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Background: Glioblastoma (GBM) is the most common malignant brain tumor
with an abysmal prognosis. Since complete tumor cell removal is impossible due
to the infiltrative nature of GBM, accurate measurement is paramount for GBM
assessment. Preoperative magnetic resonance images (MRIs) are crucial for initial
diagnosis and surgical planning, while follow-up MRIs are vital for evaluating
treatment response. The structural changes in the brain caused by surgical and
therapeutic measures create significant differences between preoperative and
follow-up MRIs. In clinical research, advanced deep learning models trained
on preoperative MRIs are often applied to assess follow-up scans, but their
effectiveness in this context remains underexplored. Our study evaluates the
performance of these models on follow-up MRIs, revealing suboptimal results.
To overcome this limitation, we developed a Bayesian deep segmentation model
specifically designed for follow-up MRIs. This model is capable of accurately
segmenting various GBM tumor sub-regions, including FLAIR hyperintensity
regions, enhancing tumor areas, and non-enhancing central necrosis regions.
By integrating uncertainty information, our model can identify and correct
misclassifications, significantly improving segmentation accuracy. Therefore,
the goal of this study is to provide an effective deep segmentation model for
accurately segmenting GBM tumor sub-regions in follow-up MRIs, ultimately
enhancing clinical decision-making and treatment evaluation.

Methods: A novel deep segmentation model was developed utilizing 311 follow-
up MRIs to segment tumor subregions. This model integrates Bayesian learning
to assess the uncertainty of its predictions and employs transfer learning
techniques to effectively recognize and interpret textures and spatial details of
regions that are typically underrepresented in follow-up MRI data.

Results: The proposed model significantly outperformed existing models,
achieving DSC scores of 0.833, 0.901, and 0.931 for fluid attenuation inversion
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recovery hyperintensity, enhancing tumoral and non-enhancing central
necrosis, respectively.
Conclusion: Our proposed model incorporates brain structural changes
following surgical and therapeutic interventions and leverages uncertainty
metrics to refine estimates of tumor, demonstrating the potential for improved
patient management.

KEYWORDS

glioblastoma, magnetic resonance imaging, Bayesian deep learning, machine learning,
brain tumor segmentation

GitHub link: https://github.com/tanjidakabir/GBM_code

1 Introduction

Glioblastoma (GBM) is the most common, aggressive, and lethal
primary malignant brain tumor in adults, with 12,000 new cases
diagnosed annually in the United States (Senders et al., 2020). The median
overall survival is 14.6-20.9 months for patients enrolled in clinical trials
and 11 months for the real-world GBM population (Hohmann et al.,
2017; Zhu et al., 2017). Magnetic resonance imaging (MRI) is the most
common imaging modality for brain tumor patients in both standard of
care (SOC) and clinical trials due to its wide availability and distinct
visualization of the brain’s anatomical structures (Bernstock et al., 2022).
Patients diagnosed with GBM receive multiple MRIs: one or more before
craniotomy, one within the first 72h post-operation, and multiple
follow-up MRIs. The follow-up MRI is about 4 weeks after concomitant
treatment with external beam radiation therapy (XRT) and temozolomide
(TMZ). Subsequent MRIs are performed every two to 3 months for GBM
status assessment (Stupp et al., 2017; Tan et al., 2020).

Preoperative MRIs are essential for initial diagnosis, identifying the
tumor’s location and extent of the disease, which aids in surgical planning.
Postoperative MRIs provide immediate feedback on the success of the
surgical intervention, but they contain surgically induced contrast
enhancements, which can lead to difficulties distinguishing between post-
surgical changes (such as swelling, hemorrhage, or damage to healthy
tissue) and residual tumor tissue (Rykkje et al., 2023). Therefore, brain
tumor-treating physicians use follow-up MRIs to measure residual
disease, determine tumor responses to treatment, detect tumor
recurrence, and identify treatment-associated side effects in SOC and
clinical trials (Ellingson et al., 2017). An accurate tumor assessment in
follow-up MRI examinations is crucial for providing optimal care to GBM
patients and for determining the efficacy of tested drugs or devices in
clinical trials (Delgado-Lopez and Corrales-Garcia, 2016).

Manual estimation of tumor sizes is difficult, time-consuming,
operator-dependent, and error-prone due to the irregularity of tumor
contours and the potential for tumor infiltration into complex brain
structures. Additionally, increased T1 signal changes in the surgical bed
and surrounding areas can be misleading, particularly in postoperative
and post-radiation (XRT) follow-up MRIs (Shukla et al., 2018), due to the
presence of blood products, surgical debris, or post-radiation changes. In
addition, some tumor regions may exhibit an infiltrative growth pattern
that is not initially enhancing on MRIs (Zinn et al., 2011; Rao et al., 2016).
Moreover, the tumors’ irregular shape, heterogeneous structure, tumor
progression, and pseudo-progression (including craniotomy-related
ischemic changes and radiation necrosis) complicate GBM evaluation,
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even for experienced neuro-radiologists (Arevalo et al., 2019). This
challenge is particularly critical in patients with high-grade gliomas, as
residual areas of enhancement have been shown to correlate with survival
(Molinaro et al., 2020). Furthermore, intra- and inter-rater variability in
glioma tumor boundary estimation has been reported as 20 and 28%,
respectively (Mazzara et al., 2004). This variability underscores the need
for automated segmentation models in clinical settings, an ongoing
unmet need in the neuro-oncology community.

Accurate segmentation of GBM is essential for effective treatment
planning, monitoring, and prognosis. Precise delineation of tumor
boundaries enables targeted surgical resection, maximizing tumor
removal while preserving healthy tissue—an essential factor in
maintaining neurological function. Segmentation also plays a critical role
in assessing treatment response and detecting recurrence on follow-up
MRIs, allowing clinicians to identify subtle changes in tumor size or
characteristics over time (BRATS, 2015). Additionally, it provides valuable
insights into tumor shape, size, and subregions, which are important
predictors of patient survival and increasingly inform personalized
treatment strategies (Kickingereder et al., 2016).

In the past few decades, several deep learning models have
demonstrated exemplary performance in the medical domain, leading
to a growing research trend in brain tumor segmentation. However,
most of these models have focused primarily on preoperative MRIs, and
their performance has not been evaluated on follow-up MRIs (Akkus
et al,, 2015; Ghaffari et al., 2020). Helland et al. developed a deep
segmentation model for early postoperative MRIs, but their Dice
similarity score was lower than that of the standard preoperative
segmentation models (Helland et al, 2023). Only one software,
BraTumlA, was trained and tested on a combination of preoperative,
postoperative, and follow-up MRIs. However, its performance on
postoperative and follow-up MRIs was inferior to its performance on
preoperative MRIs (Meier et al., 2016). The only FDA-approved deep
segmentation model, VBrain Longitudinal, was trained and tested on
brain metastases using both MRI and computed tomography (CT), but
its performance on follow-up MRIs has not been reported (Hu et al.,
2019). Additionally, Khalaf et al. highlighted reproducibility issues with
the BraTumlIA software, showing that it failed to accurately measure the
enhancement region from MRIs acquired just 2 days apart (Abu Khalaf
et al., 2021). Despite the lack of scientific evaluation regarding the
generalizability and performance of these models on follow-up MRIs,
some automated preoperative MRI-based segmentation software is still
used for tumor measurements and treatment effect assessments in
clinical research settings (Zhu et al., 2012; Porz et al., 2014; Fyllingen
etal., 2016).

Deep segmentation models typically produce point-based
predictions without accounting for the associated uncertainty.
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This lack of uncertainty awareness presents a significant
challenge, as it can lead to models making overly confident, yet
potentially incorrect, predictions on unseen data. Such
confidence overlooks uncertainties arising from noisy data
collection or those introduced during the modeling phase
(Gawlikowski et al., 2021). In the context of GBM assessment, the
model is likely to encounter test examples that differ substantially
from the training data, which can result in unreliable predictions
in certain cases. Incorporating uncertainty into the model’s
outputs can help neuro-radiologists make more informed
decisions regarding the reliability of these predictions. Among
the various methods for estimating uncertainty, Bayesian learning
is a well-established and effective approach for quantifying
uncertainty mathematically (Gal and Ghahramani, 2016).

In this study, we have developed a comprehensive segmentation
model named GBSUN (GlioBlastoma Segmentation and Uncertainty
EstimatioN), specifically designed to delineate various GBM tumor
subregions using follow-up MRI scans based on their distinct imaging
characteristics. The GBSUN model accurately identifies different
tumor areas, such as Fluid Attenuation Inversion Recovery (FLAIR)
Hyperintensity Regions (FHR), Enhancing Tumor Regions (ER), and
Non-Enhancing Central Necrosis Regions (NENR), while accounting
for changes in brain and tumor structure post-surgery. Our framework
builds on the original 3D U-Net model, enhanced with transfer
learning and uncertainty estimation to improve performance.

GBM patients typically experience tumor recurrence during SOC
treatment, with a median time of 7 months from diagnosis (Roger
Stupp et al., 2005). Accurately diagnosing GBM at recurrence is
challenging. When abnormal enhancement occurs outside the
radiation field, standard MRI reliably identifies it as GBM progression.
However, standard MRI struggles to differentiate between true tumor
progression and radiation-induced necrosis (pseudo progression)
when new or expanding enhancement is observed within the radiation
field. Additionally, tumor recurrence in follow-up MRIs is often
presented as small lesions, with very few cases showing non-enhancing
regions. In our dataset, there are 47 cases of non-enhancing regions
among 311 total cases. Follow-up MRIs generally show fewer
non-enhancing necrotic regions due to surgical removal and post-
surgical healing. Neurosurgeons aim to remove as much of the tumor
and necrotic tissue as possible during surgery, ensuring maximal
excision of pathological tissue. Non-enhancing regions, often necrotic
parts of the tumor, are typically included in the excision. As a result,
less necrotic tissue remains in follow-up MRIs post-surgery.
Furthermore, after tumor resection, the brain begins to heal, and any
remaining necrotic tissue may shrink or become less visible over time,
further contributing to the reduction of non-enhancing regions
(Kessler and Bhatt, 2018). To address the challenge of segmenting
NENR regions, which are less frequently represented in follow-up
MRI data, we employed a transfer learning approach (Torrey and
Shavlik, 2010). Transfer learning allows the model to leverage
knowledge from pre-trained models on preoperative images,
enhancing its ability to detect non-enhancing regions and improving
NENR segmentation performance in follow-up MRIs.

Additionally, we employed Bayesian learning to refine and
enhance the predictive confidence of the proposed model. This
approach also provides uncertainty estimation for various segmented
areas, particularly around the tumor boundaries, where the risk of
misclassification is highest. By integrating uncertainty information
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with transfer learning strategies, our model is better equipped to
navigate the complexities inherent in follow-up MRI scans.

Finally, we enhanced our method by introducing case-specific
threshold values for uncertainty calculations to minimize false
negatives. To establish these thresholds, we computed the mean and
variance of the background pixels, which represent the predominant
class in follow-up MRIs. By sampling from the posterior distribution
of the model’s parameters through multiple runs, we calculated the
mean and variance for the FHR, ER, NENR, and background classes
for each pixel. We then compared the mean values to the threshold: if
the mean value of any class exceeds the threshold, that class is assigned
to the pixel.

To validate the superiority of the GBSUN model, we conducted
two sets of comparative evaluations. The first analysis focused on
benchmarking the segmentation accuracy of GBSUN against state-of-
the-art (SOTA) models. The second comparison assessed how
GBSUN’s uncertainty estimation approach compares to the Monte
Carlo dropout (Papadopoulos and Yeung, 2001) technique, with the
goal of enhancing the reliability, safety, and interpretability of the
model’s predictions. We also demonstrated that SOTA models are
insufficient for detecting GBM tumors in follow-up MRIs, highlighting
the need for an improved model for follow-up evaluation.

Our contributions in this study can be summarized as follows:

» Development of a novel Bayesian 3D U-Net model to improve
predictive confidence and capture uncertainty.

» Overcoming data limitations and enhancing model performance
through transfer learning.

o Leveraging uncertainty information to identify and correct
potential misclassification areas.

« Introducing case-specific threshold values for uncertainty
calculations to minimize false negatives.

« Accounting for changes in brain and tumor morphology when
detecting tumor subregions by capturing spatial relationships
between tumor subregions and surrounding brain structures.

o Creation of the largest follow-up MRI dataset for GBM
tumor detection.

2 Materials and methods
2.1 Dataset description

This study was approved by the institutional review board (HSC-
MS-17-0047). Informed consent was waived, and data collection and
storage followed local guidance. The current study focused on a
prospectively maintained institutional database with more than 500
subjects with high-grade glial neoplasms. Patients with the following
criteria were included in this study.

o A confirmed diagnosis of glioblastoma IDH-wildtype (Wild
type—270, Mutant—19, Missing—22)

« Only adult subjects (>18 years)

o All scans included four MRI sequences: T1-WI (T1),
T1-WI + gadolinium (T1-Gd), T2-WI (T2), and T2-Fluid
Attenuated Inversion Recovery (T2-FLAIR)

o Available pathology reports in the electronic medical
record system
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« Diagnosed between 2005 and 2022.

A total of 311 follow-up MRI scans were utilized in this study.
These follow-up MRIs were acquired 4 weeks post-XRT and TMZ and
every 2 months afterward. The initial, immediate postoperative MRIs
were not used. We selected only one scan per subject, specifically the
earliest scan after XRT-TMZ that met the inclusion criteria.

The dataset was randomly divided into 80, 10, and 10% for
training, validation, and testing, respectively. Additionally, the cross-
validation technique (e.g., 5-fold cross-validation) was utilized to
ensure robust performance evaluation across multiple subsets of the
data. This approach helps mitigate the risk of overfitting and ensures
that the model’s performance is not dependent on a single train-test
split. The 10% test set is randomly sampled to ensure it adequately
reflects the diversity of the entire dataset. The age distribution across
the training, validation, and test sets is consistent. The patients’
demographic information and age distribution are summarized in
Supplementary Tables 1, 2.

2.2 Image acquisition, preprocessing, and
annotation process

MRIs were acquired following an institutionally standardized
brain tumor protocol using a 1.5T or a 3.0T scanner. The
isovolumetric MPRAGE 3D T1-weighted images of the brain were
acquired in the axial plane after intravenous administration of
contrast. Multiplanar reformats with a slice thickness of 1 mm were
obtained. Detailed information about the MRI acquisition parameters
is provided below in Supplementary Tables 3A,B.

The following steps—skull stripping, image registration, and bias
correction—were performed to minimize the effects of varying
magnetic fields and image resolution, as illustrated in Figures la-d.

o Skull stripping: The Simple Skull Stripping (S3) (Roy and Maji,
2015) method was used to remove the skull from all four MRI
modalities. The S3 method uses the SRI24 template (Rohlfing
etal., 2010) to estimate the brain area and create a mask to extract
brain tissue.

« Image registration: FreeSurfer (Fischl, 2012) was employed to
register the MRI scans using the SRI24 template, ensuring the
data were geometrically aligned (Toga and Thompson, 2001).
This step facilitates consistent anatomical alignment across the
different imaging modalities. We employed FreeSurfer’s
MRICoreg with a 12-degree-of-freedom affine transform to align
each MRI scan to the SRI24 template. This configuration
accounts for translations, rotations, scaling, and shear, thereby
ensuring geometric consistency across subjects and scanners.
Registration was performed with the following parameter
settings: spatial scales of 2 and 4 voxels, a maximum of 4
iterations, function tolerance of 1.0e-07, line minimization
tolerance of 1.0e-03, and a saturation threshold of 9.999¢+01. The
estimated transforms (.lta files) were subsequently applied using
FreeSurfer’s ApplyVolTransform, which by default performs
resampling with trilinear interpolation into the template space.

« Bias correction: N4 Bias Field Correction (Tustison et al., 2010)
(SimpleITK) was applied to mitigate low-frequency intensity
inhomogeneities introduced by scanner hardware and acquisition
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protocols. The N4 algorithm iteratively estimates a smooth
multiplicative bias field and normalizes image intensities, thereby
improving uniformity and enhancing the reliability of intensity-
based feature learning. We used the default parameter settings of
the N4BiasFieldCorrection function in SimpleITK: input pixel
type = sitkFloat64, maximum number of iterations = 50 (per
level), bias field full width at half maximum = 0.15, number of
histogram bins = 200, mask label = 1, shrink factor =4, and
convergence threshold = 0.0.

Together, these steps harmonized data acquired on different MRI
platforms and replicated the preprocessing philosophy of BraTs,
ensuring comparability with benchmark datasets and reproducibility
of our results.

In our study, we utilized the BraTS 2023 Adult Glioma
dataset, which comprises clinically acquired, multi-institutional
mpMRI scans across four sequences (T1, T1+ Gd, T2, and
T2-FLAIR). For public release, all images are distributed as
preprocessed NIfTT volumes, which have been co-registered to
the SRI24 template, resampled to isotropic 1 mm’ resolution, and
skull-stripped. As part of this preprocessing and de-identification
pipeline, the original DICOM metadata are not available;
therefore, scanner-specific acquisition parameters (e.g., field
strength, TR, TE, flip angle) cannot be reported.

After image preprocessing, the MRIs were transferred to the
neuro-radiology workstation for semi-automatic volumetric
analysis and tumor segmentation. This analysis was conducted by a
neuro-radiology researcher and a clinical fellow, with each case
meticulously supervised by a board-certified neuroradiologist.
ITK-SNAP (2019, version 3.8) was used to generate segmentation
ground truth. Segmentation was carried out using an automatic
region of interest (ROI) tool, which selects pixels within a specified
signal intensity range. Once the automatic ROI was generated, the
neuro-radiologists manually refined the ROIs, excluding areas
incorrectly included in the volumetric analysis. Segmentation was
performed across four MR sequences simultaneously. T1 and
T1 + gadolinium (Gd) were used to segment the NENR and ER. T2
and T2-FLAIR were used to identify FHR. Each scan labeled three
tumoral regions: FHR, ER, and NENR. Figure 1e illustrates a sample
image with labeled regions.

We were not able to differentiate between pre- and post-treatment
enhancement due to the diverse etiologies within each classification.
Pre-treatment enhancement could be attributed to tumor, infection,
or inflammation, whereas post-treatment enhancement could result
from tumor progression, perioperative ischemic changes, and
radiation necrosis.

2.3 Proposed follow-up model description

2.3.1 Model overview

Figure 2 illustrates the high-level architecture of the proposed
framework, which aims to achieve high segmentation accuracy while
maintaining interpretability. As shown, the segmentation model takes
four preprocessed MRI sequences as input and generates an initial
prediction. Transfer learning was utilized to further enhance model
performance, particularly in the NENR region. Finally, misclassified
pixels are corrected using uncertainty information.
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(d) Bias Corrected (c) Registered (b) Skull Stripped (a) Raw

(e) Annotated

FIGURE 1

Step-by-step preprocessing pipeline for multi-modal brain MRI data. Columns display four MRl sequences: T2-FLAIR, T2-weighted, T1-weighted, and
T1-weighted with gadolinium contrast enhancement (T1 + Gd). Rows illustrate sequential preprocessing steps: (a) Raw Images—original MRI scans
acquired directly from the scanner; (b) Skull-Stripped Images—removal of non-brain tissues to isolate intracranial structures; (c) Registered Images—
alignment of all modalities to a common spatial reference frame for voxel-wise correspondence; (d) Bias-Corrected Images—correction of intensity
inhomogeneities to improve image uniformity and facilitate analysis; (e) Annotated Images—expert tumor labels overlaid on bias-corrected images,
where Fluid Attenuation Inversion Recovery (FLAIR) Hyperintensity Regions (red), Enhancing Tumor Regions (green), and Non-Enhancing Central

Necrosis Regions (blue)

2.3.2 3D-Unet model architecture and input
formats

The proposed GBSUN model was developed based on the 3D
U-Net (Wang et al., 2019). Figure 3A illustrates the basic structure of
the model, comprising three major components: the encoder, decoder,
and classification layer. The encoder extracts features from the input
data, and the decoder projects the embedded features extracted by the
encoder onto the pixel space to produce the classification results. The
classification layer assigns classes to each pixel. The encoder is

Frontiers in Neuroimaging

composed of 3D convolution layers with a kernel size of 3, a stride of
1, and a dilation set to 1, along with max-pooling layers with a kernel
size of 2. The decoder mirrors the encoder’s architecture, featuring
upsampling and convolutional layers with the same parameter
settings. (IntelLabs/bayesian-torch, 2022; Wen et al., 2018). The final
classification layer has a kernel, stride, and dilation size of 1.

Both the pre-trained and follow-up models use an identical 3D
U-Net encoder-decoder backbone, where the encoder channel
progression is [4, 8, 16, 32]. Each encoder block expands the number
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FIGURE 2

the final segmentation.

Prediction

Correct
Misclassification
using Uncertainty

Estimation

Overview of the proposed brain tumor segmentation framework. Preoperative BraTS'23 MRI scans are used to train a 3D U-Net, whose best weights
initialize a pretrained model for follow-up MRI data. Follow-up scans undergo preprocessing steps before being segmented by both the pretrained and
a newly trained 3D U-Net. Predictions from both models are combined and refined using uncertainty-based misclassification correction to generate

of channels by a factor of four, resulting in a bottleneck embedding
dimension of 128 channels in both models. Consequently, the output
embeddings from the two models are already of the same
dimensionality and can be fused directly without the need for
additional projection layers. This design eliminates the risk of
mismatched feature sizes during blending and ensures that the
combined representation is well-defined.

Each MRI sequence is input into a separate CNN channel, as each
sequence captures different tissue properties and provides unique,
complementary information. This approach enhances feature
representation, leading to more accurate diagnoses. Instead of relying
on pre-extracted or manually defined features or patches, the model
uses the entire MRI scan as input. This allows the model to process the
full-resolution image, learning both spatial and contextual information
necessary for accurate pixel-level classification. Furthermore, by
processing the entire image, the model can capture the broader
context and relationships between different regions, which is crucial
for precise segmentation. This approach also preserves the spatial
relationships between objects and features, which is essential for
understanding how different areas of the image relate to one another.

2.3.3 Loss function

Unlike standard deep neural networks that generate single-point
estimates, Bayesian learning quantifies both epistemic and aleatoric
uncertainty (Gal and Ghahramani, 2016; Kendall and Gal, 2017).
Aleatoric uncertainty arises from inherent noise in the data, such as
sensor artifacts or patient motion, and reflects variability in the
observations that cannot be reduced even with more data. In contrast,
epistemic uncertainty stems from limited knowledge of the model
parameters; it is high when the training data are sparse or
unrepresentative and decreases as more data are incorporated.
Bayesian methods capture epistemic uncertainty by maintaining a
posterior probability distribution over model parameters, rather than
relying on a single fixed set, thereby enabling the model to express
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confidence that adapts with data availability. At the same time,
aleatoric uncertainty is captured through the probabilistic likelihood
function, which models the inherent randomness in the data by
representing outputs as distributions rather than deterministic values.
By jointly modeling these two types of uncertainty, Bayesian learning
not only improves prediction reliability but also provides calibrated
confidence estimates, helping to highlight regions of low reliability
and enhancing interpretability for clinical tasks.

To build the Bayesian U-Net, all 3D convolutional layers in the
decoder were replaced with Flipout 3D convolutional layers
(IntelLabs/bayesian-torch, 2022; Wen et al., 2018). The Flipout 3D
convolutional layer is an efficient method that decorrelates gradients
by implicitly sampling pseudo-independent weight perturbations for
each example’s latent space. The prior mean and variance for the
Flipout layers were set to zero and one, respectively, while the posterior
mean and variance were set to zero and three, respectively.

This method allows the model to simultaneously optimize two
types of loss functions: the region-based loss (generalized dice focal
loss) and the distribution loss (Kullback-Leibler (KL) divergence loss).

Total Loss = Generalized Dice Focal Loss + KL Divergence Loss

Generalized dice focal loss is a weighted sum of generalized dice
loss (Sudre et al., 2017) (GDL) and focal loss (Zhu et al., 2019; Lin
etal., 2020) (FL). For the three-class classification problem, the GDL
can be defined as

3
zwl Z’lnp In
n

GDL:1—23l:1—

ZL‘WIZ(rln +Pln)
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FIGURE 3

Detailed architecture and workflow of the proposed uncertainty-based brain tumor segmentation framework. (A) 3D U-Net model: The network
follows an encoder—decoder structure with convolutional blocks, max-pooling for downsampling, and transposed convolutions for upsampling.
Feature maps from the encoder are concatenated with the decoder via skip connections. (B) Transfer learning process: A 3D U-Net is first trained on
preoperative MRI scans using generalized Dice focal loss, and the best weights are saved. For follow-up MRI scans, the encoder is initialized with
pretrained weights and fine-tuned alongside a second 3D U-Net trained from scratch. Predictions from the pretrained and newly trained models are
combined to produce the final segmentation. (C) Pixel class revision using uncertainty information: Potential misclassifications in the FHR, ER, and
NENR are identified by analyzing pixel-wise uncertainty distributions. Misclassified pixels are categorized into high- and low-confidence errors, and
pixel prediction variation guides whether a voxel is reassigned to the correct class.
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Here, 1, is the gold standard and p;, is the predicted probabilistic
1

map over N image elements. w;= , used to provide

N
zrln
n=1

invariance to different label set properties, utilizes the correlation

In the GDL, the
contribution of each label is corrected by the inverse of

2

between dice score and region size.

its volume.

FL is a dynamically scaled cross-entropy loss that can down-
weight the contribution of easy examples and put more focus on
hard and misclassified examples automatically during model
training. The FL is defined as
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L(pi)= _(I_Pt)}/ log(pr)

Here v>0 reduces the relative loss for well-classified examples
(p¢ >0.5) and puts more weight on miss-classified examples. The Y is
a learnable focusing parameter Y20 .

Opverall, we can compute the generalized Dice focal loss as

Generalized Dice Focal Loss = Agpy * GDL+ App * FL

AGDL is the weight of GDL, and ML is the weight of FL.
KL divergence between the prior distribution, P and the posterior
distribution, Q is defined as
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KL Divergence (P I Q) = z p(x) log gg;

Minimizing the KL divergence between P and Q ensures that Q
approximates P.

Thus, the proposed model can estimate epistemic and aleatoric
uncertainties of each class (FHR, ER, NENR, and background) for
each pixel. Transfer learning and uncertainty information were
leveraged to improve model performance. The details of each process
are provided below:

2.3.4 Transfer learning

Transfer learning involves transferring knowledge from a related
task to improve generalizability, especially when the available dataset
is too small (Torrey and Shavlik, 2010). In our dataset, only 47
follow-up MRI cases contain NENR regions, which is insufficient for
training a complex model such as 3D-UNet. Preoperative MRIs,
however, typically have a higher incidence of NENR regions.
Therefore, we trained a model using preoperative MRIs to learn the
morphology and spatial characteristics of non-enhancing regions. The
learned information was then transferred to the follow-up model for
detecting NENR regions. Figure 3B illustrates the transfer learning
process in the proposed model.

The preoperative model was trained by preoperative MRIs from
the BraTS'23 datasets (BRATS, 2015; Bakas et al., 2017, 2018) and
optimized by generalized dice focal loss (Figure 3B). The model with
the lowest validation loss was saved for knowledge transfer. By
freezing these weights during follow-up training, we ensured that the
knowledge from the preoperative data was preserved, allowing the
model to retain critical baseline features learned from pre-operative
MRIs, especially for NENR regions.

In parallel, another model was trained with randomly initialized
weights using institutional follow-up MRIs and optimized with both
generalized dice focal loss and cross-entropy for the non-enhancing
region (Figure 3B). Training this model from scratch on follow-up
MRIs enables it to capture features specific to the follow-up MRIs,
enhancing its ability to identify tumor regions and other changes
unique to the post-surgical context. Finally, the embeddings from
both the preoperative and follow-up models were combined in the
final classification layer. By combining the outputs of both models in
the final prediction layer, we leveraged the strengths of each: the
preoperative model for baseline tumor characteristics and the
follow-up model for post-treatment adaptations.

The epoch vs. loss graph and epoch vs. Dice similarity score curve
for both
Supplementary Figures 1A,B, respectively.

training and validation data are provided in

2.3.5 Utilizing uncertainty information

Follow-up MRIs contain surgical-related defects of the skull and
brain parenchyma, including burr hole and tumor tissue removal,
which results in a cavity and bone repositioning. These anatomical
changes of the brain increase the complexity of measuring tumor
subregions and signals in follow-up MRIs compared to preoperative
MRIs. Additionally, tumor subregions in follow-up MRIs are often not
contiguous, unlike in preoperative scans, and may be surrounded by
either normal brain tissue or surgical cavities. Both normal brain
tissue and surgical cavities are treated as background.
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As a result, the background class becomes more dominant than
the other three classes (FHR, ER, NENR), leading to potential
overestimation. The error-prone region for predicting background
distribution is larger than for the other tumor regions for a given pixel,
increasing the likelihood of misclassification between these three
classes and the background.

To address the issue of misclassification of pixels as background,
we utilize pixel uncertainty to improve the model’s performance. The
following steps are employed when a pixel is misclassified as the
background class:

1 Model Outputs: From a single run of the model, each pixel
receives four probability scores corresponding to four classes:
py for FHR, p, for ER, p, for NENR, and pj, for the background
class From multiple runs of the model, we gather a distribution
df (ﬂf,d}), d, (),ue,aez), d, (yn,of), and dp (/lB,O']ZS). The
uncertainty for each class is represented by the variance of its
score distribution.

2 Threshold Calculation: We compute a threshold value using the

background class’s mean (up) and variance (0123 ).

threshold = ug —Axop

Where A is a hyperparameter that controls the weight assigned
to the variance. In our analysis the optimal value A =0.1 was
determined by tuning on the validation set. We have added
Supplementary Table 5 to display different lambda values and
their corresponding dice similarity scores.

3 Misclassification Detection: If the mean (uf, e, t4,) of any
other three classes exceeds the threshold, we consider that the
pixel has been misclassified as background.

4 Pixel Reclassification: If only one class satisfies the condition in
step 3, the pixel is reclassified from background to that class.

5 Resolving Ambiguity: If multiple classes satisfy the condition
in step 3, the class with the lowest variance is chosen as the
final classification.

Figure 3C illustrates the detailed process of utilizing uncertainty
information to improve the model performance, where ER is
misclassified as normal brain regions.

2.3.6 Model training and hyperparameter details
To minimize domain confusion between pre- and post-operative
MR, we first trained on pre-operative scans, where non-enhancing
necrotic regions (NENR) are more consistently represented, and
then fine-tuned on post-operative scans to adapt to tissue changes
after resection. This sequential strategy reduces overfitting to one
domain and improves robustness in distinguishing true tumor tissue
from post-surgical alterations. We employed the Adam optimizer
with a learning rate of 0.001 and a weight decay of le-5. The batch
size was set to 8. The details of hyperparameters are mentioned in
Supplementary Table 4. All experiments were conducted on an
NVIDIA Tesla A100-SXM4-40GB platform (CUDA 12.7; PyTorch
1.14.0a0 + 44dac51). Model training required approximately 70 h for
100 epochs with a batch size of 8. The inference time for a single
patient is approximately 1 min for 1,000 stochastic forward path
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using a server with 16 NVIDIA Tesla A100-SXM4-40GB GPU
(CUDA 12.7).

2.4 Performance evaluation matrices

The Dice Similarity Coeflicient (DSC) measures the spatial
overlap between the model’s prediction and the ground truth. It is
used to evaluate the segmentation results in terms of accuracy
and generalizability.

2xthe Area of Overlap

DSC=
Total number of pixels in both images

The Jaccard Index (JI) is a metric used to compare the similarity
and diversity between the predicted and ground truth segments. It is
defined as the size of the intersection of the two sets divided by the
size of their union.

o Area of Overlap
Area of Union

Hausdorft distance (HD) is the maximum distance from any point
in one set to the nearest point in the other set. Specifically, for two sets
of points, X and Y, the Hausdorff distance is defined as:

HD(X,Y) :max{maxxex min .y d(x,y),maxyey min,cx d(x,y)}

In addition to overlap and boundary metrics (DSC, Jaccard,
Hausdorff), we quantify probability calibration and uncertainty
utility using the Expected Calibration Error (ECE), Uncertainty
Calibration Error (UCE), Brier
Log-Likelihood (NLL).

Expected Calibration Error (ECE) quantifies how closely

score, and Negative

predicted confidences match observed accuracy. Uncertainty
Calibration Error (UCE) measures how well a model’s predicted
uncertainty matches its observed error.

M
ECE= Z M|accumcy (Bm ) — confidence(Bm )|
n

m=1

M
UCE= Z M|error(3m ) —uncertainity score(Bm )|
n

m=1

Here, B is used to represent “bins” and m is the bin number, while
n represents the total number of evaluated predictions.

Brier score measures the mean squared error of predicted
probabilities against the true outcomes.

n

Brier Score = lZ(Pi — X )2 ,mnge[O,l_
Mial i

Here, n is the total number of evaluated predictions, p; is predicted
probabilities, y; is the true outcome.

Frontiers in Neuroimaging

10.3389/fnimg.2025.1630245

Negative Log-Likelihood (NLL) measures how much probability
a model assigns to the true class, averaged over samples.

n
Negative log—Likelihood (NLL) = —%Zlog Py(yilxi)
i=1

Here, n is the total number of evaluated predictions, y; is
prediction, x; is the true outcomes.

2.5 Statistical analysis

The Wilcoxon signed-rank test was selected because it is a
non-parametric test designed for paired data, which is suitable for
comparing segmentation performance metrics (e.g., Dice coefficients)
of different models evaluated on the same set of subjects. Unlike
parametric alternatives (e.g., paired t-tests), the Wilcoxon test does
not assume normality of the performance distributions, which is
important since metrics such as Dice coefficients and Hausdorff
distances are often non-normally distributed and bounded. To address
the issue of conducting multiple comparisons across different tumor
subregions, we applied the Bonferroni correction, which provides a
conservative adjustment to control the family-wise error rate. This
combination ensures a robust and statistically sound evaluation of
performance differences between models in our study.

3 Results

3.1 Follow-up MRI segmentation
performance comparison

The GBSUN model was benchmarked against previous studies
that performed segmentation on glioblastoma (GBM) using
preoperative, postoperative, or follow-up MRI scans. All results are
reported using the same test set for all models, with the exception of
those by Helland et al. (2023) and BraTumIA (Meier et al., 2016).
Helland et al. did not develop a new model but assessed the
performance of previously established nnU-Net and AGU-Net models
using early postoperative MRIs. Additionally, we were not able to
locate the source code or pre-trained model for the BraTumIA
framework; however, their manuscript indicates that they evaluated
their model on preoperative, postoperative, and follow-up MRIs.
Consequently, we relied on the Dice Similarity Coeflicients (DSC)
reported in their respective studies for these models.

The GBSUN model achieved average DSC scores of 0.833, 0.901,
and 0.931 for the FHR, ER, and NENR regions, respectively, in
follow-up MRI segmentation. Our proposed model consistently
outperformed other models, with average improvements of 14.25, 19,
and 24.38% for FHR, ER, and NENR (Table 1). The Jaccard Index (JI)
and Hausdorff Distance (HD) values for the GBSUN model were 0.73,
0.85, 0.96, and 1.81, 0.56, 0.13 for FHR, ER, and NENR, respectively.
The proposed model outperformed other models by an average of 37,
35, and 4% for FHR, ER, and NENR in JI, and by 32, 28, and 82% in
HD evaluation metrics.

Figure 4 illustrates the follow-up model performance on two
cases: Case 1, a well-performing case, and Case 2, a case with
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TABLE 1 Segmentation performance comparison with other studies using Dice similarity score, Jaccard Index, and Hausdorff distance.

Model Name = MRIs were Dice similarity score Jaccard index Hausdorff distance
used in the
- FHR ER NENR FHR ER NENR FHR ER NENR
original
model
training
GBSUN Follow-up 0.833 0.901 0.931 0.76 0.85 0.96 1.81 0.56 0.13
Early
Helland et al. (2023) X X X X X X X X X
postoperative
BraTumlIA (Meier Pre/postoperative,
X 0.23 0.63 X X X X X X
etal, 2016) follow-up
2D U-Net (Dong
Preoperative 0.74 0.77 0.67 0.55 0.73 0.57 3.19 0.55 3.13
etal., 2017)
3D-Unet (Wang
Preoperative 0.68 0.84 0.83 0.68 0.84 0.83 2.34 1.31 0.200
etal, 2019)
3D U-Net (self-
ensembled & deeply
Preoperative 0.80 0.74 0.73 0.80 0.74 0.73 1.94 0.56 0.67
supervised) (Henry
et al., 2021)
3D Dilated Multi-
Fiber Network Preoperative 0.79 0.89 0.82 0.79 0.89 0.82 2.32 0.53 0.55
(Chen et al., 2019)
Knowledge
Distillation
Preoperative 0.84 0.74 0.75 0.84 0.74 0.75 1.5 0.56 0.22
(Lachinov et al.,
2020)
ResUNet (Zhang
Preoperative 0.51 0.73 0.54 0.51 0.73 0.54 3.02 0.85 1.70
etal, 2017)
ResNet (Zhang et al.,
Preoperative 0.71 0.55 0.57 0.71 0.55 0.57 4.56 9.32 6.98
2017)
FCNN (Zhang et al.,
Preoperative 0.58 0.66 0.51 0.58 0.66 0.51 3.56 1.26 2.63
2017)
Autoencoder
Regularization/
Preoperative 0.52 0.73 0.71 0.52 0.73 0.71 3.24 0.56 1.72
NvNet (Myronenko,
2019)
Inter-slice Context
Residual Learning/
ConResNe t (Inter-
Preoperative 0.53 0.74 0.52 0.53 0.74 0.52 2.84 0.56 2.86
Slice Context
Residual Learning,
2021)
Cascaded
Anisotropic CNN Preoperative 0.81 0.74 0.77 0.81 0.74 0.77 2.13 0.56 0.45
(Wang et al., 2018)
3D U-Net with
Attention (Nodirov Preoperative 0.74 0.86 0.87 0.25 0.28 0.02 1.81 0.67 0.59
etal, 2022)
SegNet
(Badrinarayanan Preoperative 0.30 0.34 0.05 0.25 0.28 0.02 4.01 4.47 8.28
etal, 2015)
nnU-ne t (Isensee
Preoperative 0.48 0.56 0.44 0.42 0.51 0.39 3.25 1.66 3.30
et al., 2021)
(Continued)
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TABLE 1 (Continued)

10.3389/fnimg.2025.1630245

Model Name = MRIs were Dice similarity score Jaccard index Hausdorff distance
used in the
- FHR ER NENR ER NENR FHR ER NENR
original
model
training
Swin-Unet (Cao
Preoperative 0.67 0.81 0.56 0.64 0.79 0.46 2.67 0.55 6.01
et al., 2023)
UNETR
(Hatamizadeh etal, | Preoperative 0.59 0.78 0.69 0.58 0.76 0.68 3.33 0.55 6.50
2022)
nnU-net (Isensee
Follow-up 0.80 0.76 0.29 0.77 0.71 0.22 2.24 0.55 7.56
etal, 2021)
Swin-Unet (Cao
Follow-up 0.65 0.67 0.15 0.63 0.65 0.1 2.65 0.86 8.18
et al., 2023)

‘X’ means the model was not evaluated. Bold values: best performance.

underperformance. The DSC for case 1 is 0.92 (FHR), 0.91 (ER), and
0.98 (NENR). In contrast, for Case 2, the DSC values are 0.76 (FHR),
0.82 (ER), and 0.85 (NENR). The shape and structure of the tumor
subregions largely influence this performance variation. Case 1
exhibits a continuous shape for tumor subregions, whereas case 2
displays fragmented FHR and ER regions, which impact the model’s
performance. Additionally, we report the uncertainty of the model
prediction (Figure 3, case 3) to highlight the proposed model’s
reliability and trustworthiness. The highest uncertainty was observed
at the boundaries of the tumor subregions, indicating regions where
segmentation errors are more likely to occur.

3.2 Ablation study

We conducted an ablation study to evaluate the contribution of
each component: (i) the baseline 3D U-Net, (ii) 3D U-Net with
transfer learning, (iii) 3D U-Net with Monte Carlo dropout, (iv) 3D
U-Net with label smoothing, (v) 3D U-Net with test-time
augmentation, (vi) 3D Bayesian U-Net, and (vii) the full GBSUN
model. The results, presented in Table 2, show that transfer learning
consistently improves segmentation performance across all tumor
subregions. Meanwhile, the Bayesian component enhances calibration
and robustness but yields lower Dice scores when applied in isolation
(Table 2). Alternative uncertainty strategies, such as label smoothing
and test-time augmentation, produced even lower DSCs, particularly
for the enhancing and non-enhancing regions. In contrast, the full
GBSUN model achieved the highest performance across all regions
(0.833 +0.088, 0.901 + 0.073, and 0.931 + 0.065). The ablated version
without bias correction, however, showed reduced performance,
underscoring the importance of calibration. Taken together, these
findings demonstrate that transfer learning and architectural
refinements drive significant gains in segmentation accuracy, while
the Bayesian component provides complementary benefits by
enhancing reliability and interpretability when integrated into the
full framework.

Additionally, Table 2 illustrates the comparative performance
of the proposed GBSUN model against seven 3D U-Net baselines
on follow-up MRIs across three glioblastoma sub-regions: FHR,
ER, and NENR. For each method and region, we report the
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subject-level mean + standard deviation (SD) of DSC, a 95% bias-
corrected and accelerated (BCa) bootstrap confidence interval,
and a bootstrap p-value for the null hypothesis that the mean
DSC equals 0.80 (two-sided). GBSUN achieves the highest mean
DSC in all three sub-regions: FHR 0.833, ER 0.901, NENR 0.931
with 95% BCa ClIs entirely above the 0.80 benchmark [0.806-
0.851], [0.869-0.910], [0.887-0.928] and corresponding p-values
<0.013, indicating performance significantly exceeding 0.80
across the board. Relative to a plain 3D U-Net, the absolute gains
are +0.104 (FHR), +0.049 (ER), and +0.052 (NENR). Even against
the strongest non-GBSUN variants, GBSUN still leads. For
instance, FHR + 0.030 over 3D U-Net + transfer learning (0.803),
and a clear margin on the most challenging NENR class (0.931
vs. the next best baseline 0.879). GBSUN is also more consistent
across subjects: its standard deviations are among the smallest,
especially for NENR (+0.065), and its CIs are relatively tight (e.g.,
NENR width ~ 0.041). In contrast, several alternatives either fail
to meet the 0.80 threshold (e.g., label smoothing, test-time
augmentation, 3D Bayesian U-Net on NENR) or are inconclusive
with CIs that cross 0.80 (e.g., MC-dropout on ER/NENR; transfer
learning on FHR). Finally, the “GBSUN without bias correction”
ablation shows noticeable drops in FHR and ER means, as well as
a loss of significance, underscoring the importance of the
intensity bias-field correction in our preprocessing pipeline.
Overall, GBSUN is the only method that consistently meets the
clinical quality bar across all sub-regions, with strong and well-
calibrated performance.

Figure 5 visually demonstrates the improved performance using
transfer learning and uncertainty information for three cases. In each
case, some regions are misclassified by either the 3D U-Net or the 3D
U-Net with transfer learning. However, the 3D U-Net with uncertainty
and transfer learning consistently provides more accurate
segmentation and reduces misclassification compared to the
other models.

Moreover, to evaluate the contribution of bias field correction,
we compared the full GBSUN pipeline with a variant where N4 bias
field correction was omitted (Table 2). Without bias correction, Dice
scores decreased across tumor subregions (e.g., FHR: 0.761 vs. 0.833;
ER: 0.854 vs. 0.901; NENR: 0.921 vs. 0.931) and showed larger
variability, particularly in the FHR and enhancing tumor regions. This
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Case 1

T2-FLAIR

Input Images

Ground Truth

Prediction

Case 3: Model Prediction with Uncertainty
Original Image Annotated Image Prediction Uncertainty

X Y

Zoomed-in views of segmentation errors and uncertainty overlayed on original image
FIGURE 4

Brain tumor segmentation results using the proposed model. Top panel (Case 1 and Case 2): Input MRI modalities, corresponding ground truth
annotations (red: FLAIR hyperintense region; green: enhancing tumor; blue: non-enhancing central necrosis), and model predictions. Middle panel
(Case 3): Predictions with associated uncertainty maps for the FLAIR hyperintense region (top row) and enhancing region (bottom row), where
uncertainty values highlight areas with a higher likelihood of misclassification. Bottom panel: Zoomed-in views of selected regions of interest (ROls)
demonstrate segmentation errors more clearly. In these magnified panels, overlays show mismatches between ground truth and prediction, as well as
uncertainty contours highlighting boundaries prone to misclassification.

FLAIR Hyperintense Region

Enhancing Region

FLAIR Hyperintense Region
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TABLE 2 GBSUN model’s improved DSC scores for tumor subregion segmentation.

Model Name

Fluid attenuation inversion
recovery region (FHR)

(Mean + STD), 95% ClI,
p-value

Enhancing Tumor Region

(ER) (Mean + STD), 95% ClI,

p-value

10.3389/fnimg.2025.1630245

Non-enhancing Region
(NENR) (Mean + STD), 95%
Cl, p-value

GBSUN
3D U-Net
3D U-Net with transfer learning

3D U-Net with Monte Carlo
dropout

3D U-Net with label smoothing

3D U-Net with test time

augmentation

3D Bayesian U-Net

GBSUN without bias correction
3D U-Net without bias correction

Bold values: best performance.

(0.833 + 0.088), [0.806, 0.851], 0.0132
(0.729 + 0.101), [0.697, 0.750], 0.0004
(0.803 + 0.093), [0.774, 0.823], 0.9090

(0.757 + 0.104), [0.725, 0.779], 0.0008

(0.760 + 0.134), [0.718, 0.788], 0.0079

(0.766 + 0.145), [0.720, 0.796], 0.0307

(0.752 + 0.154), [0.703, 0.784], 0.0075
(0.761 + 0.338), [0.659, 0.834], 0.2247

(0.679 + 0.111), [0.655, 0.750], 0.0004

(0.901 + 0.073), [0.869, 0.910], 0.0004
(0.852 + 0.078), [0.819, 0.862], 0.0008
(0.898 + 0.059), [0.872, 0.905], 0.0004

(0.844 + 0.132), [0.786, 0.860], 0.2043

(0.715 + 0.221), [0.619, 0.744], 0.0004

(0.702 + 0.209), [0.613, 0.730], 0.0004

(0.860 + 0.215), [0.664, 0.784], 0.0231
(0.854 + 0.309), [0.720,0.893],0.8994

(0.789 + 0.058), [0.819,0.862], 0.0023

(0.931 + 0.065), [0.887, 0.928], 0.0004
(0.879 + 0.074), [0.830, 0.877], 0.0004
(0.865 + 0.095), [0.801, 0.861], 0.0367

(0.832 +0.109), [0.760, 0.827], 0.740

(0.574 + 0.494), [0.247, 0.557], 0.0004

(0.171 + 0.254), [0.000, 0.164], 0.0004

(0.532 + 0.499), [0.204, 0.517], 0.0004
(0.921 % 0.192), [0.794,0.913], 0.0831

(0.799 + 0.084), [0.810,0.847], 0.0005

Original Image

Fluid Attenuation Inversion
Recovery Region

Enhancing Region

Central Necrosis
Non-enhancing Region

FIGURE 5

Ground Truth

3D-UNet

3D-UNet with TL

\

3D-UNet with
TLand Ul

Comparison of 3D-UNet models for brain tumor segmentation. Columns show the original MRI, ground truth, baseline 3D-UNet, 3D-UNet with
transfer learning (TL), and 3D-UNet with TL and uncertainty information (Ul). Rows correspond to the FHR region (red), ER region (green), and NENR
region (blue). Incorporating TL improves boundary delineation, while TL combined with Ul reduces false positives and enhances agreement with
ground truth. These results demonstrate that transfer learning and uncertainty information together yield more reliable and generalizable tumor
segmentation across multiple patients” MRls.

confirm that bias correction not only stabilizes performance but also
reduces variance, supporting its inclusion as a critical preprocessing

demonstrates that N4 correction is especially beneficial in our multi-
scanner dataset, as it scanner-related intensity

inhomogeneities and harmonizes tissue contrast. The improvements

mitigates
step for robust segmentation.
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Finally, we assessed robustness by measuring the change in Dice
similarity coefficient (ADSC) under clinically plausible bias
perturbations to emulate distribution shift. The Bayesian model
exhibited smaller degradation than the non-Bayesian counterpart
(ADSC: FHR = 0.05, ER = 0.07, NENR = 0.14), and the complete
GBSUN pipeline showed the smallest ADSC overall (FHR = 0.07,
ER=0.05, NENR=0.01), indicating superior robustness to
acquisition and preprocessing variability. As summarized in Table 2,
we compared the full GBSUN pipeline with a 3D U-Net baseline, each
evaluated with and without N4 bias-field correction. Omitting bias
correction reduced Dice scores across all tumor subregions (FHR, ER,
and NENR).

3.3 Statistical analysis

We conducted the Wilcoxon signed-rank test to compare the Dice
Similarity Coeflicient (DSC) values of different models against
GBSUN across all test samples for various regions reported in Table 3
(with 95% confidence interval). A p-value of less than 0.05 indicates
that the differences in model performance are statistically significant.

In addition, we conducted paired Wilcoxon signed-rank tests
comparing GBSUN with each comparator model within the FHR, ER,
and NENR regions, with Bonferroni adjustment for multiple
comparisons (Supplementary Table 6). Adjusted p-value on the order
of 107 to 107 provides robust evidence that the GBSUN model
consistently and significantly outperforms the other models.

3.4 Calibration and uncertainty-aware
performance

We further evaluated the reliability of GBSUN using
complementary calibration and probabilistic accuracy metrics. The
voxel-wise Uncertainty Calibration Error (UCE) was 0.007, indicating
excellent agreement between predicted uncertainty and empirical

10.3389/fnimg.2025.1630245

error. UCE could not be computed for the 3D U-Net and its transfer-
learning variant because these models produce point estimates rather
than probabilistic predictions. UCE requires per-sample uncertainty
scores to compare predicted uncertainty with empirical error; in their
absence (i.e., with hard labels only), any constant surrogate collapses
UCE to a trivial quantity that merely reflects overall error.

The mean voxel-wise Expected Calibration Error (ECE) was
0.007484 overall, with class-wise ECEs of 0.000434 (FHR), 0.004315
(ER), and 0.004459 (NENR), demonstrating consistently low
miscalibration across classes (Supplementary Table 7). Proper scoring
rules further substantiated these findings: the average Brier score and
Negative Log-Likelihood (NLL) were 0.002645 and 0.060173 for FHR,
0.002499 and 0.058981 for ER, and 0.002503 and 0.037054 for NENR,
respectively. By contrast, both the 3D U-Net and its transfer-learning
variant yield substantially higher ECE, Brier, and NLL values, and the
3D Bayesian U-Net likewise lags behind GBSUN by a considerable
margin. Taken together, these low UCE/ECE values and favorable
Brier/NLL scores indicate that GBSUN'’s voxel-wise probabilities are
both well-calibrated and informative, supporting robust, trustworthy
inference across all evaluated classes. Additionally, Bayesian
components reduce performance variability; for example, GBSUN
exhibits a small NENR DSC SD (+0.065) (Table 2), indicating more
consistent case-level behavior, which is clinically valuable.

Moreover, we also generated a reliability curve to assess probability
calibration of the GBSUN model (Supplementary Figure 4). Across
panels, the curves closely track the diagonal, indicating good
agreement between predicted probabilities and observed values.
Consistent with the visual impression, Expected Calibration Error
(ECE) is low in all cases—Overall = 0.007484, FHR = 0.000434,
ER = 0.004315, and NENR = 0.004459—supporting that GBSUN’s
voxel-wise probabilities are well calibrated.

Additionally, we evaluated “uncertainty-as-error-detector”
performance by scoring each voxel with predictive variance/entropy
and classifying voxels as incorrect (positive) versus correct (negative).
Threshold-swept (ROCs)
demonstrate that GBSUN consistently ranks errors more effectively

receiver-operating  characteristics

TABLE 3 The Wilcoxon signed-rank test on the DSC values between the GBSUN model and other models.

Model Name FHR (p-value)

ER (p-value) NENR (p-value)

2D U-Net 7.72e-14 1.82e-12 3.30e-19
3D-Unet 3.84e-08 2.28e-10 1.38e-34
3D U-Net (self-ensembled & deeply supervised) 3.78e-05 8.07e-12 3.95e-31
3D Dilated Multi-Fiber Network 1.15e-05 4.12e-06 2.34e-23
Knowledge Distillation 7.25e-03 8.07e-12 9.39%-30
ResUNet 8.53e-25 2.40e-12 1.04e-44
ResNet 1.00e-09 1.60e-22 7.23e-41
FCNN 9.09-19 2.4%-16 6.51e-50
Autoencoder Regularization/NvNet 6.36e-24 2.40e-12 2.23e-32
Inter-slice Context Residual Learning/ConResNet 4.77e-23 8.07e-12 4.02e-48
Cascaded Anisotropic CNN 1.28e-04 8.07-12 3.22e-28
3D-Unet with Attention 3.84e-08 4.54e-07 1.09e-15
nnU-net 7.34e-34 5.91e-39 9.22e-35
SegNet 2.42e-27 6.17e-22 5.85e-48

The p-value shows the significance of DSC variation.
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than the non-Bayesian 3D U-Net (Supplementary Figure 5) for each
class, the GBSUN ROC curves dominate—achieving higher true-
positive rates at comparable false-positive rates and larger areas under
the ROC (AUROC).

Finally, we evaluated the GBSUN model using a risk—coverage
(RC) curve to assess how effectively its uncertainty ranking enables
selective prediction (Supplementary Figure 6). The voxel-level RC
curve exhibited the expected monotonic behavior: risk was lowest for
the most-confident voxels and increased as coverage expanded, then
gradually plateaued near full coverage, indicating that errors are
concentrated in the low-confidence tail.

4 Discussion

In this study, we developed GBSUN (GlioBlastoma Segmentation
and Uncertainty estimatioN), designed for accurate segmentation of
follow-up MRIs. The GBSUN model effectively identifies various
areas, including the Fluid Attenuation Inversion Recovery (FLAIR)
region (FHR), the Enhancing Tumor Region (ER), and the
Non-Enhancing Central Necrosis Region (NENR).

Accurate follow-up MRI segmentation plays a crucial role in
planning surgery and evaluating treatment in glioblastoma (GBM)
patients. It allows clinicians to monitor tumor progression, adjust
treatment plans, and provide reliable data for clinical trials (Olar and
Aldape, 2014). Additionally, it facilitates optimal tumor removal
during surgery while minimizing damage to healthy brain tissue (Liu
et al,, 2023; Yabo and Heiland, 2024). In radiotherapy, precise
segmentation ensures targeted radiation delivery to the tumor while
sparing surrounding healthy tissue. However, achieving accurate
segmentation in follow-up MRIs remains challenging due to factors
such as 1) changes in tumor appearance over time, 2) variability in
tumor shape and size, 3) artifacts that complicate the distinction
between tumor and healthy tissue, and 4) partial volume effects and
edema present in follow-up images.

Our design began from three empirical constraints of follow-up
GBM MRI segmentation: (i) distribution shift between pre- and post-
treatment anatomy (surgical cavity, scar, radiation changes), (ii) class
imbalance and scarcity, especially for NENR (47/311 cases), and (iii)
volumetric inference cost (four MRI channels, 3D U-Net).
We required a method that provides pixel-wise epistemic uncertainty
to flag boundary errors, integrates cleanly with a 3D U-Net, and keeps
the parameter footprint near 1 x to remain deployable.

We considered two widely used practical Bayesian approximations,
Monte Carlo (MC) dropout, and deep ensembles, alongside a
variational Bayesian network with Flipout convolutional layers. Deep
ensembles generally offer strong calibration but would require
training, storing, and serving K independent 3D models and
performing K full 3D forward passes per case (multiplying both
training time and memory by K). MC dropout keeps a single model,
but its uncertainty quality is sensitive to where dropout is inserted in
encoder/decoder skip pathways, and it can interact unfavorably with
normalization layers in segmentation pipelines.

Given these constraints, we selected a Bayesian 3D U-Net with
Flipout variational convolutions in the decoder, trained with a KL
term plus generalized Dice—focal loss. This design preserves a single-
model footprint, yields posterior samples by weight perturbation at
test time (tunable cost via T stochastic passes), and integrates naturally
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with our transfer-learning pathway for NENR. In ablations (Table 2),
this Bayesian model outperformed the same 3D U-Net with MC
dropout, particularly for FHR and NENR, and enabled our
uncertainty-guided relabeling rule (case-specific threshold using
background mean/variance, A=0.1) that further reduced false
negatives. We did not train deep ensembles due to the K x compute/
storage overhead for 3D volumes.

Bayesian component using Flipout layers uses a distribution for
each learnable parameter in the model and enables posterior sampling
during inference. Multiple stochastic forward passes generate voxel-
wise uncertainty maps in addition to segmentation outputs. These
maps quantify the variance of pixel-level predictions and assign
uncertainty scores to each voxel, which significantly reduced
misclassification rates across all tumor subregions, particularly in the
FHR and NENR regions (Table 2), where boundaries are visually
ambiguous. Compared with the Monte Carlo-dropout variant in
Table 2, GBSUN outperforms across all subregions than MC dropout,
especially in enhancing/non-enhancing regions. GBSUN’s transfer
learning and targeted refinements, combined with a FlipOut-based
Bayesian component, deliver both higher accuracy and calibrated,
spatially localized uncertainty.

Our findings demonstrate significant improvements compared to
the previous study in terms of the DSC across all evaluated regions—
FHR, ER, and NENR—illustrating the effectiveness of our approach
in accurately delineating tumor subregions in follow-up MRIs. The
GBSUN model achieved DSC scores of 0.833, 0.901, and 0.931,
representing average enhancements of 14.25, 19, and 24.38%,
respectively, over prior models. The GBSUN model achieved a UCE
(Uncertainty Calibration Error) of 0.007, demonstrating that predicted
uncertainties are well aligned with actual error rates. This low value
indicates reliable calibration, enabling uncertainty maps to effectively
highlight regions that may require additional clinical attention.

A critical advantage of the GBSUN model is its ability to integrate
transfer learning and uncertainty information. The introduction of
Bayesian learning for uncertainty information provides valuable
insights into the model’s reliability, particularly in boundary regions
where segmentation errors are likely to occur. As shown in Figure 3,
areas of higher uncertainty align with these critical boundaries,
underscoring the need to consider uncertainty in clinical applications
to enhance diagnostic accuracy. Additionally, case-specific threshold
values for uncertainty calculations help to minimize the false
negatives. This advancement is significant, highlighting our
frameworK’s capability to enhance the accuracy of medical imaging
analysis, a crucial factor in providing patients with precise diagnostic
assessments and optimal treatment strategies.

In our comparative analysis (Table 1), GBSUN consistently
outperformed existing methods across all tumor subregions. It
achieved the highest Dice scores for the enhancing region and the
non-enhancing/necrotic region, while also yielding the lowest
Hausdorft Distance in the NENR, reflecting superior overlap accuracy
and boundary delineation compared to advanced models such as the
3D Dilated Multi-Fiber Network and cascaded CNNs. Furthermore,
transformer-based architectures, such as Swin-UNet and UNETR, as
well as the benchmark nnU-Net, underperformed relative to GBSUN,
particularly in capturing fine boundary details. Statistical validation
with the Wilcoxon signed-rank test (Table 3) confirmed that these
improvements are highly significant, with low p-values. Therefore,
these results demonstrate that GBSUN delivers state-of-the-art
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performance with statistically robust gains, particularly in boundary
regions where precise delineation remains a major clinical challenge.

Finally, we used 5-fold cross-validation to minimize the risk of
overfitting on the smaller post-operative dataset during transfer
learning. We utilized out-of-fold testing in this study because it
provides a more accurate and generalizable measure for evaluating the
performance of predictive models. By leveraging cross-validation,
out-of-fold testing offers a more robust estimate of model
performance, helping to mitigate overfitting. This approach ensures
that the model is tested on different subsets of data, improving the
reliability of the evaluation and enhancing generalization to unseen
data. Moreover, out-of-fold testing allows for the full utilization of all
available data for both training and testing, thereby maximizing the
use of valuable information.

The challenges posed by small and disconnected regions, such as
NENR, in follow-up MRIs are noteworthy. The GBSUN model’s ability
to mitigate misclassification in these scenarios, as indicated by reduced
DSC variation, highlights the robustness of our approach. By
combining transfer learning with uncertainty information, we have
improved accuracy and enhanced the model’s resilience to the unique
challenges presented by GBM imaging. From a clinical perspective,
the availability of uncertainty maps enhances interpretability by
flagging regions of high uncertainty, such as tumor boundaries and
areas with atypical tissue appearance, guiding radiologists to review
these regions more carefully. This integration of uncertainty into
segmentation outputs increases reliability, supports transparency in
clinical decision-making, and enhances trust in the AI models.

A limitation of our study is that only a single follow-up scan was
available for each patient, which precluded assessment of longitudinal
consistency and temporal reproducibility of our method. Future studies
incorporating multiple follow-up scans will be essential to validate the
stability and robustness of the proposed approach over time.

We carefully searched for publicly available post-treatment glioma
MRI datasets suitable for external validation. To the best of our knowledge,
no such datasets with complete multi-modal MRI (FLAIR, T1, T1 + Gd,
T2) and annotated segmentations are currently available. We therefore
acknowledge this as a limitation of our study. Once curated, publicly
released post-treatment datasets become available, we plan to evaluate our
trained model on them to strengthen external generalizability.

While our findings are promising, it is essential to consider model
performance variability and the need for further validation. Future studies
should focus on evaluating the GBSUN model across diverse datasets,
including a broader range of MRI modalities and tumor stages, to
establish its generalizability. Additionally, exploring the integration of
other imaging modalities, such as PET or CT, could provide a more
comprehensive  view  of  tumor

biology and  improve

segmentation outcomes.

5 Conclusion

We introduced an enhanced end-to-end deep learning model,
GBSUN, designed for follow-up MRIs, which offers more accurate
and automated segmentation of glioblastoma (GBM) tumors. The
model excels in measuring tumor subregions and signals while
providing pixel-level uncertainty estimates. GBSUN represents a
significant advancement in tumor segmentation, offering a reliable
tool for clinicians managing GBM. By leveraging transfer learning and
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incorporating uncertainty information, our approach not only
improves segmentation accuracy but also boosts confidence in the
clinical utility of these models. As we continue refining these methods,
the potential for better patient outcomes through precise imaging and
targeted therapies becomes increasingly achievable.
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