All images were collected in awake, unanesthetized mice.

As described in the acclimation protocol, mice were briefly

anesthetized with 0.5–1% isoflurane and placed in the restraint

holder in the scanner. After cessation of isoflurane, image

acquisition began a minimum of 5min later to ensure the mice

were fully awake, as indicated by their respiration rates returning to

physiologically normal levels (Fadel et al., 2022). Respiration, heart

rate, and temperature were monitored during image acquisition

using an MRI compatible small animal monitoring system (SA

Instruments, Inc, Stony Brook, NY, USA). All images in this study

were acquired with a 9.4T Bruker Advance III 20 cm bore MRI.

rs-fMRI was used to measure functional connectivity between

pre-selected anatomically defined brain regions. rs-fMRI data was

acquired using EPI as a sequence of 300 volumes at 1.5 second

intervals. EPI volumes were recorded at 0.25 x 0.25 x 1.25mm voxel

dimensions. A corresponding T2 image volume was also acquired

at higher resolution. The T2-weighted imaging parameters were TR

(rep time) = 2,500ms, TE (echo time) = 11ms, slice thickness =

1mm, matrix = 256 × 256, spatial resolution = 0.156 mm/pixel,

and number of averages= 1.

2.3.1 Pre-processing
The time sequence was subjected to motion correction by

alignment and then slice timing correction using SPM12. The

output from alignment was checked prior to further processing

and scans with excessive motion were discarded and a new scan

was taken. The T2 volume and a mean of the EPI sequence

were masked using Slicer (Fedorov et al., 2012) and the mask

applied to the entire sequence. The T2 and EPI volumes were

registered initially to a T2 template volume (Chon et al., 2019)

using three successive iterations of the FSL flirt command with
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6, 9, and 12 parameters respectively (rigid body, traditional, and

affine registrations) (Jenkinson et al., 2002, 2012; Smith et al.,

2004; Woolrich et al., 2009). A final co-registration was completed

using FSL fnirt to the same template for the T2 volume and to

an EPI template from Shella Keilholz (Xu et al., 2023). The final

registrations were sampled isotropically at 200 uM resolution. The

templates were in the coordinates of the Allen Brain Atlas padded

with excess voxels in each dimension. To facilitate preprocessing,

the steps were scripted to run automatically on a cohort of mice

using MatLab running under Windows 10. The quality of the

registrations was checked manually prior to denoising and analysis.

ROI maps were derived from the Allen Brain Atlas using the data

from theAllen Scalable Brain Atlas (Lein et al., 2007). UsingMatLab

scripting, semi-automated combination of the detailed regions

specified in the scalable atlas was used to generate several distinct

ROI maps that were focused on sets of relevant ROIs (see Table 1).

2.3.2 Mouse connectomes
Results included in this manuscript come from analyses

performed using CONN (Whitfield-Gabrieli and Nieto-Castanon,

2012) (RRID:SCR_009550) release 22.a (Nieto-Castanon

and Whitfield-Gabrieli, 2022) and SPM (Penny et al., 2011)

(RRID:SCR_007037) release 12.7771.

2.3.2.1 Denoising

Functional data were denoised using a standard denoising

pipeline (Nieto-Castanon, 2020) including the regression of

potential confounding effects characterized by white matter

timeseries (5 CompCor noise components), CSF timeseries (5

CompCor noise components), session effects and their first order

derivatives (2 factors), and linear trends (2 factors) within each

functional run, followed by bandpass frequency filtering of the

BOLD timeseries (Hallquist et al., 2013) between 0.008Hz and

0.09Hz. CompCor (Behzadi et al., 2007; Chai et al., 2012) noise

components within white matter and CSF were estimated by

computing the average BOLD signal as well as the largest principal

components orthogonal to the BOLD average within each subject’s

eroded segmentation masks.

2.3.2.2 First-level analysis

ROI-to-ROI connectivity (RRC) matrices were estimated

characterizing the functional connectivity between each pair

of regions among 30 Allen Brain Atlas ROIs (Table 1) (60

bilateral regions). For bilateral results see Supplementary Tables 1–

3 (Desikan et al., 2006). Functional connectivity strength

was represented by Fisher-transformed bivariate correlation

coefficients from a general linear model (weighted-GLM)

(Nieto-Castanon, 2020), estimated separately for each pair

of ROIs, characterizing the association between their BOLD

signal timeseries.

A 2-way ANOVA was used to assess the effects of age

and genotype (APP/PS1 and wild-type). Each connection was

analyzed using the MatLab anovan function and yielded p-

values for effects of WT vs. APP/PS1, for aging, and an

interaction between the two. The p-values were sorted and a

false discovery rate calculation was used to determine the most

significant values.

TABLE 1 rs-fMRI regions of interest.

Region name

Posterior parietal

Anterior cingulate

Infralimbic

Insula

Frontal Pole

Primary somatosensory

Visual

Temporal

Orbital Cortex

Retrospenial

Ectorhinal

Perirhinal

Prelimbic

Primary motor

Secondary motor

Auditory

Gustatory

Olfactory

Piriform

Hippocampus

Dentate gyrus

Subiculum

Entorhinal

Cortical subplate

Striatum

Pallidulum

Thalamus

Hypothalamus

Midbrain

Pons

30 regions selected from the Allen Brain Mouse Reference Atlas. Functional Connectivity was

assessed between all regions.

2.3.2.3 Group-level analyses

Group-level analyses were performed using a General Linear

Model (GLM) (Nieto-Castanon, 2020). For each individual

connection a separate GLM was estimated, with first-level

connectivity measures at this connection as dependent variables

(one independent sample per subject and one measurement per

task or experimental condition, if applicable), and groups or other

subject-level identifiers as independent variables. Connection-level

hypotheses were evaluated using multivariate parametric statistics

with random-effects across subjects and sample covariance

estimation across multiple measurements. Inferences were

performed at the level of individual functional connections, and
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FIGURE 2

10-month APP/PS1 mice showed deficits in spatial learning and memory. In the training trials of the Morris Water Maze assay, 3- and 6-month-old

mice displayed normal learning (A, B), while 10-month-olds exhibited significant deficits (p < 0.01) (C). 3-month-old mice showed no deficits in the

MWM probe trials (D). At 6 months, memory deficits emerged, where APP/PS1 do not di�erentiate between NE and SE zones (E). By 10 months,

APP/PS1 mice exhibited no spatial preference for the SE zone (F). All figures show mean ± SEM, individual points depict a single mouse. 3 months:

APP/PS1 N = 11, WT N = 10, 6 months: APP/PS1 N = 10, WT N = 10, 10 months: APP/PS1 N = 12, WT N = 9. *p < 0.05, **p < 0.01, ***p < 0.001,

****p < 0.0001.

results were thresholded using a familywise corrected p-FDR< 0.01

connection-level threshold (Benjamini and Hochberg, 1995; Nieto-

Castanon, 2020). Clustering of brain regions in cord diagrams was

determined by anatomical proximity and functional similarity, with

the 3-month time point used as a base line and applied to the other

time points.

2.4 Machine learning

We created linear regression models of Morris Water Maze

(MWM) data using ROI-to-ROI connectivity data (p < 0.05) as

the predictor (independent variables) and memory performance as

the dependent variable. Specifically, we modeled the relationship

between learning using the MWM training trial data (latency to

escape on Day 1–Day 4) and functional connectivity. A second

model using the MWM probe trail data (time spent in SE

quadrant) was created to model the relationship between memory

performance and functional connectivity. Separate models were

trained for each time point for the APP/PS1 mice. Modeling was

performed using the 6- and 10-month APP/PS1 data. These time

points were chosen because they showed spatial memory deficits,

whereas the 3-month time point does not exhibit changes in spatial

memory performance. At a given time point, the MWM training

data (Model 1) or probe trial date (Model 2)
(

y
)

of a mouse was

fit as:

y = β0 +

i=n
∑

i=1

βixi

where each xi denotes the connectivity data between a

pair of ROIs. The n ROI pairs used in the model were

chosen using the connections that had significant differences

in functional connectivity (see Conn analysis above). Variables

were selected based on the significant connection-level results

(p < 0.05) from the group-level analysis performed in Conn

analyzing ROI-to-ROI FC from each time point and filtered to

DMN and regions known to be highly involved in memory

function (cite). This was done to avoid over fitting and to

provide the most biologically relevant results. To facilitate a

comparison between β coefficients of different variables, each

variable’s values were linearly scaled between 0 and 1. We then

fit a Lasso-regularized model, meaning that we estimated the

values of the β parameters above by minimizing the following

error function:

(

y−

(

β0 +

i=n
∑

i=1

βixi

))2

+ α

i=n
∑

i=0

|βi|

where α is the hyperparameter. For values of α > 0,

this error function penalizes the model for using more
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FIGURE 3

APP/PS1 mice exhibited progressive hyperconnectivity. Functional connectivity in APP/PS1 mice compared to WT. Warm colors represent

hyperconnectivity, cool colors indicate hypoconnectivity. Over all 30 assessed regions, APP/PS1 mice exhibit primarily hyperconnectivity (A–C). This

hyperconnectivity was present by 3-months (A), with progressive increases in over 6- and 10-months (B, C). In the default-mode network (DMN),

there was also evidence of early hyperconnectivity at 3-months (D). Similar changes in connectivity were seen at 6- and 10-months (E, F). Scale bar

represents z-score, only significant connections are shown. Linear regression model, all comparisons APP/PS1>WT. 3-months: WT N = 8, APP/PS1

N = 10; 6-months: WT N = 10, APP/PS1 N = 10; 10-months: WT N = 10, APP/PS1 N = 12.

variables than would be necessary to explain the variance

in the data. The penalty increases with increasing values

of α. Thus, the Lasso-regularized error function guards

against overfitting by constraining the model to utilize as

few predictor variables as possible (Ranstam and Cook,

2018). As additional rigor, we estimated the value of α using

leave-one-out cross-validation (LOOCV). It has been shown

theoretically that LOOCV provides an unbiased estimate of

α (Sivula et al., 2022).

3 Results

3.1 Morris Water Maze

Morris Water Maze was used to assess spatial learning and

memory. The Morris Water Maze is preferred for its ability

to quantitatively assess spatial learning and memory with high

reliability and minimal stress to the animals, providing consistent

and objective data relevant to human cognitive disorders. During

the training phase, mice learned to find a hidden platform in a pool

of water over 4 days of training, measured by latency to escape.

At 3 months of age, a 2-way ANOVA showed a significant effect

of Day [F(3,76) = 21.77, p < 0.0001], but not Genotype [F(1,19) =

2.956, p= 0.1018], and no significant interaction between Day and

Genotype [F(3,57) = 1.088, p = 0.3614], indicating no significant

difference in learning (Figure 2A). Similarly for 6 months, there

was a significant effect of Day [F(2.442,43.96) = 35.15, p < 0.0001],

but not Genotype [F(1,18) = 2.258, p = 0.1503], and no interaction

[F(3,54) = 0.07746, p = 0.9719] (Figure 2B). At 10-months, there

was a significant effect of Day [F(2.633,50.03) = 20.95, p < 0.00010],

Genotype [F(1,19) = 18.30, p = 0.0004], and interaction [F(3,57) =

5.815, p= 0.0015] (Figure 2C). Post-hocTukey’s t-test withmultiple

comparisons correction revealed a significant difference between

the APP/PS1 andWT latency to escape on Day 2 (p= 0.0297), Day

3 (p < 0.0001), and Day 4 (p= 0.0012).

A final probe trial was used to assess spatial memory. At 3

months, a 2-way ANOVA revealed a significant effect of Quadrant

[F(3,72) = 13.70, p < 0.0001], but not Genotype [F(1,76) = 2.355e-

006, p = 0.9988], with no significant interaction (Figure 2D).

Post-hoc Tukey’s t-tests with multiple comparisons correction

revealed that both APP/PS1 and WT mice spent significantly
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TABLE 2 3-month functional connectivity changes in APP/PS1 compared to WT.

Region 1 Region 2 T(df) p FDR

∗Hippocampus Dentate gyrus T(16)= 14.59 <0.0000001

∗Gustatory Insula T(16)= 11.92 <0.0000001

∗Ectorhinal area Perirhinal T(16)= 11.26 <0.0000001

∗Striatum Pallidulum T(16)= 11.23 0.000001

∗Infralimbic Orbital T(16)= 11.06 0.000001

∗Secondary motor Primary motor T(16)= 10.73 0.000001

∗Piriform Cortical Subplate T(16)= 10.44 0.000001

∗Orbital Prelimbic T(16)= 9.94 0.000002

∗Auditory Temporal T(16)= 9.68 0.000002

∗Visual Posterior parietal T(16)= 9.57 0.000002

∗Subiculum Dentate gyrus T(16)= 9.52 0.000002

∗Temporal Ectorhinal T(16)= 8.79 0.000006

∗Perirhinal area Entorhinal T(16)= 8.43 0.000009

∗Prelimbic area Anterior cingulate T(16)= 7.56 0.000035

Thalamus Dentate gyrus T(16)= 7.4 0.000044

∗Insula Piriform T(16)= 7.29 0.000049

∗Midbrain Subiculum T(16)= 7.18 0.000056

Cortical Subplate Olfactory T(16)= 7.04 0.000068

∗Visual Retrosplenial T(16)= 6.77 0.000104

∗Primary motor Primary somatosensory T(16)= 6.61 0.00013

∗Infralimbic Prelimbic T(16)= 6.55 0.00014

∗Retrosplenial Posterior parietal T(16)= 6.5 0.000146

∗Frontal pole Prelimbic T(16)= 6.37 0.000176

∗Entorhinal Subiculum T(16)= 6.29 0.000196

∗Insula Striatum T(16)= 6.02 0.0003

∗Pallidulum Hypothalamus T(16)= 6.02 0.0003

∗Infralimbic Anterior cingulate T(16)= 5.86 0.000389

∗Primary somatosensory Gustatory T(16)= 5.43 0.00086

Midbrain Dentate gyrus T(16)= 5.31 0.001046

∗Temporal Perirhinal T(16)= 5.28 0.001071

∗Pallidulum Thalamus T(16)= 5.27 0.001071

Anterior cingulate Pallidulum T(16)= 5.19 0.001213

∗Insula Cortical Subplate T(16)= 4.99 0.001746

Orbital Anterior cingulate T(16)= 4.87 0.002187

Orbital Striatum T(16)= 4.83 0.002298

Gustatory Piriform T(16)= 4.77 0.002469

Striatum Thalamus T(16)= 4.77 0.002469

∗Secondary motor Frontal pole T(16)= 4.69 0.002816

Piriform Olfactory T(16)= 4.66 0.002929

∗Entorhinal Hippocampus T(16)= 4.6 0.003207

Ectorhinal Entorhinal T(16)= 4.55 0.003501

(Continued)
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TABLE 2 (Continued)

Region 1 Region 2 T(df) p FDR

∗Anterior cingulate Striatum T(16)= 4.34 0.005144

Cortical Subplate Entorhinal T(16)= 4.34 0.005144

Insula Ectorhinal T(16)= 4.32 0.005252

Auditory Ectorhinal T(16)= 4.1 0.008037

Frontal pole Orbital T(16)= 4.07 0.008427

Gustatory Ectorhinal T(16)= 3.99 0.009716

∗Denotes connections that altered across all time points.

Each row depicts a functional connection between two brain regions. Order of regions (Region 1 or Region 2) does not imply directionality of the connection. Only connections that have

significant differences between APP/PS1 and WT mice are shown. All comparisons based on a linear regression model, APP/PS1 > WT. T is the t-statistic and df = degrees of freedom.

FDR-corrected (p FDR) p-values are given.

more time in the SE quadrant (Figure 2D) where the platform

was previously located, indicating that both groups successfully

remembered the platform location. Additionally, there was no

significant difference in time spent in SE quadrant between

APP/PS1 and WT (p= 0.1618).

At 6 months, a 2-way ANOVA revealed a significant effect of

Quadrant [F(3,76) = 24.33, <0.0001], but not Genotype [F(1,72) =

0.1910, p= 0.6634], and no significant interaction [F(3,72) = 0.7389,

p = 0.5323] (Figure 2E). Based on the post-hoc Tukey’s t-test with

multiple comparisons correction, there is evidence of the beginning

of memory deficits in the 6-month APP/PS1 mice (Figure 2E).

While there was no significant difference in time spent in SE

quadrant between APP/PS1 and WT (p = 0.2056), the APP/PS1

had no significant difference between time spent in the SE and NE

quadrant, suggesting the beginning of memory deficits.

At 10 months, a 2-way ANOVA revealed a significant effect

of Quadrant [F(3,76) = 5.138, p = 0.0027], but not Genotype

[F(1,76) = 6.976e-012, p > 0.9999]; however, there was a

significant interaction [F(3,76) = 6.342, p = 0.0007] (Figure 2F).

The post-hoc Tukey’s t-test with multiple comparisons correction

revealed a significant difference in time spent in SE quadrant

between APP/PS1 and WT (p = 0.0010). The APP/PS1 mice

showed no significant difference between time spent in any

quadrant (p > 0.05).

3.2 Functional connectivity

Functional connectivity was assessed between 30 regions of

interest (435 total connections) in the APP/PS1 mice compared

to WT. We primarily observed hyperconnectivity in the APP/PS1

mice across all time points. A 2-way ANOVA revealed a significant

effect of age (see Supplementary Table 4 for detailed statistics).

At 3 months, we observed hyperconnectivity in 47 ROI-to-ROI

connections (Figure 3A) (Table 2). This included memory related

regions such as the hippocampus, dentate gyrus, entorhinal

cortex, and the cortical sublate. At 6 months, 45 connections

exhibited hyperconnectivity, while hypoconnectivity was seen

in one connection (between the striatum and pons) (Figure 3B,

Table 3). By 10 months, 84 regions were hyperconnected

(Figure 3C, Table 4). The striatum and pons continued to exhibit

hypoconnectivity, and hypoconnectivity emerged between the

midbrain and posterior parietal cortex. There were several

connections (32 connections) that exhibited hyperconnectivity

across all time points in the APP/PS1 mice compared to WT.

Several of these included the ectorhinal cortex and temporal

cortex, entorhinal cortex and ectorhinal cortex, hippocampus and

dentate gyrus, striatum and anterior cingulate cortex, cortical

subplate and piriform cortex, thalamus and pallidum, insula

and piriform cortex, insula and striatum, dentate gyrus and

subiculum, orbital cortex and prelimbic cortex, orbital cortex

and infralimbic cortex. See Tables 2–4 for complete list and

detailed statistics.

Functional connectivity between DMN-like regions was also

assessed (Xu et al., 2022). We saw early hyperconnectivity

in this network at 3-months, with 9 connections exhibiting

hyperconnectivity compared to WT (Figure 3D). Interestingly, we

did not see progressive hyperconnectivity in this network, as there

were fewer hyperconnected connections (7) at the 6-month time

point (Figure 3E). Specifically, the hippocampus-thalamus and

orbital-striatum connections were lost from the 3-month cohort

to the 6-month cohort. At 10-months, 6 connections exhibited

hyperconnectivity (Figure 3F). We observed the emergence of

hyperconnectivity between the anterior cingulate and retrosplenial

cortex. Additionally, there was a loss of hyperconnectivity with

the thalamus at 10-months. The hippocampus-dentate gyrus

connection remained hyperconnected across time points, as well as

several connections with anterior cingulate cortex. See Table 5 for

detailed statistics.

3.3 Machine learning

Prior to training the models, variable selection was performed

to avoid overfitting. Variables were selected based on the significant

connection-level results (p<0.05) from the FC analysis. Regions

were filtered to DMN and regions known to be highly involved

in memory function (Figures 4A, B), which improved model

fit [see Supplementary Table 5 for Akaike Information Criterion

(AIC) comparison].
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TABLE 3 6-month functional connectivity changes in APP/PS1 compared to WT.

Region 1 Region 2 T(df) p-FDR

∗Striatum Pallidulum T(18)= 12.64 <0.0000001

∗Hippocampus Dentate gyrus T(18)= 11.98 <0.0000001

∗Auditory Temporal T(18)= 11.6 <0.0000001

∗Ectorhinal Perirhinal T(18)= 11.49 <0.0000001

∗Infralimbic Orbital T(18)= 11.15 <0.0000001

∗Temporal Ectorhinal T(18)= 11.08 <0.0000001

∗Orbital Prelimbic T(18)= 10.25 <0.0000001

∗Secondary motor Primary motor T(18)= 9.1 0.000002

∗Prelimbic Anterior cingulate T(18)= 7.15 0.000056

∗Anterior cingulate Striatum T(18)= 6.97 0.000071

∗Pallidulum Hypothalamus T(18)= 6.64 0.000124

∗Piriform Cortical Subplate T(18)= 6.53 0.000141

∗Perirhinal Entorhinal T(18)= 6.43 0.000159

∗Primary motor Primary somatosensory T(18)= 6.32 0.000175

∗Secondary motor Frontal pole T(18)= 6.31 0.000175

∗Subiculum Dentate gyrus T(18)= 6.22 0.000195

∗Gustatory Insula T(18)= 6.06 0.000255

Thalamus Midbrain T(18)= 5.81 0.000401

∗Entorhinal Subiculum T(18)= 5.65 0.000514

Striatum Thalamus T(18)= 5.62 0.000514

Thalamus Dentate gyrus T(18)= 5.62 0.000514

∗Insula Piriform T(18)= 5.59 0.000526

Auditory Ectorhinal T(18)= 5.4 0.000751

Orbital Anterior cingulate T(18)= 5.07 0.001386

∗Frontal pole tex Prelimbic T(18)= 5.05 0.0014

Primary somatosensory Posterior parietal T(18)= 4.86 0.002008

∗Temporal Perirhinal T(18)= 4.81 0.002192

∗Pallidulum Thalamus T(18)= 4.74 0.002442

Anterior cingulate Perirhinal T(18)= 4.65 0.002808

Secondary motor Anterior cingulate T(18)= 4.65 0.002808

∗Visual Posterior parietal T(18)= 4.58 0.00313

∗Insula Striatum T(18)= 4.52 0.003513

∗Infralimbic Prelimbic T(18)= 4.49 0.003623

∗Insula Cortical Subplate T(18)= 4.46 0.003735

∗Midbrain Subiculum T(18)= 4.44 0.003823

∗Retrosplenial Posterior parietal T(18)= 4.41 0.004007

Secondary motor Prelimbic T(18)= 4.39 0.004087

∗Primary somatosensory Gustatory T(18)= 4.37 0.004107

∗Infralimbic Anterior cingulate T(18)= 4.29 0.004817

∗Entorhinal Hippocampus T(18)= 4.2 0.005714

Cortical Subplate Entorhinal T(18)= 4.15 0.006205

Perirhinal Hippocampus T(18)= 4.14 0.006205

(Continued)
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TABLE 3 (Continued)

Region 1 Region 2 T(df) p-FDR

Ectorhinal Hippocampus T(18)= 4.1 0.006647

Anterior cingulate Pallidulum T(18)= 4.02 0.007805

∗Visual Retrosplenial T(18)= 3.98 0.008278

Striatum Pons T(18)= −5.27 0.000952

∗Denotes connections that altered across all time points.

Each row depicts a functional connection between two brain regions. Order of regions (Region 1 or Region 2) does not imply directionality of the connection. Only connections that have

significant differences between APP/PS1 and WT mice are shown. All comparisons based on a linear regression model, APP/PS1 > WT. T is the t-statistic and df=degrees of freedom.

FDR-corrected (p FDR) p-values are given.

3.3.1 Model 1
First, we created a linear regression model to assess the

relationships between functional connectivity and spatial learning

using theMWM training data (Day 1–Day 4 latency to escape). The

model established the weights (coefficients) of a linear combination

of functional connections that predicts spatial learning in the

MWMtraining data. Thismodel relates the rsFC changes (APP/PS1

compared to WT) to the spatial learning performance in each

individual mouse. The coefficients determined by the model relate

to the strength of the predictive power of each connection. A

positive coefficient means that as the strength of that connection

increased, there was an increase in learning as defined by difference

in latency to escape over the course of the training phase (Table 6).

In the 6-month cohort, the model found 37 total connections

that have predictive value for spatial learning performance (R >

0.99). 17 connections were shown to have a positive coefficient,

indicating a positive relationship with learning performance. 20

connections were shown to have a negative coefficient, indicating

a negative relationship with learning performance (Figure 4C). In

the 10-month cohort, 18 connections were found to be predictive

of learning performance (R > 0.99). 11 connections were shown

to have a positive coefficient, indicating a positive relationship

with learning performance. 7 connections were shown to have a

negative coefficient, indicating a negative relationship with learning

performance (Figure 4D). Across time points, both models found

a positive coefficient for connections including the subiculum

and dentate gyrus, subiculum and entorhinal, piriform and

entorhinal, insula and striatum. A negative correlation was found

for connections including the dentate gyrus and hippocampus,

striatum and anterior cingulate. The model also found connections

that changed directionality; the striatum and temporal as well as the

thalamus and midbrain had a positive coefficient at the 6-month

time point but a negative coefficient at the 10-month time point;

the hippocampus and entorhinal had a negative coefficient at the

6-month time point and a positive coefficient at the 10-month

time point.

3.3.2 Model 2
Model 2 established the relationships between functional

connectivity and spatial memory using the MWM probe trial data

(% time spent in SE quadrant). In this model, a positive coefficient

means that as the strength of that connection increased, there

was an increase in memory as defined by time spent in the SE

quadrant (Table 7).

In the 6-month cohort, the model found nine total connections

that have predictive value for spatial memory performance (R >

0.99). 2 connections were shown to have a positive coefficient,

indicating a positive relationship with memory performance. 7

connections were shown to have a negative coefficient, indicating

a negative relationship with memory performance (Figure 4E). In

the 10-month cohort, 17 connections were found to be predictive

of memory performance (R > 0.99). 11 connections were shown

to have a positive coefficient, indicating a positive relationship

with memory performance. 6 connections were shown to have a

negative coefficient, indicating a negative relationship withmemory

performance (Figure 4F). The model identified one connection

that has a negative coefficient across both time points: thalamus

and midbrain. The model identified one connection that changed

directionality between time points: the prelimbic cortex and orbital

cortex had a negative coefficient at the 6-month time point and a

positive coefficient at the 10-month time point.

3.4 Assessing model performance

To assess model performance, we performed 10,000

bootstrap runs to identify the upper and lower bounds of the

confidence interval of the coefficient for each identified connection

(Supplementary Tables 6, 7). On 50–70% of runs for each model,

the sign of each coefficient (positive or negative) remained

consistent. On ∼35–40% of runs, the coefficient was zero, which is

consistent with the LASSO regularization approach. The exception

is the Model 1: 6 month, where coefficients were zero on only 12%

of runs.

4 Discussion

This study elucidated the changes in FC and investigates the

relationship between FC and cognitive decline in an Aβ mouse

model of AD across disease progression. Utilizing rs-fMRI in

awake, unanesthetized mice, we observed significant alterations in

FC across all three time points (3-, 6-, and 10-months). FC changes

at 6- and 10-months were shown to have explanatory power for

spatial learning and memory.
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TABLE 4 10-month functional connectivity changes in APP/PS1 compared to WT.

Region 1 Region 2 T(df) p-FDR

∗Ectorhinal Perirhinal T(18)= 17.26 <0.0000001

∗Striatum Pallidulum T(18)= 14.35 <0.0000001

∗Subiculum Dentate gyrus T(18)= 14 <0.0000001

∗Infralimbic Orbital T(18)= 12.61 <0.0000001

∗Gustatory Insula T(18)= 12.04 <0.0000001

∗Prelimbic Anterior cingulate T(18)= 11.38 <0.0000001

∗Primary motor Primary somatosensory T(18)= 10.75 <0.0000001

∗Pallidulum Hypothalamus T(18)= 10.65 <0.0000001

∗Hippocampus Dentate gyrus T(18)= 10.63 <0.0000001

∗Temporal Ectorhinal T(18)= 10.6 <0.0000001

∗Orbital Prelimbic T(18)= 10.32 <0.0000001

Frontal pole Orbital T(18)= 10.15 <0.0000001

∗Secondary motor Frontal pole T(18)= 9.43 0.000001

∗Infralimbic Prelimbic T(18)= 9.4 0.000001

∗Piriform Cortical subplate T(18)= 9.37 0.000001

∗Insula Piriform T(18)= 9.18 0.000001

∗Secondary motor Primary motor T(18)= 8.98 0.000001

∗Frontal pole Prelimbic T(18)= 8.53 0.000002

∗Perirhinal Entorhinal T(18)= 8.23 0.000004

∗Entorhinal Subiculum T(18)= 8.02 0.000005

Gustatory Striatum T(18)= 7.97 0.000005

Olfactory Orbital T(18)= 7.79 0.000007

Primary motor Insula T(18)= 7.34 0.000015

∗Insula Striatum T(18)= 7.19 0.00002

∗Primary somatosensory Gustatory T(18)= 6.84 0.000037

Primary motor Gustatory T(18)= 6.7 0.000047

Olfactory Infralimbic T(18)= 6.6 0.000054

Piriform Striatum T(18)= 6.53 0.000061

Cortical subplate Olfactory T(18)= 6.49 0.000063

Auditory Temporal T(18)= 6.33 0.000084

Gustatory Piriform T(18)= 5.95 0.000167

∗Ectorhinal Hippocampus T(18)= 5.94 0.000167

∗Insula Cortical subplate T(18)= 5.83 0.000203

∗Retrosplenial Posterior parietal T(18)= 5.72 0.000249

Cortical subplate Striatum T(18)= 5.67 0.000268

∗Midbrain Subiculum T(18)= 5.66 0.000269

∗Visual Retrosplenial T(18)= 5.44 0.000406

Cortical subplate Hypothalamus T(18)= 5.43 0.000406

Posterior parietal Midbrain T(18)= 5.43 0.000406

∗Infralimbic Anterior cingulate T(18)= 5.41 0.000413

∗Anterior cingulate Striatum T(18)= 5.38 0.00043

(Continued)
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TABLE 4 (Continued)

Region 1 Region 2 T(df) p-FDR

Primary somatosensory Insula T(18)= 5.34 0.000452

Secondary motor Olfactory T(18)= 5.1 0.000736

∗Visual Posterior parietal T(18)= 5.09 0.000745

Entorhinal Dentate gyrus T(18)= 5.04 0.000799

∗Entorhinal Hippocampus T(18)= 5 0.000851

∗Temporal Perirhinal T(18)= 4.98 0.000883

Frontal pole Tex infralimbic T(18)= 4.95 0.000926

Infralimbic Striatum T(18)= 4.86 0.001085

Orbital Pallidulum T(18)= 4.74 0.001398

Cortical subplate Hippocampus T(18)= 4.72 0.001434

Thalamus Midbrain T(18)= 4.71 0.001434

Pons Midbrain T(18)= 4.7 0.00144

Anterior cingulate Retrosplenial T(18)= 4.62 0.001656

Olfactory Auditory T(18)= 4.61 0.001656

Secondary motor Orbital T(18)= 4.61 0.001656

Primary motor Piriform T(18)= 4.59 0.00169

Olfactory Prelimbic T(18)= 4.56 0.001761

Primary somatosensory Entorhinal T(18)= 4.56 0.001761

Olfactory Frontal pole T(18)= 4.43 0.002293

Secondary motor Insula T(18)= 4.42 0.002315

Olfactory Striatum T(18)= 4.37 0.002564

Perirhinal Hippocampus T(18)= 4.3 0.0029

Gustatory Cortical subplate T(18)= 4.29 0.002963

∗Pallidulum Thalamus T(18)= 4.25 0.003133

Primary motor Frontal pole T(18)= 4.25 0.003133

Ectorhinal Entorhinal T(18)= 4.24 0.003133

Primary somatosensory Subiculum T(18)= 4.23 0.003198

Orbital Striatum T(18)= 4.18 0.003482

Secondary motor Piriform T(18)= 4.17 0.003559

Infralimbic Pallidulum T(18)= 4.12 0.003858

Ectorhinal Dentate gyrus T(18)= 4.11 0.003936

Secondary motor Cortical subplate T(18)= 4.01 0.00474

Secondary motor Gustatory T(18)= 4.01 0.00474

Gustatory Ectorhinal T(18)= 3.95 0.005362

Secondary motor Primary somatosensory T(18)= 3.94 0.005369

Pons Subiculum T(18)= 3.88 0.006031

Secondary motor Anterior cingulate T(18)= 3.88 0.006031

Olfactory Pallidulum T(18)= 3.87 0.006049

Striatum Auditory T(18)= 3.83 0.006542

Secondary motor Striatum T(18)= 3.8 0.006951

Secondary motor Prelimbic T(18)= 3.77 0.007272

(Continued)
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TABLE 4 (Continued)

Region 1 Region 2 T(df) p-FDR

Cortical subplate Pallidulum T(18)= 3.76 0.007365

Striatum Hypothalamus T(18)= 3.73 0.007768

Primary somatosensory Dentate gyrus T(18)= 3.64 0.009427

Striatum Pons T(18)= −6.07 0.000138

∗Denotes connections that altered across all time points.

Each row depicts a functional connection between two brain regions. Order of regions (Region 1 or Region 2) does not imply directionality of the connection. Only connections that have

significant differences between APP/PS1 and WT mice are shown. All comparisons based on a linear regression model, APP/PS1 > WT. T is the t-statistic and df=degrees of freedom.

FDR-corrected (p FDR) p-values are given.

TABLE 5 Default mode network functional connectivity.

3 month
DMN

T(df) p FDR

Region 1 Region 2

Hippocampus Dentate gyrus T(16)= 14 59 <0.0000001

Orbital Prelimbic T(16)= 9 94 0.000001

Anterior cingulate Prelimbic T(16)= 7 56 0.000014

Thalamus Dentate gyrus T(16)= 7 40 0.000014

Anterior cingulate Orbital T(16)= 4 87 0.00108

Orbital Striatum T(16)= 4 83 0.00108

Striatum Thalamus T(16)= 4 77 0.00108

Anterior cingulate Striatum T(16)= 4 34 0.002288

Thalamus Hippocampus T(16)= 3 88 0.00535

6 month DMN

Hippocampus Dentate gyrus T(18)= 11 98 <0.0000001

Orbital Prelimbic T(18)= 10 25 <0.0000001

Anterior cingulate Prelimbic T(18)= 7 15 0.000014

Anterior cingulate Striatum T(18)= 6 97 0.000015

Striatum Thalamus T(18)= 5 62 0.000149

Thalamus Dentate gyrus T(18)= 5 62 0.000149

Anterior cingulate Orbital T(18)= 5 07 0.00041

10 month DMN

Anterior cingulate Prelimbic T(18)= 11 38 <0.0000001

Hippocampus Dentate gyrus T(18)= 10 63 <0.0000001

Orbital Prelimbic T(18)= 10 32 <0.0000001

Anterior cingulate Striatum T(18)= 5 38 0.000374

Anterior cingulate Retrosplenial T(18)= 4 62 0.001545

Orbital Striatum T(18)= 4 18 0.003362

Changes in functional connectivity in the DMN at the 3, 6-, and 10-month in APP/PS1

compared toWT. Each row depicts a functional connection between two brain regions. Order

of regions (Region 1 or Region 2) does not imply directionality of the connection. Only

connections that have significant differences between APP/PS1 and WT mice are shown. All

comparisons based on a linear regression model, APP/PS1 > WT. Both uncorrected (p unc)

and FDR-corrected (p FDR) p-values are given.

4.1 Morris Water Maze

The MWM assay revealed that APP/PS1 mice exhibit

significant deficits in spatial learning and memory by 10 months

of age, with some of evidence of early spatial memory deficits in

6-month APP/PS1 mice. The absence of significant differences at

3-months of age underscores the importance of examining early

connectivity changes that precede overt cognitive decline.

4.2 Functional connectivity alterations

Our results indicate a trend of progressive hyperconnectivity

in APP/PS1 mice across all observed time points, with 47

regions exhibiting hyperconnectivity at 3-months and 84 at 10-

months. This progressive increase in hyperconnectivity suggests

a continuous alteration in brain network dynamics as the disease

advances. At 3 months of age, these mice do not exhibit learning

and memory deficits but show a clear pattern of hyperconnectivity.

At this age point, these mice do not have Aβ plaques but

have been shown to have an increase in levels of soluble Aβ

(Zhou et al., 2021). The hyperconnectivity at the age point

may compensate for soluble Aβ− induced changes in neural

signaling (Ben-Nejma et al., 2019). However, as the disease

progresses, the significant increase in hyperconnectivity may

contribute to network dysfunction as in the 10-month time point.

Alternatively, this increase in hyperconnectivity could represent a

failed compensatory mechanism to preserve cognitive function.

Recent human PET imaging studies have proposed a

link between the accumulation of Aβ plaques and functional

hyperconnectivity in the brain (Schultz et al., 2017; Sepulcre

et al., 2017; Sintini et al., 2021; Wales and Leung, 2021). Our

data may support this hypothesis and extend this finding to early

disease stages prior to plaque deposition. At 3-months, soluble

Aβ may be primarily contributing to the hyperconnectivity we

see at this disease stage. At 6- and 10-months, both soluble and

insoluble forms of Aβ may contribute to the hyperconnectivity.

The significant increase of Aβ plaque load at 10-months supports

the observed increase in the number of hyperconnected regions.

Future studies are necessary to understand the contribution of

soluble and insoluble forms of Aβ.

Several studies have documented hyperconnectivity in mouse

models of AD. For instance, Kesler et al. (2018) investigated the

5XFAD transgenic mouse model and observed hyperconnectivity

in memory-related networks at early disease stages, particularly

in mice aged 3–6 months (Kesler et al., 2018). Bero et al. (2012)

reported hyperconnectivity in the DMN using the PDAPP mouse

model at 6 months of age, highlighting increased connectivity

as a potential early indicator of AD pathology (Bero et al.,

2012). Other studies have observed early hyperconnectivity
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FIGURE 4

Modeling the relationships between functional connectivity and memory performance. Functional connectivity at 6-months (A) and 10-months (B)

for DMN and memory-related brain regions used in subsequent modeling. Scale bar represents z-score, only significant connections are shown (p <

0.05). Linear regression model, all comparisons APP/PS1>WT. Model 1: relationship between MWM training data (spatial learning) and functional

connectivity in the 6-month (C) and 10-month (D) groups. Model 2: relationship between MWM probe trial (spatial memory) and functional

connectivity in the 6-month (E) and 10-month (F) groups. Purple and green connections have significant explanatory power for behavior based on

the modeling, connections shown in gray were not predictive of behavioral performance. Purple: positive model coe�cient, connection strength has

a positive correlation with memory performance. Green: negative model coe�cient, connection strength has a negative correlation with memory

performance.
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followed by a decrease in functional connectivity as the disease

progresses. For example, Morrissey et al. (2022) observed higher

interhemispheric connectivity between hippocampal subregions,

followed by a later decrease in this measure in an APP knock-on

model (AppNL−G−F/NL−G−F) (Morrissey et al., 2022). In contrast,

other studies have reported hypoconnectivity at early-stages of

disease progression. In the 3xTG-AD mouse mode, Manno et al.

(2019) found decreased interhemispheric hippocampal functional

at early stages of disease progression, and a study conducted

Mandino et al. (2022) found a deficit in regional homogeneity (a

measure of localized functional connectivity) in memory related

regions including the amygdala, striatum, prefrontal cortex, and

hippocampus in early-mid stages of disease progression in 3xTG-

AD mice (Mandino et al., 2022).

The differences in results between studies on functional

connectivity in AD mouse models can largely be attributed

to variations in the mouse models used. Different mouse

models of AD, such as 5XFAD, APP/PS1, and 3xTg-AD, exhibit

distinct pathological features and progression rates, which can

lead to different patterns of functional connectivity across

disease progression. Analysis methods also play a critical role;

discrepancies can arise from using different imaging techniques,

data processing pipelines, and statistical methods for measuring

and interpreting functional connectivity. Hasani et al. (2021)

have discussed the conflicting findings of FC studies in depth.

Of note, analyses of global connectivity (including the ROI-to-

ROI methodology used here) are more likely to report overall

hyperconnectivity compared to analyses of local network activity.

Additionally, an important aspect of our studies is that all

imaging is conducted in awake, unanesthetized mice. The use of

anesthetics has been shown to significantly alter functional imaging

outputs, including FC (Grandjean et al., 2014; Jonckers et al., 2014;

Paasonen et al., 2018; Fadel et al., 2022). We use an acclimation

protocol to reduce animal stress, which was previously verified

with measurements of cortisol between naïve, un-acclimated, and

acclimated mice (Fadel et al., 2022). Our data demonstrated that at

the end of the acclimation period, the cortisol levels of mice had

returned to pre acclimation levels. Given the variation in results

across preclinical studies, removing the potentially confounding

effects of anesthesia provides increased translational relevance.

4.3 Default mode network alterations

Our analysis of DMN-like regions (N. Xu et al., 2022)

revealed early hyperconnectivity at 3-months. However, unlike

global changes, we saw a decrease in hyperconnected DMN

regions at 6 and 10-months. These results could indicate a

transition from compensatory hyperactivity to network breakdown

and hypoconnectivity in later stages of disease. Despite the

reduction in hyperconnected regions in the DMN at later stages,

certain connections, such as those between the hippocampus and

dentate gyrus, remained persistently hyperconnected across all time

points. This persistent hyperconnectivity is significant because the

hippocampus and dentate gyrus are crucial for memory processes,

which are profoundly affected in AD (Bonanni et al., 2021; Schultz

et al., 2017; Stoub et al., 2006).

TABLE 6 Model 1_Relationship between spatial learning and functional

connectivity.

6-month

Region 1 Region 2 Coe�cient

Temporal Hippocampus 26.82420986

Orbital Prelimbic −24.09031887

Temporal Ectorhinal 19.16297608

Temporal Perirhinal −12.76793136

Insula Striatum 12.05063559

Dentate Gyrus Thalamus −10.16480068

Anterior Cingulate Perirhinal 9.797571525

Anterior cingulate Striatum −9.797490263

Perirhinal Midbrain −9.784945678

Piriform Cortical subplate −8.806284779

Ectorhinal Hippocampus −8.610174302

Entorhinal Hippocampus −7.811033297

Cortical subplate Ectorhinal −6.884725909

Prelimbic Anterior cingulate 5.846948876

Piriform Entorhinal 5.567930665

Insula Piriform −5.434191692

Thalamus Striatum −5.147431246

Cortical subplate Striatum −4.624752929

Hippocampus Dentate gyrus −3.547783071

Subiculum Midbrain 2.52006327

Anterior cingulate Ectorhinal −2.370938573

Cortical subplate Entorhinal 2.319090821

Ectorhinal Perirhinal −2.273131213

Cortical subplate Perirhinal 2.23796394

Dentate gyrus Subiculum 2.187598044

Entorhinal Dentate gyrus 1.751455894

Perirhinal Hippocampus −1.671078314

Midbrain Thalamus 1.279774685

Temporal Striatum 0.384806112

Ectorhinal Entorhinal 0.321562375

Insula Dentate gyrus −0.244430174

Perirhinal Entorhinal −0.224729829

Cortical subplate Hippocampus −0.206707249

Insula Cortical subplate 0.163654833

Hippocampus Thalamus 0.054958822

Orbital Anterior cingulate −0.034507619

Entorhinal Subiculum 0.000320998

10-month

Region 1 Region 2 Coe�cient

Insula Ectorhinal 21.47025733

Subiculum Dentate gyrus 15.55299204

Orbital Hypothalamus −9.313354789

(Continued)
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TABLE 6 (Continued)

10-month

Region 1 Region 2 Coe�cient

Midbrain Retrosplenial 8.467112143

Dentate gyrus Hippocampus −7.059569616

Anterior cingulate Striatum −6.135849639

Prelimbic Striatum −6.045696026

Cortical subplate Hypothalamus −5.601318258

Striatum Temporal −4.976794654

Thalamus Midbrain −4.001974207

Entorhinal Hippocampus 2.56408521

Entorhinal Dentate gyrus 1.030937158

Midbrain Subiculum 0.475612025

Piriform Entorhinal 0.368271799

Ectorhinal Hippocampus 0.308919583

Insula Striatum 0.252494772

Entorhinal Subiculum 0.033419686

Prelimbic Cortical subplate 0.000366419

Functional connections that have explanatory power for spatial learning performance in

6- and 10-month APP/PS1 mice. Each row depicts a functional connection between two

brain regions. Order of regions (Region 1 or Region 2) does not imply directionality of

the connection. Only connections that the model identified as significant are shown. The

coefficient is a measure of predictive power for behavioral performance.

Schultz et al. (2017) found DMN hyperconnectivity in amyloid

positive individuals, while DMN hypoconnectivity was seen in

individuals who were both amyloid and tau positive, suggesting

that the shift to hypoconnectivity may be mediated by tau.

Additionally, Hampton et al. (2020) found that decreased activity

in the DMN predicted neurodegeneration in DMN regions. A

review by Wales and Leung (2021) noted amyloid-related hyper-

connectivity and tau-related hypo-connectivity, and proposed that

conflicting reports may reflect varying contributions of amyloid

and tau. In our study, we use an amyloid beta mouse model that

does not exhibit overt tau pathology or neurodegeneration at the

time points used for this study and therefore may not experience

this shift to decreased FC.

4.4 Machine learning models

For the first time, we used machine learning to establish

significant relationships between FC changes and spatial learning

(Model 1) and memory performance (Model 2). The models

identified specific ROI-to-ROI connections that were predictive of

spatial learning andmemory performance, providing novel insights

into how FC alterations can serve as early indicators of cognitive

decline. The identification of both positive and negative coefficients

for various connections indicates that increased FC predicts both

positive and negative effects on behavior performance, reflecting

the complex nature of AD-related network changes. Positive

coefficients may represent compensatory strategies for memory

performance, while negative coefficients result when aberrant

activity disrupts neuronal processing.

TABLE 7 Model 2_Relationship between spatial memory and functional

connectivity.

6-months

Region 1 Region 2 Coe�cient

Dentate gyrus Subiculum 24.91927776

Orbital cortex Prelimbic −16.79821157

Entorhinal Hippocampus −8.555816499

Anterior cingulate Striatum −7.667657046

Piriform Entorhinal −5.438188566

Ectorhinal Entorhinal 4.485144333

Hippocampus Dentate Gyrus −4.022499433

Midbrain Thalamus −3.865921728

Cortical Subplate Perirhinal −1.547348309

10-months

Region 1 Region 2 Coe�cient

Cortical subplate Entorhinal 17.6031419

Anterior cingulate Hippocampus 16.9836591

Anterior cingulate Prelimbic 14.48779041

Prelimbic Cortical subplate 10.52685047

Orbital Hypothalamus −9.706540747

Ectorhinal Perirhinal 8.323748089

Thalamus Midbrain −6.584637362

Anterior cingulate Retrosplenial −5.100520463

Perirhinal Subiculum −4.559392347

Cortical subplate Hippocampus −4.159240508

Insula Cortical subplate 3.083394225

Insula Ectorhinal 2.165915123

Ectorhinal Dentate gyrus −1.959011074

Anterior cingulate Insula 1.120018192

Orbital Prelimbic −0.735121997

Prelimbic Striatum −0.006172407

Anterior cingulate Orbital −5.97E−05

Functional connections that have explanatory power for spatial memory performance in

6- and 10-month APP/PS1 mice. Each row depicts a functional connection between two

brain regions. Order of regions (Region 1 or Region 2) does not imply directionality of

the connection. Only connections that the model identified as significant are shown. The

coefficient is a measure of predictive power for behavioral performance.

The machine learning models revealed several key connections

that are predictive of cognitive performance. Model 1 identified

temporal-hippocampus as the strongest predictor of learning

in the 6-month cohort, with a positive coefficient indicating

learning performance improves as the strength of this connection

increases. The second strongest predictor at this time point was the

orbital-prelimbic connection, with a negative coefficient indicating

learning performance decreases as the strength of this connection

increases. In the 10-month cohort, Model 1 identified insula-

ectorhinal cortex and subiculum-dentate gyrus as the strongest

predictors of learning performance. Temporal cortex connections

are highly predictive of learning performance at the 6-month time
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point (temporal-hippocampus, temporal-ectorhinal, and temporal-

perirhinal are in the top five predictors), but not at 10-months

(only temporal-striatum was identified), suggesting a shift in

the networks engaged for learning. These results suggest that

as the disease progresses, there is a loss of engagement of the

temporal association areas, and a corresponding decrease in

learning performance. The shift in regions identified by the Model

may reflect underlying deterioration of normal cognitive processes.

Model 2 identified dentate gyrus-subiculum (positive

coefficient) as the strongest predictor of memory performance in

the 6-month cohort. The second strongest predictor at this time

point was the orbital-prelimbic connection (negative coefficient),

and 7/9 connections identified had negative coefficients. Memory

deficits begin to emerge at the 6-month time point, and the negative

coefficients identified by the Model may indicate that aberrant

hyperconnectivity is disruptive to memory performance. In the 10-

month cohort, Model 2 identified the cortical sublate-entorhinal

and anterior cingulate-hippocampus as the strongest predictors

of memory performance (positive coefficients). At this time point,

the APP/PS1 mice have very low spatial memory performance, and

these changes identified by the model are not able to compensate

as pathology accumulates. The differences in these two models

likely reflect differences in underlying cognitive processes between

learning and memory.

Our modeling choices were parsimonious: we adopted linear

models and careful statistical approaches (initial variable selection,

LASSO regularization, and leave-one-out cross validation) to

ensure rigorous models despite relatively small sample sizes.

LASSO regularization optimizes model performance and performs

variable selection by discarding non-contributory variables. In

bootstrap analyses, the confidence intervals often include zero

for coefficients optimized by LASSO. Our results indicate that

in 50–70% of the bootstrap runs (on average), the sign of the

coefficient was consistent with the original model. In the remaining

runs, approximately 40% of the bootstrap samples resulted in the

coefficient being exactly zero. Only for Model 1: 6-month data, this

fraction was 12%. This ensures robust interpretations regarding

the roles of the variables. The models revealed valuable insights,

but we anticipate that non-linear models that allow for variable-

interactions could explain more variations in the data. Replicating

the modeling in additional mouse models of AD and extending

the use of the modeling to human data would provide additional

insight into the progression of AD.

4.5 Implications for AD diagnosis and
treatment

The early detection of FC changes, especially hyperconnectivity

in memory-related networks, could serve as a biomarker for

preclinical AD, allowing for timely therapeutic interventions.

Furthermore, the observed decrease in number of hyperconnected

regions in the DMN-like regions provides valuable insights into the

temporal dynamics of network changes in AD. The initial phase

of hyperconnectivity might represent a window of opportunity for

therapeutic interventions aimed at enhancing network resilience.

Targeting the persistent hyperconnectivity in memory-related

regions could help to preserve cognitive functions and slow the

progression of the disease.

The identified connections from the machine learning model

could also be pivotal in providing targets for potential therapeutic

strategies aimed at modulating network activity to mitigate

cognitive decline in human patients. For example, therapies

designed to enhance connectivity in pathways with positive

coefficients could help reinforce networks that support memory

and learning. On the other hand, interventions that target pathways

with negative coefficients could aim to reduce pathological

hyperconnectivity, thus restoring normal network function.

4.6 Conclusions

For the first time, we established the relationship between

behavior and functional connectivity changes in awake,

unanesthetized APP/PS1 mice compared to WT controls.

This study demonstrated that significant changes in FC precede

cognitive deficits in an Aβ mouse model of AD. The observed

trend of progressive hyperconnectivity in memory-related regions

could initially represent a compensatory response to maintain

cognitive functions. However, as the disease progresses, this

hyperactivity expands to involve more regions, contributing to

network dysfunction. Interestingly, we saw a loss hyperconnectivity

in DMN-like regions, underscoring the dynamic nature of neural

network alterations in AD. The use of rs-fMRI to detect these

changes highlights its potential as a valuable tool for early detection

of AD. Furthermore, the novel use of machine learning methods is

likely to provide a framework for consistent early detection of AD.
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