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Several decades of research have investigated the neural connections

between stroke-induced brain damage and language di�culties. Typically,

lesion-symptom mapping (LSM) studies that address this connection have

relied on mass univariate statistics, which do not account for multidimensional

relationships between variables. Machine learning (ML) techniques, which can

capture these intricate connections, o�er a promising complement to LSM

methods. To test this promise, we benchmarked ML models on structural

and functional MRI to predict aphasia severity (N = 238) and naming

impairment (N = 191) for a cohort of chronic-stage stroke survivors. We used

nested cross-validation to examine performance along three dimensions: (1)

parcellation schemes (JHU, AAL, BRO, and AICHA atlases), (2) neuroimaging

modalities (resting-state functional connectivity, structural connectivity, mean

di�usivity, fractional anisotropy, and lesion location) and (3) ML methods

(Random Forest, Support Vector Regression, Decision Tree, K Nearest Neighbors,

and Gradient Boosting). The best results were obtained by combining the JHU

atlas, lesion location, and the Random Forest model. This combination yielded

moderate to high correlations with the two di�erent behavioral scores. Key

regions identified included several perisylvian areas and pathways within the

language network. This work complements existing LSMmethodswith new tools

for improving the prediction of language outcomes in stroke survivors.

KEYWORDS

aphasia, lesion-symptommapping, neuroimaging,multivariate analysis, stroke,machine

learning

1 Introduction

Lesion-symptom mapping (LSM) plays a major role in studying brain-behavior

relationships (Bates et al., 2003; Bendfeldt et al., 2012; Burges, 1998; Forkel and Catani,

2018; Karnath et al., 2019; Moore et al., 2023). Specifically, statistical voxel-based lesion-

symptom mapping [VLSM; (Bates et al., 2003)] assesses the relationship between brain

lesions and specific behavioral deficits on a voxel-by-voxel basis, allowing the identification
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of brain regions where damage correlates with behavioral

impairment. This represents a significant advance compared to

the conventional lesion overlap-subtraction approach (Bates et al.,

2003). However, as a univariate method, VLSM is limited for

assessing the multivariate lesion-symptom relationship (Walker

et al., 2011; Kimberg et al., 2007). Traditional VLSM does not

consider correlations among neighboring voxels, although these

can enhance detection power (Kimberg et al., 2007; Herbet et al.,

2015). VLSM often uses dichotomized lesion data (lesion present

or absent), resulting in low variance at each voxel. This can

limit its ability to predict continuous dependent variables of

clinical significance, such as behavioral impairment (DeMarco and

Turkeltaub, 2018).

To overcome these limitations, researchers have explored

multivariate lesion-symptom mapping (MLSM) methods

(DeMarco and Turkeltaub, 2018), combining all voxels into a

single model rather than using separate models for each voxel.

One MLSM strategy applies support vector regression (SVR) to

multivariate lesion data extracted from predefined ROIs to predict

binary behavioral outcomes, such as whether or not a patient

exhibits spatial neglect (Smith et al., 2013; Zhao et al., 2018).

However, MLSM also has some drawbacks. These

include specific statistical challenges, such as uncertainties in

(hyper)parameter selection and how these influence solution

regularization and computational cost. These limitations impact

result interpretation and limit post-hoc computation (Pustina

et al., 2017; DeMarco and Turkeltaub, 2018). Recent advances

in disconnectome-based mapping now trace how lesions disrupt

large-scale white-matter networks. Gleichgerrcht et al. (2017)

showed that disconnection patterns predict language deficits

beyond focal cortical damage, and Thiebaut de Schotten et al.

(2020) introduced population-based disconnectome maps to link

white-matter disconnection with behavior. Yet these approaches still

depend on normative tractography templates and rarely incorporate

subject-specific reorganization. As a result, their explanatory power

for chronic stroke remains only partial. Machine-learning (ML)

models have also become prominent in LSM. Billot et al. (2022b)

predicted recovery trajectories, while Talozzi et al. (2023) showed

that multimodal features can boost prediction accuracy, and

Matsulevits et al. (2024) used interpretable networks to localize

language-critical regions. However, most ML studies employ modest

sample sizes, limited cross-validation, and sparse hyper-parameter

searches, making it difficult to gauge generalizability and to compare

algorithms or imaging modalities on equal footing.

LSM approaches using ML are a promising complement

to traditional VLSM or MLSM methods. ML enables the

identification of complex relationships between patterns of brain

damage and language deficits that traditional univariate VLSM

approaches may not capture. Using SVR-MLSM, a combination

of two methods (SVR and MLSM), several studies have obtained

improved prediction accuracy for behavioral scores, such as the

Comprehensive Aphasia Test [CAT; e.g., r = 0.59 in Hope

et al. (2013) from lesion volumes and r = 0.69 in Yourganov

et al. (2016) for the Western Aphasia Battery-Revised (WAB-R)

Aphasia Quotient (AQ)]. In a comparative study, Ivanova et al.

(2021) suggested that both univariate and multivariate LSM have

advantages and recommended that both methods should be used

in tandem. Halai et al. (2020) conducted a comprehensive study

on how key parameters influence brain-to-behavior prediction

models for post-stroke aphasia, focusing on four principal language

and cognitive dimensions (phonology, semantics, speech fluency,

and executive demand). Using multimodal neuroimaging data (T1

and diffusion-weighted imaging) and advanced ML algorithms,

the study demonstrated that models using structural T1 features

often matched or outperformed those incorporating diffusion data.

Predictive accuracy, assessed via cross-validated metrics, achieved

Pearson’s correlations ranging from r = 0.50 to 0.73. While these

findings underscore the potential of ML in aphasia research,

measures such as the AQ or Philadelphia Naming Test (PNT)

scores have not been extensively evaluated, which remain critical

for assessing overall aphasia severity and naming abilities.

Aphasia frequently results from strokes specifically affecting

language regions in the left hemisphere (Carey, 2016). Several

studies have used MRI techniques to explore the left hemisphere’s

role in stroke-induced aphasia (Fridriksson et al., 2010; Price,

2000, 2012). Behavioral prediction using various neuroimaging

modalities separately, such as annotated lesions, fMRI functional

connectivity during resting-state (rsFC), and measures derived

from diffusion tensor imaging (DTI), such as structural

connectivity (SC) based on fiber tracking, mean diffusivity

(MD), and fractional anisotropy (FA), may help further identify

patterns and relationships that contribute to predicting aphasia

severity, language impairments, and recovery potential. Some

results suggest that diffusion-weighted data in lesion-based models

do not improve the accuracy of regression models (Hope et al.,

2018). Using multimodal data with SVR resulted in correlations

ranging from r= 0.60 to 0.67 for several different behavioral scores:

AQ, fluency, auditory comprehension, naming, speech repetition,

and spontaneous speech (Kristinsson et al., 2020). Notably,

that study did not include cross-validated feature selection,

potentially resulting in data leakage, a tendency for overfitting, and

over-optimistic performance assessment (Poldrack et al., 2019).

Here, we systematically benchmark all possible combinations

of a factorial design with three methodological factors: brain atlas,

neuroimaging modality, and ML algorithm. Specifically, we cross

every feasible pairing of commonly used atlases (AAL, AICHA,

BRO, JHU), five MRI-derived modalities (lesion, SC, rsFC, FA,

MD), and six ML models (Linear Regression, Random Forest,

SVR, Decision Tree, K Nearest Neighbors, and Gradient Boosting).

Performance is assessed using two behavioral measures that capture

complementary aspects of post-stroke language function: the AQ

and PNT. Our primary aims are i) to identify which atlas-modality

pairings best characterize language-related damage and ii) to

determine which ML techniques most accurately predict language

scores from neuroimaging data.

2 Methods

2.1 Data acquisition

2.1.1 Participants
This work leverages data previously collected as part of a multi-

site stroke aphasia study, including the Center for the Study of
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Aphasia Recovery (C-STAR) at the University of South Carolina

(USC) and the Medical University of South Carolina (MUSC).

Institutional Review Boards at both universities approved the

study procedures. All procedures adhere to the Declaration of

Helsinki. Informed consent was obtained independently from all

participants under the supervision of care partners, considering

potential comprehension difficulties for some participants. Travel

and lodging expenses were reimbursed for participants living more

than 35 miles from the data collection site. Our dataset included

individuals who suffered a single stroke to the left hemisphere and

who received an MRI scan and a behavioral test (PNT: N = 191;

AQ: N = 238). Participants who suffered lacunar infarcts, bilateral

strokes, or damage only involving the brainstem or cerebellum

were excluded. We enrolled participants with lesions only in the

left hemisphere to account for the fact that language functions

are primarily localized to the left hemisphere in most people.

The average time elapsed since the occurrence of stroke was 39.4

months, ranging from 5.6 to 237.1 months.

2.1.2 Neuroimaging data
2.1.2.1 Behavioral data acquisition

Neuroimaging data and behavioral scores were collected from

2007 to 2019. PNT (Roach et al., 1996) and WAB-R (Kertesz,

2006) were administered by licensed speech-language pathologists

as part of a larger language battery. PNT responses were recorded,

transcribed, and scored by trained research assistants. Our outcome

measures were AQ for the WAB-R and the total number of correct

items for the PNT. AQ and PNT scores were highly correlated

(r = 0.89) as both measures reflect overall aphasia severity. In

the assessment of the WAB-R, a maximal cumulative score of 100

points is allocated, which includes several speech comprehension,

speech production, and repetition tasks. For the PNT, line drawings

or pictures of objects are presented, and the individual is asked to

name each object as accurately and quickly as possible. The primary

measure is the proportion of correctly named objects.

2.1.2.2 MRI data acquisition

MRI data were gathered with a Siemens 3T Trio System with

a 12-channel head coil and a Siemens 3T Prisma fit scanner with

a 20-channel coil. Participants underwent two anatomical MRI

sequences: i) T1-weighted imaging sequence with an MP-RAGE

(magnetization-prepared rapid-gradient echo) [turbo field echo]

sequence with voxel size = 1 mm3, FOV (field of view) = 256 ×

256 mm, 192 sagittal slices, 9◦ flip angle, TR (repetition time) =

2,250 ms, TI (inversion time)= 925 ms, TE (echo time)= 4.15 ms,

GRAPPA (generalized autocalibrating partial parallel acquisition)

= 2, and 80 reference lines; and ii) T2-weighted MRI with a 3D

sampling perfection with application-optimized contrasts by using

different flip angle evolutions (SPACE) protocol with the following

parameters: voxel size = 1 mm3, FOV = 256 × 256 mm, 160

sagittal slices, variable flip angle, TR = 3,200 ms, TE = 212 ms,

and no slice acceleration. The same slice center and angulation were

used as in the T1 sequence. Functional connectivity was measured

using resting-state scans. fMRI volumes (196 per participant) were

acquired with an echo-planar imaging sequence with FOV = 208

× 208 mm, 64 × 64 matrix size of 3.25 mm isotropic voxels, 75◦

flip angle, 34 axial slices (3 mm thick with 20% gap yielding 3.6 mm

between slice centers), TR = 1,850 ms, TE = 30 ms, GRAPPA =

2, 32 reference lines, and sequential descending acquisition. DTI

was captured with a monopolar sequence with 82 isotropic (2.3

mm) volumes (×10 B = 0, ×72 B = 1,000), TR = 4,987 ms, TE

= 79.2 ms, 90 × 90 matrix, with parallel imaging GRAPPA = 2,

and 50 contiguous slices. The sequence was acquired in two series

(41 and 43 volumes in each series) with opposite phase encoding,

allowing us to correct for spatial distortion using the TOPUP

method (Andersson et al., 2003).

2.1.3 Preprocessing
Preprocessing is required to normalize spatial scales, correct

for motion and noise, and standardize lesion size, among

other considerations. Generic preprocessing steps were used

for all modalities, followed by additional modality-specific

preprocessing steps (see subsections below). Data preprocessing

was conducted with Matlab (R2017b, The MathWorks, Inc.,

Natick, MA) using the nii_preprocess software (https://github.

com/neurolabusc/nii_preprocess). This image-processing pipeline

was tailored explicitly for clinical stroke populations and is open-

source. The nii_preprocess pipeline incorporates scripts to handle

diverse MRI data modalities. Its output is transformed into the

MNI standard space. The quality of the resulting preprocessed data

was validated by visual inspection. In Figure 1, the distribution of

lesions among participants is shown.

2.1.3.1 Lesion preprocessing

Lesions were defined by a neurologist (L. Bonilha) using

T2-weighted images in MRIcron, a cross-platform viewer

for NIfTI images (Rorden et al., 2012). T2-weighted images

were co-registered to match the T1-weighted images. Images

were then warped to standard space using an enantiomorphic

(Nachev et al., 2008) segmentation-normalization (Ashburner

and Friston, 2005) custom Matlab script (https://github.com/

rordenlab/spmScripts/blob/master/nii_enat_norm.m) to warp

images to an age-appropriate template in an SPM-based clinical

toolbox (Rorden et al., 2012). Normalization parameters were

used to re-slice the lesion into standard space using linear

interpolation, with subsequent lesion maps stored at 1 mm

isotropic resolution and binarized using a 50% threshold. To

avoid the fractional values resulting from interpolation, this step

categorizes each voxel as lesioned or not without biasing the overall

lesion volume. Normalized images were visually inspected for

quality control.

2.1.3.2 fMRI preprocessing

Motion correction for fMRI data was achieved via the SPM12

(Ashburner et al., 2021) realign and unwarp default procedure.

Slice timing correction was achieved with SPM12. Brain extraction

was performed with the default SPM12 pm_brain_mask function.

The fMRI volume of each subject was aligned to the extracted

T2-weighted image to determine the spatial transformation

between the fMRI data and the lesion mask. The fMRI data were

spatially smoothed with a 6 mm full width at half-maximum

Gaussian kernel. Lesion artifacts were eliminated using the process
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FIGURE 1

Lesion distribution among the 191 participants is represented using a color-coded scale, where light blue indicates regions with low lesion overlap

and red indicates regions with high lesion overlap. The region around the perisylvian fissure showed the highest concentration of overlapping lesions

across participants.

outlined in Yourganov et al. (2017). FSL MELODIC was used to

decompose the data into independent components to eliminate

potential confounding effects from the lesion on fMRI and calculate

the z-scored spatial maps for each component. The maps were then

thresholded at p< 0.05 and compared with the lesion mask for that

patient. If the overlap (measured via the Jaccard index) between

the lesion and the thresholded independent component map was

more than 50%, the corresponding component was considered

to overlap significantly with the lesion. These components were

then regressed from the fMRI data using fsl_refilt from the FMRIB

Software Library (FSL). This ensures that measures derived from

the fMRI signals are not unduly influenced by spurious correlations

with fMRI signals in lesioned areas. rsFC was then computed

from the preprocessed fMRI data. To derive rsFC, the brain was

parcellated for the given atlases, dividing the brain into distinct

ROIs. For each ROI, the average BOLD signal time series was

extracted. Pearson’s correlation coefficients were then calculated

between the time series of all pairs of ROIs to capture the strength of

time-locked connectivity between brain regions. These correlation

values formed the functional connectivity matrix, which represents

the rsFC features used for further analyses.

2.1.3.3 FA and MD preprocessing

FA (Fractional Anisotropy) and MD (Mean Diffusivity) are

quantitative metrics derived from DTI that provide insights into

the microstructural properties of brain tissues and can be used

to assess the integrity of white matter tracts. The diffusion data

were processed following the method described in Bonilha et al.

(2015). To address artifacts and noise, Gibbs artifacts removal

(Kellner et al., 2015) and de-noising (Veraart et al., 2016) were

performed using MRTrix tools. Spatial distortion was attenuated

using FSL’s TOPUP (Andersson et al., 2003) and eddy (Andersson

and Sotiropoulos, 2015). FSL’s dtifit was used to calculate tensors,

FA, or MD. The T1 scan underwent unified normalization and

segmentation using SPM12. This enabled the transformation of

atlases from standardMNI to patient space. The atlases were further

mapped to the native diffusion space by non-linearly warping the

T1 scan to the FA and MD maps. To reduce dimensionality, the

DTI connectivity of each region was averaged with its connectivity

to all other regions.

2.1.4 Atlases and region of interest
We segmented our images from the different modalities into

regions of interest (ROIs) using the following atlases: Johns

Hopkins University Atlas (JHU) (Oishi et al., 2009) with 188 ROIs,

Automated Anatomical Labeling Atlas (AAL) (Tzourio-Mazoyer

et al., 2002) with 108 ROIs, Brodmann Atlas (BRO) (Amunts, 2021)

with 82 ROIs, and Atlas of Intrinsic Connectivity of Homotopic

Areas (AICHA) (Joliot et al., 2015) with 384 ROIs. Atlases with

too few regions [e.g., the Fox atlas (Fox et al., 2005) with 10 ROIs

and CAT (Catani and Thiebaut de Schotten, 2008) (29 ROIs)]

were excluded from our analyses because preliminary analyses

showed that their low number of regions was insufficient to provide

adequate predictions. For lesion modality, the value of each region

was taken as the fraction of lesioned voxels (i.e., a score of “1”

indicating the entire region was damaged), providing a measure of

the extent of damage in specific brain regions.

We used only left-hemisphere ROIs in lesion modality because

we selected participants without lesions in the right hemisphere.

Therefore, this modality contains no predictive information for

the right hemisphere. For rsFC, MD, SC, and FA, we used both

hemispheres due to the adaptive reorganization of the brain in non-

acute post-stroke patients, potentially leading to alterations in the

intact hemisphere predictive of recovery.

2.1.5 Connectome creation
The probabilistic white matter map of each participant, which

excluded the lesion, was used as a mask to analyze the neural

pathways of the tractography. By excluding white matter areas with

lesions, we ensure that we include only intact neural connections

in determining the brain’s SC. Bedpost (Hernandez Fernandez

et al., 2013) was used for fiber modeling. Subsequently, SC was

quantified using probtrackx (Hernandez Fernandez et al., 2018),

which assessed the SC between each region in the given atlas.

For each pair of regions, the number of streamlines arriving in

one region when the other was used as a seed was calculated. SC

was defined as the average between the number of streamlines

arriving in region A when region B was seeded and vice versa. The

connectivity between the regions was corrected based on the sum

of the volumes of the two regions to control for more significant

regions that inherently have a higher number of streamlines
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FIGURE 2

Schematic representation of the nested cross-validation scheme used to ensure no data leakage when evaluating the performances of our models.

than smaller regions. This resulted in a connectivity matrix of

weighted connections.

2.2 Machine learning pipeline

We used the scikit-learn library (Pedregosa et al., 2011) to

evaluate the ability of different atlas-modality-model combinations

to predict behavioral scores from MRI data. In a full factorial

design, we crossed four brain parcellation atlases (AAL, AICHA,

BRO, JHU), five neuroimaging feature modalities (lesion, rsFC,

MD, SC, and FA), and six machine learning algorithms [Linear

regression (LR), random forest (RF), support vector regression

(SVR), decision tree (DT), K nearest neighbors (KNN) and

gradient boosting (GB)]. Separate models were trained for

each behavioral outcome measure—AQ and PNT scores. SC

connectome processing requires many hours per subject, so we

have limited SC connectome generation to only the AICHA and

JHU atlases, resulting in 216 unique combinations of atlas ×

modality × model × behavioral scores (Supplementary Table S3).

For all analyses, we focused on ROIs defined by each atlas such

that each atlas provided one feature per ROI. All region-wise

imaging features (lesion, FA, MD, rsFC, SC) were vectorized into

a single flattened array per subject and passed to the ML models

as input. For example, using the JHU atlas (which contains 94

left-hemisphere ROIs), the lesion modality yields a 94-dimensional

feature vector for each subject (each feature representing the lesion

volume or proportion in one ROI). We did not apply any explicit

feature selection before model fitting; instead, models were given

the full set of ROI features for the specified atlas-modality, allowing

them to learn which brain regions were most predictive of the

outcome. We report Kruskal-Wallis H tests for each main effect

and Bonferroni-corrected Dunn post-hoc comparisons to interpret

significant differences in performance.

Performance was evaluated using Pearson’s correlation (r)

between behavioral scores and predicted values in a two-level

nested cross-validation with the outer loop dividing the dataset

into 100, 90%–10% train-test shuffle splits (see Figure 2). The inner

loop splits the remaining data into validation and training sets

using a 5-fold split. The outer loop assesses in an unbiased way the

performance of the model for a specific set of hyperparameters (see

Table 1), while the inner loop tunes in a reproducible way those

hyperparameters. The hyperparameter ranges for each algorithm

were selected to balance computational efficiency with model

performance, following standard practices in the ML literature.

In scikit-learn, the feature_importances_ attribute

of tree-based models ranks predictors by the mean decrease

in impurity; larger values indicate a stronger contribution to

predictive performance.

3 Results

We performed a full factorial analysis of prediction accuracy

(Pearson’s r between predicted and actual behavioral scores) with

factors ML Model, Neuroimaging Modality, and Atlas. Figure 3

presents violin plots comparing the distribution of correlation

scores (shared y-axis) for AQ and PNT across each factor

level. Overall, AQ predictions were more accurate than PNT (a

higher median r across all conditions), but the patterns of factor

effects were broadly similar. Among the three factors, imaging

modality had the strongest influence on model performance,

whereas model algorithm and atlas had more modest effects

(especially for PNT). A complete breakdown of additional results is

provided in the Supplementary material. Supplementary Figure S2
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TABLE 1 Hyperparameters explored for di�erent ML models.

Model Hyperparameters

DT • criterion: squared_error, friedman_mse,

absolute_error, poisson

• splitter: best, random

• max_depth: 1, 3, 5

• min_samples_leaf: 1, 2

• min_weight_fraction_leaf: 0.1, 0.2

• max_features: log2, sqrt, None

GB • loss: ls, absolute_error, huber, quantile

• learning_rate: 0.05, 0.25, 0.50, 1

• criterion: friedman_mse, squared_error

• max_features: log2, sqrt

KNN • criterion: squared_error, friedman_mse,

absolute_error, poisson

• splitter: best, random

• max_depth: 1, 3, 5

• min_samples_leaf: 1, 2

• min_weight_fraction_leaf: 0.1, 0.2

• max_features: log2, sqrt, None

LR • fit_intercept: True, False

• copy_X: True, False

• positive: True, False

RF • n_estimators: 100

• max_features: sqrt, log2, None

• max_depth: 15, 20

• min_samples_leaf: 4, 8, 16

• bootstrap: True, False

• criterion: squared_error, absolute_error, poisson

SVR • cache_size: 100, 200

• degree: 2, 4

• gamma: scale, auto

• kernel: linear, poly, rbf, sigmoid

• shrinking: True, False

• verbose: True, False

Performance was assessed using these parameters in the outer loop of nested cross-validation.

presents heatmaps of subscore correlations for every model.

Multimodal outcomes and model comparisons are summarized

in Supplementary Table S2. Supplementary Figure S1 plots linear

regressions between each of the four WAB-R subscores (fluency,

comprehension, repetition, and naming) and PNT prediction,

while Supplementary Table S3 outlines how the 216 combinations

were derived.

3.1 Machine learning model e�ects

For AQ prediction, significant differences were observed across

machine learning models (Kruskal-Wallis: H(5)=23.22, p < 0.001;

Figure 3a). Post-hocDunn tests with Bonferroni correction revealed

that GB significantly outperformed both LR (p < 0.01) and RF (p <

0.01). In contrast, model selection did not significantly influence

PNT prediction accuracy (H(5) = 8.94, p > 0.05).

3.2 Neuroimaging modality e�ects

Imaging modality demonstrated the strongest influence on

prediction performance. For AQ scores, modality effects were

highly significant (H(4) = 43.48, p < 0.001; Figure 3b), with

post-hoc tests revealing significant differences between FA vs. rsFC

(p < 0.001), FA vs. MD (p < 0.05), rsFC vs. lesion (p < 0.001),

and lesion vs. MD (p < 0.05). Modality significantly affected PNT

prediction (H(4) = 60.31, p < 0.001), with significant differences

between SC vs. lesion (p < 0.01), FA vs. rsFC (p < 0.001), rsFC vs.

lesion (p < 0.001), rsFC vs. MD (p < 0.001), and lesion vs. MD

(p < 0.05).

3.3 Atlas parcellation e�ects

Atlas selection did not significantly influence prediction

accuracy for either AQ (H(3) = 1.73, p > 0.05; Figure 3c) or PNT

scores (H(3) = 1.66, p > 0.05).

3.4 Notable model-modality-atlas
combination

Despite RF showing lower overall performance across

conditions, the specific combination of RF with lesion data

and JHU atlas achieved the highest correlation for AQ prediction

(r = 0.73±0.09) (Table 2) in our experiments, exceeding previously

reported benchmarks in the literature (Yourganov et al., 2016).

This finding suggests that while RF may not be the optimal model

when averaged across conditions, it exhibits excellent performance

with this specific combination of lesion data and JHU atlas for

predicting aphasia severity. The fact that this correlation is the

mean value from a bootstrapped distribution rather than a point

estimate supports the robustness of this result. Further, GB also

exhibited a 0.72 correlation for the same condition, corroborating

that high correlations for this condition are not only due to a

peculiarity of the RF model (see Supplementary Figure S3 for the

top ten feature-importance plots for GB). To better understand

RF’s strong performance, we examined the feature importance

scores from the RF model. The top 10 brain regions for AQ and

PNT predictions are shown in Figure 4, with mean importance

values and 95% bootstrapped confidence intervals (see Table 3

for region abbreviations). To visualize their spatial distribution,

Figure 5 shows the most important regions in MNI152 space using

the JHU atlas, with surface and axial views for both AQ and PNT

predictions.

3.5 E�ect of combining modalities

We systematically tested various combinations of lesion,

diffusion (FA,MD), and rsFC features, which could boost predictive

accuracy. However, the integration of these modalities led to a

decline in performance. Models that used only diffusion and rsFC

features with RF (e.g., FA + rsFC: r = 0.329; FA + MD: r =

0.202) achieved lower predictive accuracy compared to models

that included lesion features. When lesion features were combined

with individual modalities, performance modestly improved (e.g.,

lesion + FA: r = 0.264; lesion + MD: r = 0.249; lesion +

rsFC: r = 0.189). Further, adding two modalities alongside lesion

maps yielded slightly higher correlations (e.g., lesion + FA + fMRI:
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FIGURE 3

Prediction-accuracy violins (shared y-axis) for AQ (orange) and PNT (green). Left: by model (a). Middle: by modality (b). Right: by atlas (c). Dashed

lines indicate medians and quartiles. These distributions also include non-significant results. Refer to Supplementary Figure S2 for heatmaps showing

individual results.

r = 0.375; lesion + MD + rsFC: r = 0.319; lesion + FA +

MD: r = 0.308). The best performance was observed when all

modalities were combined (lesion + FA + rsFC + MD: r = 0.358),

although this remained lower than the lesion-only model. Full

details of all combinations and corresponding results are provided

in Supplementary Table S2.

3.6 ROI identification using machine
learning

Figure 4 illustrates the distribution of feature importance of

the ten most important features (i.e., in our case, brain regions)

for predicting PNT and AQ. In Figure 5, we show the most

predictive regions of the JHU parcellation in the MNI152 space.

The identified top features from the RF model for AQ and PNT

are provided in Table 3. Although these are the most important

regions, others may also contribute to language outcomes in

people with aphasia. The feature correlation matrix revealed the

presence of significant multicollinearity (unpublished results; we

did not include this matrix in supporting information because

its 188 × 188 size results in unreadable labels when fit within

the limit of a paper sheet); several pairs of variables are highly

correlated with one another, exhibiting an r > 0.8. For instance,

in the left hemisphere, the Amygdala shows a particularly high

correlation with behavioral scores, as do the Caudate Nucleus and

Globus Pallidus. Nevertheless, the feature importance analysis and

prior knowledge from the literature on key regions in aphasia

suggest that the RF model uses relevant regions to predict language

outcomes. The identified regions are biologically plausible and

clinically relevant, suggesting that such modeling could be useful

to support LSM.

4 Discussion

In our benchmarking study, the choice of neuroimaging

modality was the dominant factor influencing aphasia outcome

prediction accuracy, exceeding the impact of the ML model or

the brain atlas used. In particular, models built on lesion data and

FA features significantly outperformed those using other imaging

modalities. Ensemble tree-based algorithms (GB) produced higher

median correlations than simpler learning models (LR, DT, or

KNN). By contrast, brain atlas selection had no significant effect

on performance. We also observed that PNT scores were markedly

harder to predict than the AQ. The best prediction for overall

aphasia severity (AQ) reached a higher correlation (r = 0.73; using

RF) than for naming ability (PNT, r = 0.48; using GB), despite

these behavioral scores being highly correlated with one another

(in our dataset, r = 0.89). This disparity might partly stem from

the smaller sample size for PNT (N = 191) compared to AQ

(N = 238), providing less data forML training and, therefore, lower

performance for PNT prediction. As a composite score, the WAB

AQ also smooths out variability across tasks. In contrast, the PNT,

focusing purely on naming, could be more sensitive to specific

lesion patterns that are harder to capture with features based on

atlases’ ROIs.

Neuroimaging modality emerged as the most critical

determinant of model performance, underscoring the importance

of informative brain damage and connectivity biomarkers. Models

based on stroke lesion features yielded the highest accuracies,

closely followed by those using FA. This result aligns with
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FIGURE 4

Feature importance for the top 10 regions identified using RF. (a) Feature importance for AQ scores across di�erent brain regions, with the bars

representing the mean importance values and the whiskers indicating 95% bootstrapped confidence intervals. (b) As in panel (a), but for PNT scores.

Refer to Table 3 for abbreviations.

FIGURE 5

Visualization of the most important brain regions for aphasia in the MNI152 space using the JHU atlas, as identified by the Random Forest algorithm

applied to both AQ and PNT. (a) AQ JHU surface regions. (b) PNT JHU surface regions. (c) AQ JHU axial regions. (d) PNT JHU axial regions.

longstanding clinical observations that lesion location and volume

strongly predict chronic aphasia severity (Billot et al., 2022a).

A large lesion encroaching on critical language zones (e.g., left

perisylvian cortex or underlying white matter) will typically

produce severe impairment, which makes lesion-based features

highly informative for predicting composite scores like the

AQ. LSM studies have found significant correlations between

lesion extent and language deficits (Billot et al., 2022a). Our

results reaffirm that simply knowing where and how much tissue is

destroyed provides a robust basis for outcome prediction. FA added

nearly equivalent value, showing that the micro-structural integrity

of white-matter tracts is almost as informative as gray-matter loss.

The shortfall of rsFC is likely due to (i) high measurement noise,

(ii) limited sample size relative to feature dimensionality, and (iii)

the fact that much of the functional disruption can already be

inferred from structural damage. Clinically, these results endorse a

pragmatic imaging protocol: structural T1/T2 + DTI provides most

of the prognostic information, whereas resting-state fMRI may not

justify its cost for baseline severity estimation.

Regarding the choice of ML models, most performed

comparably and were significantly correlated with language

proficiency measures. Tree-based ensembles (i.e., GB, RF) captured

non-linear interactions and were robust to multicollinearity

among ROI features, explaining their ∼5–10% advantage in
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TABLE 2 Pearson’s correlation coe�cients (mean ± standard deviation) between actual and predicted AQ and PNT scores (current study: JHU atlas and

lesion modality) along with associated p-values (bootstrapped with replacement, 100 iterations).

Previous studies

Study AQ (r) p-value (AQ) PNT (r) p-value (PNT)

Yourganov et al. (2016) 0.69 (N = 90) <0.01 - -

Kristinsson et al. (2020) 0.44 (N = 116) <0.01 - -

Current study

ML model AQ (N = 238) p-value (AQ) PNT (N = 191) p-value (PNT)

Decision tree 0.69± 0.07 <0.01 0.29± 0.15 0.05

Gradient boosting 0.72± 0.06 <0.01 0.48 ± 0.11 <0.01

K nearest neighbors 0.62± 0.07 <0.01 0.29± 0.15 0.04

Linear regression 0.24± 0.21 0.19 0.07± 0.16 0.30

Random forest 0.73 ± 0.09 <0.01 0.46± 0.11 <0.01

Support vector regression 0.67± 0.07 <0.01 0.38± 0.11 <0.01

Results from prior studies are included for comparison.

median r over simpler models. While linear regression occasionally

approached ensemble performance in low-dimensional settings, its

susceptibility to highly correlated predictors makes it unreliable.

The practical implication is straightforward: high feature

dimensionality and non-linear relationships favor an ensemble

learner (GB, RF) or similarly expressive model. However, LR

significantly underperformed compared to the other models,

suggesting that this model is not well-suited for this task.

Multicollinearity is likely to limit the performance of LR models

notably. Multicollinearity can lead to inflated standard errors,

making it challenging to discern the true effect of independent

variables. Additionally, the high degree of intercorrelation may

increase the variance of the coefficient estimates and make the

model more sensitive to small changes in their values.

We settled on RF for various reasons. As with other well-

performing models (see Table 2), RF predictions were significantly

more accurate than chance. Neuroimaging benchmarks show

that impurity-based and permutation-based rankings converge

when random forests are built with sufficient depth and tree

count (e.g., McPartland, 2024); our configuration of 100 trees

with max_depth=20 meets these conditions while remaining

computationally tractable. For SC, this was true even when

connections involving lesioned regions were omitted from the

analysis. This suggests that ML analysis can effectively mitigate the

spatial bias toward areas more likely to be lesioned due to their

location relative to blood vessels. RF is also advantageous because

it provides a convenient way to assess feature importance. We

benefited from this technical capability to determine which brain

regions contribute most to aphasia symptoms. Identified brain

regions (see Table 3) are known to be associated with language-

related difficulties (Dronkers et al., 2004; Faroqi-Shah et al., 2014;

Ouden et al., 2019), such as difficulties in speech comprehension,

production, reading, writing, and object naming. These results

support the capability of this approach to identify key brain regions

in aphasia from lesion mapping.

The choice of brain atlas had a much smaller effect on

prediction performance. Five of the six atlases tested yielded

very similar accuracies, with differences of only a few percent in

correlation. This robustness to atlas choice suggests our findings

are not tied to an idiosyncratic brain partition; the signal can

be captured in multiple atlas frameworks. Following preliminary

analyses, we rejected the FOX atlas from our comparison as

it yielded systematically worse performance, possibly because

it included only a very small number of regions (N = 10),

which poorly align with the functional anatomy of language.

From a methodological standpoint, while many atlases work

interchangeably, one should avoid atlases that might not capture

the regions of interest for a given clinical question.

We also tested whether integrating lesion maps with diffusion

(FA, MD) and rsFC features could boost predictive accuracy.

In practice, naïvely concatenating these modalities inflated our

feature set relative to sample size, resulting in over-fitting and only

marginal or negative performance changes (e.g., lesion + FA + rsFC:

r = 0.38 vs. lesion alone: r = 0.73, Supplementary Table S2).

This suggests that in chronic post-stroke aphasia, the structural

lesion signature contains the lion’s share of prognostic information,

and successful multimodal fusion will require rigorous feature-

selection or dimensionality-reduction methods rather than simple

feature stacking.

The primacy of lesion and white matter integrity measures

reinforces that stroke-induced aphasia is predominantly a disorder

of structural brain damage. A machine learning model drawing

only on lesion pattern can achieve a correlation of 0.7 with actual

severity, approaching clinical utility. Damage to any region in

Table 3 can lead to language impairments commonly associated

with aphasia severity (Galantucci et al., 2011; Ivanova et al., 2016;

Griffis et al., 2017). In particular, SLF emerges as an essential

feature in the RF model, showing substantial impact and its role

in enhancing PNT and AQ prediction performance. SLF is a large

bundle of fibers that connects the frontal areas with other areas

of the ipsilateral hemisphere, notably the parietal areas (Janelle

et al., 2022). By connecting the frontal regions involved in speech

production, phonology, and domain-general executive functions

with posterior areas related to verbal short-term memory and
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TABLE 3 Functional localization of brain regions in the left hemisphere,

as identified by Random Forest feature importance analysis.

Region (Abbreviation) Measures

Superior longitudinal fasciculus left (SLF) AQ, PNT

Angular gyrus left (AG) AQ

Insular left (Ins) AQ, PNT

Superior corona radiata (SCR) AQ

Amygdala (Amyg) AQ, PNT

Supramarginal gyrus left (SMG) AQ

Retrolenticular part of internal capsule left (RLIC) AQ

Inferior fronto-occipital fasciculus left (IFO) AQ

Postcentral gyrus left (PoCG) AQ

Sagittal stratum left (SS) AQ

Fornix (cres) / Stria terminalis (Fx/ST) PNT

Precentral gyrus left (PrCG) PNT

Superior parietal gyrus left (SPG) PNT

Posterior insula left (PIns) PNT

Posterior corona radiata left (PCR) PNT

Inferior frontal gyrus pars opercularis left (IFG_Op) PNT

Middle occipital gyrus left (MOG) PNT

The table lists the region abbreviation and the measures (AQ or PNT) for which that region

was predictive.

semantics, SLF plays a pivotal role in multiple language functions

(Bernal and Ardila, 2009). Similarly, other regions identified here

are part of the classic “language cortex” (see Desai and Riccardi,

2021; Kemmerer, 2022 for reviews). The AG is a heteromodal

association zone involved in a variety of language tasks, particularly

those related to semantic processing (Desai et al., 2023; Riccardi

et al., 2022; Riccardi and Desai, 2022; Binder and Desai, 2011). The

MOG is usually not considered part of the traditional “language

network”. Still, it can be considered an early part of the ventral

language stream and has been implicated in tasks related to picture

description (Riccardi et al., 2024), likely reflecting its role in visual

processing of objects and visual semantics (Fridriksson et al., 2016,

2018; Hickok and Poeppel, 2007). SMG is involved in short-

term auditory and verbal memory and phonology (Hartwigsen

et al., 2010; Deschamps et al., 2014), two vital functions for the

repetition and production tasks tested by WAB-R. Also pertaining

to production, the insula and ventral precentral gyrus were

identified as important features for both AQ and PNT, which aligns

with research demonstrating that disruption of these areas is related

to disrupted speech production and fluency (Riccardi et al., 2023;

Blackett et al., 2022; Ackermann and Riecker, 2010; Fridriksson

et al., 2015).

There are a few limitations to consider in this study. The

DTI and functional connectivity of each region were reduced by

averaging its connectivity to all regions to reduce dimensionality.

Hence, information about the connectivity between individual

pairs of brain regions is lost. The lower performance of ML models

using SC and rsFC may be partly due to this loss of information

about the connectivity structure. Also, although this study used

a relatively large dataset for MRI and aphasia studies, many ML

models typically require big corpora for reliable training and

estimation. Ivanova et al. (2021) suggested that the spatial accuracy

of LSM plateaus at about N = 130, with little to no gain associated

with further increasing the sample sizes. However, this may not

hold when many features from multiple modalities are used.

We also recognize that impurity-based importance is only

one of several ways to interpret model weights. We nevertheless

retained the native RF metric in results included in Section

3.6 for two practical reasons. First, RF was the top-performing

learner in our grid search (highest bootstrapped mean r across

the full 216, atlas × modality × model × scores combinations;

Supplementary Figure S2), so it is the natural source for post-

hoc interpretation. Second, impurity ranks are produced “for

free” by the trained RF. In contrast, model-agnostic alternatives—

permutation, Shapley Additive Explanations (SHAP) (Lundberg

and Lee, 2017), or leave-one-feature-out would have raised

computational cost by two to three orders of magnitude when

applied to the largest atlas (384 ROIs) over 100 bootstrap folds and

∼1.3 million trees.

An important avenue for future work is to a) investigate

how the integrity of specific brain regions contributes to the

prediction of aphasia severity or type, as reflected across different

neuroimaging modalities; b) assess whether the predictive value

of these brain regions varies depending on the neuroimaging

modality used (e.g., structural MRI, DTI, or resting-state fMRI).

The resulting knowledge can further inform targeted interventions

and therapeutic strategies for individuals with language disorders

resulting from brain lesions. Future work could explore more

advancedML solutions, such as Neurosymbolic AI (infusing expert

knowledge in ML models beyond the initial data representation),

convolutional autoencoders, or spatially constrained autoencoders.

This approach balances dimensionality reduction and spatial

fidelity, ensuring that the spatial intricacies crucial for our

application are retained. Additionally, exploring the stability and

consistency of the feature importance rankings across different

datasets would contribute to the robustness and generalizability of

the findings.

5 Conclusion

This study employed a comprehensive factorial benchmarking

of imaging modalities, machine learning algorithms, and brain

atlases for predicting chronic post-stroke language outcomes. Key

findings indicate that imaging modality, particularly structural

measures such as lesion load and diffusion tensor fractional

anisotropy, outweighs the influence of the choice of machine

learning model or brain atlas in predicting aphasia severity. Among

the models, ensemble methods like RF and GB provided the highest

predictive accuracy. The choice of atlas showed minimal impact on

performance, except when using overly coarse parcellations. These

insights underline the potential of using structural MRI combined

with advanced machine learning techniques to develop clinically

viable tools for aphasia prognosis, highlighting areas for future

research to enhance model validation and address limitations noted

in sample size and diversity.
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