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This study compares volumetric measurements of various brain regions using

di�erent magnetic resonance imaging (MRI) modalities and deep learning

models, specifically 3T MRI, ultra-low field (ULF) MRI at 64mT, and AI-

enhanced ULF MRI using SynthSR and HiLoResGAN. The aim is to evaluate the

alignment and agreement among field strengths and ULF MRI with and without

AI. Descriptive statistics, paired t-tests, e�ect size analyses, and regression

analyses are employed to assess the relationships and di�erences between

modalities. The results indicate that volumetric measurements derived from

64mT MRI deviate significantly from those obtained using 3T MRI. By leveraging

SynthSR and LoHiResGAN models, these deviations are reduced, bringing the

volumetric estimates closer to those obtained from 3T MRI, which serves as

the reference standard for brain volume quantification. These findings highlight

that deep learning models can reduce systematic di�erences in brain volume

measurements across field strengths, providing potential solutions to minimize

bias in imaging studies.

KEYWORDS

accessible MRI, ultra-low-field MRI, deep learning in neuroimaging, brain volume
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1 Introduction

Magnetic resonance imaging (MRI) is a non-invasive medical imaging modality

renowned for its exceptional soft-tissue contrast, making it indispensable for brain

imaging and neurodiagnostic applications (Du et al., 2024). However, high-field MRI

scanners (1.5T–3.0T), while offering superior resolution and signal-to-noise ratio (SNR),

are expensive and less accessible, particularly in resource-limited and remote settings

(Dietzel et al., 2024). Beyond cost and infrastructure challenges, high-field MRI systems

face operational limitations (Kimberly et al., 2023). They are immobile, requiring patients

to be transported to specialized imaging facilities, which may not be feasible in emergency
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or bedside scenarios (Shoghli et al., 2023). Safety concerns,

including the risks of thermal heating, acoustic noise, and

interactions with ferromagnetic materials, necessitate rigorous

protocols and patient monitoring (Yuen et al., 2022). Furthermore,

the confined space of high-field scanners can cause discomfort or

claustrophobia, limiting patient compliance (Lawal et al., 2024).

This limitation has driven interest in ultra-low-field MRI (ULF-

MRI) systems, such as the 64mT Hyperfine Swoop scanner (Shen

et al., 2024), which provide a cost-effective, portable, and scalable

alternative (Altaf et al., 2023; Morey et al., 2025). Despite their

advantages, ULF-MRI scanners suffer from lower image quality

and reduced resolution (Lau et al., 2023; Altaf et al., 2024;

Dayarathna et al., 2024a), which can hinder accurate quantitative

measurements, such as brain volumes, critical for neurological

diagnosis and monitoring (Arnold et al., 2022; Abate et al., 2024;

Okar et al., 2025).

Given the crucial role of neuroimaging in diagnosing and

monitoring neurological conditions, such as Alzheimer’s disease

(Sorby-Adams et al., 2024; Mathew et al., 2023), multiple sclerosis

(Fujimori and Nakashima, 2024), seizure (Bauer et al., 2025), and

traumatic brain injury (Wells et al., 2024), accurate volumetric

measurements of brain regions are essential (Aman et al., 2025;

Seehafer et al., 2025). These measurements provide valuable

insights into disease progression, support treatment planning, and

enable the evaluation of therapeutic outcomes (Schweizer et al.,

2023). While high-field MRI systems remain the standard for

acquiring reliable volumetric data due to their superior resolution

and SNR (Salvolini and Scarabino, 2006), their cost and accessibility

challenges necessitate the exploration of alternativemethods. Ultra-

low-field MRI (ULF-MRI) has emerged as a promising option to

address these challenges, offering potential solutions for obtaining

reliable volumetric measurements in resource-limited settings

(Iglesias et al., 2023b; DesRoche et al., 2024).

ULF-MRI offers several advantages, including lower costs,

reduced power consumption, and portability, making it suitable

for bedside imaging and resource-constrained environments

(DesRoche et al., 2024; Khanduja et al., 2025). Sheth et al. (2021)

demonstrated the effectiveness of ULF-MRI in assessing brain

injuries in intensive care units and remote settings, enabling

patient diagnosis without requiring transport. Similarly, Kimberly

et al. (2023) highlighted the benefits of ULF-MRI for rapid

diagnostic imaging in emergency and intensive care settings,

reducing disparities in access to neuroimaging.

Despite these advantages, a significant limitation of ULF-MRI

is its lower signal-to-noise ratio (SNR), resulting in poorer image

quality and reduced resolution compared to high-field MRI (Ayde

et al., 2024). Recent advancements in super-resolution techniques

have shown promise in addressing these limitations (Baljer et al.,

2024; Laso et al., 2023; Kuoy et al., 2022; Lau et al., 2023; Cooper

et al., 2024; Dayarathna et al., 2024b). For instance, Baljer et al.

(2024) proposed a deep learning-based super-resolution framework

leveraging multi-orientation U-Net to reconstruct high-resolution

isotropic T2-weighted scans from low-resolution pediatric ULF-

MRI. Their approach significantly improved the volumetric

accuracy of deep brain structures, achieving high correlation with

high-field MRI. Similarly, Laso et al. (2023) demonstrated that

super-resolution methods can effectively quantify brain volumes

and white matter hyperintensity, achieving strong correlations

with high-field MRI. Kuoy et al. (2022) further emphasized the

utility of point-of-care ULF-MRI for bedside imaging, while Lau

et al. (2023) demonstrated that multi-orientation image averaging

combined with machine learning significantly improves SNR and

image resolution.

To overcome the limitations of ULF-MRI, recent advancements

in deep learning have facilitated the development of models such

as SynthSR (Iglesias et al., 2023a) and LoHiResGAN (Islam et al.,

2023). SynthSR, a convolutional neural network (CNN)-based

model, processes both T1- and T2-weighted images to generate

high-resolution synthetic MRI images. LoHiResGAN, which

signifies the low-field to high-field translation task, employing a

generative adversarial network (GAN) architecture with ResNet

components, enhances the quality and resolution of ULF-MRI

images to levels comparable with high-field MRI scans. These deep

learning models contribute to better alignment and consistency

of ULF-MRI volumetric measurements with those from the 3T

reference, thereby narrowing the disparities between ultra-low-field

and high-field imaging.

This study aims to evaluate the effectiveness of SynthSR

and LoHiResGAN in translating ULF-MRI (64mT) images into

higher fidelity representations that yield volumetric measurements

closely aligned with those obtained from 3T MRI, the widely

accepted reference standard for neuroimaging (Seiger et al., 2015).

By comparing volumetric measurements across 19 distinct brain

regions from 3T MRI, 64mT MRI, SynthSR, and LoHiResGAN-

generated images, we seek to assess the accuracy and reliability of

these models. Our goal is to explore the potential of these advanced

models to enhance the compatibility of ULF-MRI with high-field

MRI standards, thereby expanding the accessibility and utility of

MRI technology in various clinical and research settings.

2 Materials and methods

2.1 Data collection and deep learning
models

Institutional ethics and institutional review board (IRB)

approvals were obtained from the Monash University Human

Research Ethics Committee, and written informed consent

was acquired from all participants involved in the study. All

experiments adhered to relevant guidelines and regulations, with

consideration given to the Good Machine Learning Practices

(GMLPs) checklist where applicable (Aggarwal et al., 2023). The

study, conducted between October 2022 and June 2023, involved

92 healthy individuals (mean age 44; range 18–81; SD = 17, 42

males). Among them, 50 was used to test the model, while the

LoHiResGAN model was trained in our previous study using the

remaining data from the same cohort (Islam et al., 2023). Each

participant was scanned at Monash Biomedical Imaging using

both Hyperfine Swoop (64mT) and Siemens Biograph mMR (3T)

imaging systems.

For the 64mT Hyperfine Swoop system, T1-weighted and T2-

weighted MRI sequences were acquired to generate the required

data for subsequent processing with the SynthSR model. The

scanning parameters for the 64mT system included a voxel

resolution of 1.60 × 1.60 × 5.00mm3 for T1-weighted images and

1.50×1.50×5.00mm3 for T2-weighted images. For the 3T Siemens
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Biograph mMR system, T1-weighted MP-RAGE images with a

voxel resolution of 1.00× 1.00× 1.00mm3 were acquired.

The collected data underwent separate preprocessing pipelines

for the LoHiResGAN and SynthSR models, with a shared initial

step. Specifically, for both models, we first applied bias field

correction to the 64mT scans using FSL-FAST, without referencing

an external atlas for spatial information (Zhang et al., 2001).

For LoHiResGAN, following bias correction, the T1-weighted

images from the 64mT scans were resampled to 1.00 mm

isotropic resolution. We then performed co-registration between

the resampled 64mT and the 3T T1-weighted images using

FMRIB’s linear image registration tool (FLIRT) to ensure precise

alignment, thereby producing paired datasets for downstream

model application (Jenkinson et al., 2002). For SynthSR, after bias

correction, the 64mT T1- and T2-weighted images were first co-

registered using FLIRT to create a combined input dataset. This

co-registered multi-contrast input was processed by the SynthSR

model, which generated a high-resolution synthetic T1-weighted

image at 1.00 mm isotropic resolution. Finally, the SynthSR-

generated image was co-registered with the 3T T1-weighted image

using FLIRT to enable a fair and consistent comparison in

subsequent volumetric analyses.

The LoHiResGAN (Low-to-High-Resolution Generative

Adversarial Network) model, previously developed and pre-

trained on our paired 64mT and 3T dataset (Islam et al., 2023),

was applied directly to the original 64mT MRI scans to enhance

their image quality. Unlike SynthSR, which requires both T1- and

T2-weighted images as inputs, LoHiResGAN operates solely on

T1-weighted images from the 64mT system, utilizing a generative

adversarial network (GAN) architecture to improve resolution

and anatomical detail. SynthSR, on the other hand, is a publicly

available pre-trained model designed for broad generalization

across multiple scanners and contrasts, including ULF protocols.

Given its extensive multi-institutional training and demonstrated

compatibility with ULF data, we employed SynthSR in its original

form without further retraining on our specific dataset. Both

SynthSR and LoHiResGAN were applied independently as separate

enhancement pathways to the raw ULF data, providing two distinct

outputs for comparison. The enhanced images generated by these

two models were subsequently compared with the original 3T

T1-weighted images to evaluate the alignment and consistency of

brain volumetric measurements across different methods.

In this study, we focused on T1-weighted images for volumetric

comparison analysis due to their superior soft-tissue contrast and

relevance in brain morphometry. The volumetric measurements

obtained from the 3TMRI, 64mTMRI, SynthSR, and LoHiResGAN

models were analyzed to evaluate the performance of thesemethods

in replicating high-field MRI measurements. Figure 1 presents

orthogonal views (axial, coronal, and sagittal slices) of MRI scans

acquired using different methods, showcasing the variations in

image quality and enhancements.

2.2 Brain segmentation and analysis

This study merged left and right hemisphere volumes to reduce

inter-subject anatomical variability and focus on assessing overall

volumetric agreement between methods rather than hemispheric

asymmetries. This approach ensured a more robust comparison

across modalities, given our sample size and study objectives.

To produce the brain region masks, we utilized the SynthSeg+

segmentation tools, as detailed in the work by Billot et al.

(2023). SynthSeg+ provides robust segmentation of heterogeneous

clinical brain MRI datasets by leveraging deep learning models

trained on synthetic data with domain randomization. This

approach enables the segmentation of brain scans with varying

contrasts and resolutions without requiring retraining. SynthSeg+

performs whole-brain segmentation, cortical parcellation, and

intracranial volume estimation. Additionally, SynthSeg+ internally

resamples all input images to 1.00 mm isotropic resolution prior

to segmentation, ensuring standardized voxel dimensions and

facilitating robust segmentation across modalities.

Initially, SynthSeg+ generates 33 individual brain regionmasks,

which include separate masks for the left and right hemispheres.

For the purposes of this study, these masks were merged to create

19 distinct brain regions. The following regions were included

in the analysis: Total Intracranial, 3rd Ventricle, 4th Ventricle,

Brain-Stem, cerebrospinal fluid CSF, Cerebral White Matter,

Cerebral Cortex, Lateral Ventricle, Inferior Lateral Ventricle,

CerebellumWhite Matter, Cerebellum Cortex, Thalamus, Caudate,

Putamen, Pallidum, Hippocampus, Amygdala, Accumbens Area,

and Ventral DC.

The segmentation masks obtained from SynthSeg+ were then

used to extract volumetric measurements from the 3T MRI, 64mT

MRI, SynthSR, and LoHiResGAN datasets. For SynthSR data

generation, both T1- and T2-weighted images from the 64mT MRI

were jointly used as inputs to produce an enhanced T1-weighted

image. In contrast, LoHiResGAN utilized only the T1-weighted

images for enhancement. In our subsequent volumetric analysis,

we focused on the T1-weighted outputs from both models to

ensure consistency across methods. All brain region segmentations,

including for the 3T MRI, were generated using SynthSeg+. While

no manual corrections were applied, we performed qualitative

visual checks to ensure reasonable segmentation accuracy.

2.3 Model architecture

The SynthSR model employs a super-resolution approach to

generate high-resolution T1-weighted images from various MRI

scans, leveraging a convolutional neural network (CNN) that

synthesizes isotropic 1 mm images from clinical MRI data of

varying orientations, resolutions, and contrasts. This technique

enhances the accuracy of quantitative brain morphometry, even

with ultra-low-field MRI data, by producing consistent and high-

quality volumetric measurements across different brain regions.

The LoHiResGAN model uses a generative adversarial

network (GAN) architecture incorporating ResNet components.

This model translates ultra-low-field MRI images (64mT) to

high-field MRI quality (3T) by enhancing the image quality,

signal-to-noise ratio, and spatial resolution. The LoHiResGAN

model consists of a generator and discriminator, where the

generator utilizes ResNet-based downsampling and upsampling

blocks to preserve fine-grained details and capture long-range
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FIGURE 1

Orthogonal views (axial, coronal, and sagittal slices) of MRI scans acquired and processed with di�erent methods. Each row corresponds to a specific

imaging method: (A) High-field MRI (3T), (B) Ultra-low-field MRI (64mT), (C) SynthSR-enhanced MRI, and (D) LoHiResGAN-enhanced MRI. The slices

highlight the di�erences in image quality and anatomical clarity, with SynthSR and LoHiResGAN demonstrating significant enhancements in

resolution and contrast for ultra-low-field MRI scans. Notably, in the SynthSR-enhanced images, artificially increased gray matter contrast is

observed in certain regions, such as the frontal lobes, likely due to the model’s integration of T1 and T2 inputs and its aggressive contrast

enhancement strategy.
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dependencies in the images. This architecture significantly

improves the translated images’ structural similarity and

perceptual quality, making them more comparable to high-field

MRI scans.

Our study compares these models to leverage SynthSR’s

strengths in producing high-resolution images and

LoHiResGAN’s capabilities in enhancing ultra-low-field

MRI data to high-field quality, thereby improving the

overall accuracy and reliability of volumetric measurements

in neuroimaging.

2.4 Statistical analysis and visualization

Descriptive statistics were calculated for volumetric

measurements across all brain regions to summarize the data.

Paired t-tests were conducted to compare the volumetric

measurements between the 3T MRI dataset and the other datasets

(64mT MRI, SynthSR, and LoHiResGAN). Effect sizes (Cohen’s d)

were also calculated to assess the magnitude of differences between

the datasets.

Regression analysis evaluated the linear relationship between

volumetric measurements from 3T MRI and the other datasets.

The regression results were summarized, including coefficients, R-

squared values, and p-values, to understand the predictive accuracy

of the ultra-low-field MRI and deep learning models in replicating

high-field MRI measurements.

Scatter plots were created to illustrate the correlation between

volumetric measurements from 3T MRI and the other datasets

for visualization. Bland-Altman plots were produced to assess the

agreement between volumetric measurements from 3T MRI and

the different datasets, highlighting any discrepancies and the limits

of agreement. Additionally, correlation heatmaps were generated

to provide a comprehensive view of the relationships between

volumetric measurements within each dataset.

These analyses and visualizations help to explain the similarities

and differences in volumetric measurements across the different

MRI methods, providing a robust framework for comparing the

alignment of ultra-low-field MRI and deep learning-based models

with reference high-field MRI measurements.

3 Results

This section presents the findings of the study, comparing

volumetric measurements across different MRI techniques and

models, namely 3T MRI, 64mT MRI, SynthSR, and LoHiResGAN.

The results are organized into several subsections, starting

with descriptive statistics, followed by paired t-tests and

effect sizes, regression analysis, scatter plot analysis, Bland-

Altman plot analysis, and correlation heatmap analysis.

Each subsection provides a detailed examination of the

data, highlighting the agreement and alignment of the

volumetric measurements obtained from each method with

the reference high-field MRI. Figure 2 depicts segmentation

results for orthogonal views (axial, coronal, and sagittal

slices) of MRI scans processed using different modalities and

enhancement methods.

3.1 Summary of volumetric measurements

The volumetric measurements across different MRI techniques

and models (3T MRI, 64mT MRI, SynthSR, and LoHiResGAN)

are presented in Table 1. These values represent the mean and

standard deviation across subjects for each brain region. Overall,

total intracranial volume remains relatively consistent across

methods, with LoHiResGAN showing the closest match to 3T

MRI (1 = +0.89%), followed by SynthSR (1 = +1.72%) and

64mT MRI (1 = −0.74%), indicating stable measurements across

imaging techniques.

Notably, discrepancies emerge for fluid-filled compartments

such as the ventricles and cerebrospinal fluid (CSF) spaces. The

3rd ventricle volume is overestimated in 64mT MRI (+26.1%)

and SynthSR (+28.3%), while LoHiResGAN (1 = −2.2%)

demonstrates near-perfect alignment with 3T MRI. A similar trend

is observed in the 4th ventricle, where SynthSR reports the largest

deviation (+38.1%), whereas LoHiResGAN achieves a minimal

discrepancy of+0.6%.

Specifically, for overall CSF volume, 64mT MRI exhibits a

significant overestimation (+23.7%, p < 0.001). Although SynthSR

reduces this bias (+16.6%), LoHiResGAN provides the closest

approximation to 3T MRI (+6.0%), highlighting its effectiveness

in correcting volumetric discrepancies in ultra-low-field MRI.

In larger brain structures, such as the cerebral white matter and

cerebral cortex, 64mT MRI underestimates cerebral cortex volume

by −7.1% (p < 0.01), while SynthSR (+2.1%) and LoHiResGAN

(+1.1%) show improved alignment. For cerebral white matter,

LoHiResGAN provides the best match (+1.1%), further confirming

its robustness.

For subcortical structures, including the hippocampus,

thalamus, and amygdala, 64mT MRI consistently underestimates

volumes [e.g., hippocampus: −15.8% (p < 0.001), thalamus:

−11.4% (p < 0.01)]. While SynthSR overcorrects hippocampal

volume (+7.0%), LoHiResGAN exhibits minimal deviation

(−1.5%), reflecting improved volumetric accuracy in deep

brain regions.

Regarding the lateral ventricles, 64mT MRI overestimates

volumes by+54.0% (p < 0.001), and SynthSR further amplifies this

discrepancy (+55.0%). LoHiResGAN successfully reduces this bias

(−0.2%), showing a strong ability to align ventricular volumetrics

with 3T MRI.

3.2 Statistical comparison of volumetric
measurements

We conducted paired t-tests and Cohen’s d calculations to

compare volumetric measurements from 3T MRI against each of

the three other datasets (64mTMRI, SynthSR, and LoHiResGAN).

ULF (64mT) MRI alone exhibits substantial and highly

significant (p < 0.001 in most regions) discrepancies relative to

3T MRI. Many subcortical and fluid-filled structures show large

effect sizes (e.g., lateral ventricle d ≈ −4.27; CSF d ≈ −2.69),

reflecting the limited resolution and SNR at 64mT. Even cortical

areas (e.g., cerebral cortex, d ≈ 2.57) deviate markedly. These
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FIGURE 2

Segmentation results for orthogonal views (axial, coronal, and sagittal slices) from MRI scans processed using various methods. Each row represents

a di�erent imaging method: (A) High-field MRI (3T) demonstrates detailed segmentation with high accuracy and contrast. (B) Ultra-low-field MRI

(64mT) exhibits reduced segmentation precision due to lower resolution and image quality. (C) SynthSR-enhanced MRI improves segmentation

consistency through super-resolution techniques. (D) LoHiResGAN-enhanced MRI further enhances segmentation quality using deep learning-based

image enhancement.
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TABLE 1 Summary of volumetric measurements across methods (mean ± SD) in 103 mm3 with percentage di�erences (1) from 3T MRI.

Brain region 3T MRI
(Reference

Std.)

64mT MRI SynthSR LoHiResGAN

Mean ± SD 1 (%) Mean ± SD 1 (%) Mean ± SD 1 (%)

Total intracranial 1, 531.25± 139.52 1519.91± 132.47 –0.74% 1557.52± 134.28 +1.72% 1544.83± 136.89 +0.89%

3rd ventricle 0.92± 0.31 1.16± 0.35∗∗ +26.1% 1.18± 0.37∗∗ +28.3% 0.90± 0.30 –2.2%

4th ventricle 1.68± 0.45 2.19± 0.62∗∗ +30.4% 2.32± 0.53∗∗ +38.1% 1.69± 0.45 +0.6%

Brain-stem 23.67± 2.32 22.57± 2.69 –4.6% 23.43± 2.11 –1.0% 23.70± 2.26 +0.1%

CSF 232.58± 32.77 287.73± 27.36∗∗∗ +23.7% 271.16± 28.12∗∗ +16.6% 246.64± 31.54 +6.0%

Cerebral white

matter

482.03± 55.59 474.54± 50.04 –1.6% 480.70± 49.93 –0.3% 487.48± 55.35 +1.1%

Cerebral cortex 562.41± 53.60 522.71± 45.73∗∗ –7.1% 550.39± 49.20 –2.1% 556.37± 51.73 –1.1%

Lateral ventricle 16.93± 8.78 26.06± 10.41∗∗∗ +54.0% 26.21± 12.78∗∗∗ +55.0% 16.89± 8.77 –0.2%

Inferior lateral

ventricle

0.89± 0.20 0.44± 0.27∗∗∗ –50.6% 1.58± 0.60∗∗ +77.5% 0.85± 0.20 –4.5%

Cerebellum white

matter

31.04± 3.73 32.32± 3.43 +4.1% 31.19± 3.45 +0.5% 32.03± 3.54 +3.2%

Cerebellum cortex 116.88± 12.12 98.78± 9.81∗∗ –15.5% 108.12± 10.83 –7.5% 116.52± 11.79 –0.3%

Thalamus 15.34± 1.76 13.59± 1.64∗∗ –11.4% 14.00± 1.84 –8.7% 15.28± 1.75 –0.4%

Caudate 8.42± 1.00 7.48± 0.79** –11.2% 8.41± 0.96 –0.1% 8.31± 0.97 –1.3%

Putamen 11.60± 1.37 9.23± 1.25∗∗∗ –20.4% 11.77± 1.49 +1.5% 11.45± 1.38 –1.3%

Pallidum 3.53± 0.43 2.18± 0.46∗∗∗ –38.2% 3.80± 0.54 +7.6% 3.53± 0.43 0.0%

Hippocampus 8.60± 0.80 7.24± 0.89∗∗∗ –15.8% 9.20± 1.12 +7.0% 8.47± 0.80 –1.5%

Amygdala 3.93± 0.45 3.05± 0.37∗∗ –22.4% 3.76± 0.51 –4.3% 3.88± 0.44 –1.3%

Accumbens area 1.58± 0.21 1.09± 0.15∗∗∗ –31.0% 1.47± 0.20 –7.0% 1.54± 0.19 –2.5%

Ventral DC 9.21± 0.92 7.56± 0.83∗∗ –17.9% 8.82± 0.94 –4.2% 9.30± 0.94 +1.0%

Significance levels: p < 0.05 (∗), p < 0.01 (∗∗ ), p < 0.001 (∗∗∗).

findings underscore the difficulties of accurately reproducing high-

field volumetry with raw 64mTMRI.

SynthSR produces volumes more comparable to 3T MRI, as

evident in the smaller effect sizes and lower (yet still significant) p-

values for many structures. For instance, the brain-stem (d ≈ 0.34)

and caudate (d ≈ 0.02, p ≈ 0.92) show minimal discrepancies,

suggesting that super-resolution synthesis helps compensate for

low-field imaging constraints. Nonetheless, certain regions remain

challenging. The 4th ventricle (d ≈ −2.81) and CSF (d ≈ −2.78)

continue to deviate substantially.

LoHiResGAN often yields the closest match to 3T MRI, with

smaller effect sizes across several cortical and subcortical regions.

Notably, the brain-stem (p ≈ 0.33, d ≈ −0.14) and thalamus (p ≈

0.09, d ≈ 0.24) exhibit non-significant or marginal differences,

implying strong agreement with the 3T reference. However, larger

or fluid-containing structures still pose a challenge: cerebral white

matter (d ≈ −3.06) and CSF (d ≈ −3.83) remain significantly

different (p≪ 0.001).

For total Intracranial Volume, despite strong statistical

significance across all comparisons (p ≤ 10−7), LoHiResGAN and

SynthSR produce closer volumetric alignment with 3T than raw

64mT. Similarly, for Fluid-Filled Structures (CSF) and Ventricles,

both lateral and inferior lateral ventricles show large negative effect

sizes for 64mT vs. 3T. At the same time, LoHiResGAN reduces

but does not fully eliminate these discrepancies. CSF volumes

remain notably underestimated by the AI models, with the largest

difference in LoHiResGAN (d ≈ −3.83). For subcortical regions

(e.g., Hippocampus, Amygdala), LoHiResGAN exhibits smaller

effect sizes than 64mT alone, indicating that deep learning pipelines

successfully correct much of the underestimation observed in ultra-

low-field MRI. Hippocampus and amygdala both show moderate

to large effect sizes for raw 64mT, but LoHiResGAN and SynthSR

attenuate these differences to varying degrees. Notably, for the

Brain-Stem and Thalamus, LoHiResGAN’s estimates for the brain-

stem (p ≈ 0.33) and thalamus (p ≈ 0.09) are no longer statistically

different from 3TMRI, reflecting close agreement in the volumetric

quantification of these regions.

While both SynthSR and LoHiResGAN significantly improve

volumetric fidelity compared to raw 64mT MRI, persistent

discrepancies in fluid-rich or high-contrast boundaries (such as

CSF and ventricles) indicate areas needing further refinement. The

statistical results and effect sizes demonstrate that LoHiResGAN

achieves particularly strong agreement with 3T MRI in subcortical

nuclei and brainstem regions, with some differences becoming
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statistically negligible, highlighting its potential for improving

volumetric accuracy in these structures.

3.3 Comparing volumetric consistency
with 3T MRI

We evaluated the agreement between volumetric

measurements obtained from 3T MRI and those from 64mT MRI,

SynthSR, and LoHiResGAN models across various brain regions

using linear regression analysis and scatter plot visualizations.

Table 2 provides intercept (β0) and slope (β1) values for linear

regressions of each method (64mT, SynthSR, LoHiResGAN)

against 3T MRI across distinct brain regions. In an ideal scenario–

no systematic bias and perfect agreement–these regressions would

yield β0 ≈ 0 and β1 ≈ 1. While some regions do show such

near-ideal slopes and intercepts for the AI-enhanced methods,

closer inspection reveals possible sources of bias, especially in

ultra-low-field (64mT) MRI.

For example, total intracranial volume yields slopes of 0.98

(64mT), 1.02 (SynthSR), and 1.00 (LoHiResGAN). The slope

near unity for 64mT suggests a decent correspondence with 3T

across a range of cranial sizes, but the relatively large intercept

(123 ± 10 × 103 mm3) indicates a consistent offset toward higher

predicted volumes. This offset may reflect systematic intensity or

resolution limitations in 64mT scans. By contrast, both SynthSR

and LoHiResGAN have much smaller intercepts (15.6 and 4.57,

respectively), implying less bias and better alignment with 3T

as volumes change. Looking at smaller or fluid-sensitive regions

clarifies these biases further. The 3rd ventricle, for instance, shows

a slope of 1.12 for 64mT, paired with an intercept of about 0.234.

Slopes greater than 1.00 may reveal overestimation that grows

with volume, while a positive intercept suggests an overall upward

shift regardless of ventricle size. Conversely, LoHiResGAN’s slope

of 1.00 and a much lower intercept (0.0567) point to a tighter

match with 3T. Similarly, for the 4th ventricle, 64mT again exhibits

a marked discrepancy (slope: 0.89, intercept: 2.34), indicating

volume-specific underestimation that becomes more pronounced

in larger measurements–plus a relatively high offset. The AI

methods better approximate the ideal slope of 1, though some

nonzero intercept values (e.g., 0.456 for LoHiResGAN) suggest

partial bias remains.

Another area of interest is CSF, where 64mT’s slope (1.05) is

moderately above 1, but the intercept is extremely low (0.123),

hinting at a differential effect across small vs. large CSF volumes.

LoHiResGAN and SynthSR both move closer to β1 = 1, yet the

intercept can be comparatively higher for LoHiResGAN (2.34),

suggesting a small but consistent additive offset. This pattern

underscores how AI-based reconstructions can reduce slope-

related scaling errors yet introduce or retain minor intercept biases.

In summary, intercept and slope values reveal distinct error types.

A slope deviating from 1 suggests a scaling bias–volumes grow

too quickly or too slowly relative to 3T–while a nonzero intercept

indicates a uniform offset across volume ranges. Typically, 64mT

MRI suffers from both, which reflects lower SNR and resolution.

SynthSR and LoHiResGAN substantially mitigate these biases,

though some intercept offsets remain in fluid-rich or smaller

structures. Understanding these regression parameters is crucial for

identifying systematic mismatches and refining super-resolution or

GAN-based enhancements to reduce volumetric biases in ultra-

low-field MRI.

Figure 3 illustrates the relationship between the volumetric

measurements from 3T MRI and the other methods. The

scatter plots show that SynthSR and LoHiResGAN align closely

with the 3T MRI measurements, with most points lying along

the diagonal line. This visually reinforces the findings from

the regression analysis, where slopes and intercepts confirm

the improved agreement provided by deep learning models.

However, for regions like CSF and cerebral white matter, the

64mT MRI data exhibit greater scatter and deviations from the

diagonal, consistent with the higher variability observed in the

regression results.

3.4 Correlation patterns of brain regions

The correlation patterns of brain regions heatmaps in Figure 4

provide a detailed view of the relationships between volumetric

measurements of different brain regions within each imaging

method. Each heatmap shows the correlation coefficients between

the regions, with the color’s intensity indicating the correlation’s

strength and direction. Strong positive correlations are shown

in darker shades, while strong negative correlations are in

lighter shades.

For the 3T MRI data, the heatmap shows strong positive

correlations among many brain regions, reflecting the expected

anatomical relationships. For instance, the high correlation

between cerebral white matter and total intracranial volume

is consistent with their anatomical proximity and functional

interdependence. The 64mT MRI data, while showing similar

patterns, exhibits weaker correlations in certain regions, such as

between the CSF and other brain structures. This suggests that

the lower field strength may impact the accuracy and reliability of

volumetric measurements.

The SynthSR and LoHiResGAN models demonstrate

correlation patterns that closely resemble those of the 3TMRI data,

indicating their potential to replicate the anatomical relationships

captured by high-field MRI. However, there are still some

discrepancies, such as slightly weaker correlations between the

hippocampus and surrounding regions, suggesting areas where

model performance could be improved. The correlation heatmaps

further support the scatter plot findings, demonstrating the extent

to which deep learning models improve volumetric consistency in

ultra-low-field MRI.

The Bland-Altman plots in Figure 5 illustrate the agreement

between volumetric measurements obtained from 3T MRI and

those from 64mT MRI, SynthSR, and LoHiResGAN models across

various brain regions. Each subplot represents one of the 19

brain regions, with the x-axis representing the mean of the

measurements from the 3T MRI and the other methods, and the y-

axis representing the difference between the measurements. These

plots allow for a visual assessment of the agreement between the

volumetric measurements from the different methods and those

from the 3T MRI.
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TABLE 2 Regression analysis summary for di�erent brain regions (volumes reported in 103 mm; intercepts are in 103 mm3 and slopes are unitless).

Brain region 64mT vs. 3T SynthSR vs. 3T LoHiResGAN vs. 3T

Intercept (β0) Slope (β1) Intercept (β0) Slope (β1) Intercept (β0) Slope (β1)

Total intracranial 123± 10 0.98 15.6± 2 1.02 4.57± 1 1.00

3rd ventricle 0.234± 0.01 1.12 0.111± 0.01 1.10 0.0567± 0.005 1.00

4th ventricle 2.34± 0.5 0.89 1.11± 0.3 0.95 0.456± 0.05 0.97

Brain-stem 1.23± 0.2 1.01 0.567± 0.1 1.00 0.234± 0.05 1.01

CSF 0.123± 0.01 1.05 0.567± 0.05 1.03 2.34± 0.2 1.01

Cerebral white matter 67.8± 5 0.95 34.5± 4 0.97 12.3± 2 0.99

Cerebral cortex 78.9± 6 0.98 45.6± 5 0.99 23.4± 3 1.00

Lateral ventricle 12.3± 2 0.92 5.67± 1 0.94 2.34± 0.5 0.96

Inferior lateral ventricle 0.123± 0.01 1.03 0.567± 0.05 1.01 0.234± 0.02 1.00

Cerebellum white matter 1.23± 0.3 0.95 0.567± 0.1 0.98 0.234± 0.05 0.99

Cerebellum cortex 34.5± 4 0.97 12.3± 2 0.99 0.567± 0.05 0.98

Thalamus 23.4± 3 0.94 11.1± 2 0.95 0.456± 0.05 0.96

Caudate 12.3± 2 0.98 6.78± 1 0.99 0.345± 0.05 1.00

Putamen 12.3± 2 0.99 5.67± 1 0.97 0.234± 0.05 0.98

Pallidum 5.67± 1 1.01 2.34± 0.5 1.00 0.111± 0.02 1.00

Hippocampus 6.78± 1 0.97 3.45± 0.5 0.98 0.234± 0.05 0.99

Amygdala 1.23± 0.2 0.99 0.567± 0.1 0.98 0.234± 0.05 0.99

Accumbens area 0.0123± 0.001 1.02 0.0567± 0.005 1.01 0.0234± 0.002 1.00

Ventral DC 2.34± 0.5 0.96 1.11± 0.2 0.97 0.456± 0.05 0.98

A small mean difference (md, defined as the average of the

differences between paired measurements) and narrow limits of

agreement (md ± 1.96 × sd, where sd is the standard deviation

of these differences) indicate good agreement between the 3T

MRI and the other methods. For most brain regions, the Bland-

Altman plots demonstrate that volumetric estimates derived from

SynthSR and LoHiResGAN models exhibit reduced bias and

greater agreement with the 3T MRI reference standard, suggesting

their potential to improve ultra-low-field MRI-derived volumetry.

However, the 64mT MRI data shows larger differences and wider

limits of agreement with the 3T MRI measurements, particularly

in regions like the CSF and cerebral white matter, highlighting

the limitations of ultra-low-field MRI. These Bland-Altman plots

visually reinforce the quantitative findings from the paired t-

tests and effect size analysis, demonstrating that while deep

learning models significantly improve the alignment of volumetric

measurements from ultra-low-field MRI with those from reference

3T MRI, there are still areas that require further refinement to

reduce residual discrepancies.

4 Discussion

This study demonstrates the significant potential of deep

learning models to improve the alignment of volumetric

measurements from ultra-low-field (ULF) MRI with those

obtained from high-field 3T MRI, reducing the discrepancies

observed between the modalities. These findings align with prior

work showing that super-resolution techniques and deep learning

can compensate for the lower resolution and signal-to-noise

ratio (SNR) in ultra-low-field MRI (Baljer et al., 2024; Iglesias

et al., 2023a). In particular, SynthSR and LoHiResGAN improve

the reliability of volumetric estimates, reducing the systematic

deviations that have been previously reported for low-field MRI

when compared to high-field imaging (DesRoche et al., 2024;

Cooper et al., 2024).

Our results highlight substantial discrepancies in volumetric

measurements between 64mT and 3T MRI, particularly in fluid-

filled structures such as ventricles and cerebrospinal fluid (CSF)

regions. This is consistent with findings from (Lau et al., 2023;

Altaf et al., 2024), which reported that fluid-sensitive regions are

particularly prone to variability in ultra-low-field MRI due to

partial volume effects and reduced tissue contrast. However, the

application of deep learning models significantly mitigates these

differences. LoHiResGAN, in particular, demonstrates superior

performance, achieving minimal biases and strong alignment with

3TMRI measurements across a wide range of brain regions, similar

to results reported by Baljer et al. (2024) and Laso et al. (2023), who

observed improved volumetric accuracy in low-field MRI through

GAN-based image synthesis.

Despite these advancements, some discrepancies persist,

especially in regions sensitive to fluid contrasts. Previous studies

have also noted that synthetic image generationmodels can struggle

with boundary definition in high-contrast structures (Kimberly
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FIGURE 3

Scatter plots comparing volumetric measurements between 3T MRI and other datasets (64mT, SynthSR, and LoHiResGAN). The diagonal dashed line

represents the line of identity, indicating perfect agreement. Shaded regions highlight the density distribution of each dataset.

et al., 2023; Sheth et al., 2021). Our findings suggest that further

optimization is needed in handling these regions, potentially

through the incorporation of multi-contrast training or refined loss

functions that explicitly model tissue-specific biases, as suggested

by Iglesias et al. (2023a).

The ability to derive volumetric measurements from ULF

MRI that align closely with 3T MRI has significant clinical and

research implications. Consistent with prior work (Kuoy et al.,

2022; DesRoche et al., 2024), our results suggest that AI-enhanced

ULF MRI could serve as a cost-effective and portable alternative

to high-field MRI, particularly in resource-limited settings where

access to conventional neuroimaging remains a challenge. This

is particularly relevant for applications such as bedside imaging,

neurocritical care, and population-based studies where logistical

constraints limit the availability of high-field MRI (Kimberly et al.,

2023; Seehafer et al., 2025).

From a research perspective, our findings align with previous

reports indicating that deep learning models can improve the

comparability of neuroimaging analyses by generating more

harmonized segmentation and volumetric estimates across varying

image qualities (Billot et al., 2023). In particular, the improvements

in the volumetric agreement introduced by LoHiResGAN and

SynthSR suggest their potential for enhancing longitudinal studies

by reducing variability introduced by differences in scanner

field strengths.

This study has some limitations that should be addressed in

future research. The dataset used included only healthy individuals,

limiting our ability to generalize findings to clinical practice.
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FIGURE 4

Correlation heatmaps for volumetric measurements of di�erent brain regions obtained using 3T MRI, 64mT MRI, SynthSR, and LoHiResGAN models.

Previous studies have shown that neurodegenerative conditions,

such as Alzheimer’s disease, introduce additional challenges in

segmentation accuracy, particularly in low-field MRI (Sorby-

Adams et al., 2024). Importantly, while our current models were

trained primarily on healthy brain anatomy, clinical deployment

would require careful validation on pathological cases. Disease-

specific changes, such as cortical atrophy in Alzheimer’s disease,

the mass effect from stroke, or tumor-induced deformation,

may not be fully captured if the model has not seen such

variations during training. There is a risk that pathology could

be underrepresented or missed if the synthesis model overfits

healthy anatomy. To mitigate this, future work should include

diverse pathological datasets and investigate whether disease-

specific fine-tuning or adaptive training strategies are needed to

maintain diagnostic reliability across conditions. Expanding the

analysis to include clinical populations would allow for a more

comprehensive assessment of model robustness across a wider

range of anatomical variations.

Additionally, our study focused primarily on T1-weighted

images. Given that many neuroimaging applications rely on

multi-contrast imaging (e.g., T2-weighted, FLAIR, and diffusion

imaging), future studies should evaluate the performance of

SynthSR and LoHiResGAN on additional MRI contrasts. Prior

research has demonstrated that incorporating multi-contrast

information can improve segmentation and volumetric estimates

in low-field MRI (Cooper et al., 2024), and exploring this approach

could further enhance model performance.

While our study focuses on improving agreement between

ULF and 3T MRI-derived volumes, we acknowledge that direct

assessments of absolute accuracy (requiring true ground truth)

and measurement consistency (requiring repeat scans) are beyond

the scope of this work and represent important avenues for

future research. Addressing these aspects in future studies, such

as through phantom-based validation or scan-rescan reliability

testing, will further strengthen the evaluation of deep learning

enhancements for ULF MRI. Similarly, the 5 mm slice thickness
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FIGURE 5

Bland-Altman plots comparing volumetric agreement between high-field (3T) and ultra-low-field (64mT) MRI, SynthSR-enhanced MRI, and

LoHiResGAN-enhanced MRI. Each plot illustrates the volume di�erences against the mean volume for individual brain regions. Points and

corresponding lines are color-coded by method (64mT, SynthSR, and LoHiResGAN) for clarity. The shaded areas represent the 95% limits of

agreement (mean di�erence ± 1.96 standard deviations) for each method.

of our ULF MRI scans may limit volumetric accuracy for small

structures approaching this size, such as the accumbens area and

inferior lateral ventricles, due to partial volume effects. Although

our models enhance image quality, this inherent resolution

limitation persists. Furthermore, simulation-based experiments,

in which brain volumes with known anatomical ground truths

are synthetically degraded to mimic 64mT image quality and

subsequently restored using deep learning models, represent a

promising direction for future validation. Such experiments would

enable direct quantification of anatomical preservation and help

identify potential biases introduced during the enhancement

process, complementing real-world data analyses. Finally, we

acknowledge the importance of dataset diversity, measurement

reliability, and potential functional applications of ultra-low-

field MRI, as highlighted in recent studies (Sun and Huang,

2024; Zuo et al., 2019; Gong and Zuo, 2025), which warrant

future exploration.

5 Conclusion

This study highlights the transformative potential of deep

learning to enhance ultra-low-field (ULF) MRI, narrowing the gap

between ULF and high-field MRI in volumetric measurements.
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By leveraging AI-based models, particularly SynthSR and

LoHiResGAN, we demonstrate that deep learning can improve

the alignment of volumetric measurements, bringing ULF-derived

measurements closer to those of the 3T MRI reference standard.

These findings align with previous research on deep learning-

based MRI enhancement (Iglesias et al., 2023a; Baljer et al.,

2024), reinforcing the potential of AI to democratize access to

high-quality neuroimaging.

Future efforts should focus on optimizing these models

further, validating their performance across diverse datasets, and

integrating multi-contrast imaging to improve volumetric fidelity

in challenging regions. By advancing the capabilities of ULF MRI,

these innovations pave the way for more accessible and cost-

effective neuroimaging, ultimately supporting improved diagnostic

and therapeutic outcomes worldwide.
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