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Background: Glioblastoma (GBM) is the most common malignant brain tumor 
with an abysmal prognosis. Since complete tumor cell removal is impossible due 
to the infiltrative nature of GBM, accurate measurement is paramount for GBM 
assessment. Preoperative magnetic resonance images (MRIs) are crucial for initial 
diagnosis and surgical planning, while follow-up MRIs are vital for evaluating 
treatment response. The structural changes in the brain caused by surgical and 
therapeutic measures create significant differences between preoperative and 
follow-up MRIs. In clinical research, advanced deep learning models trained 
on preoperative MRIs are often applied to assess follow-up scans, but their 
effectiveness in this context remains underexplored. Our study evaluates the 
performance of these models on follow-up MRIs, revealing suboptimal results. 
To overcome this limitation, we developed a Bayesian deep segmentation model 
specifically designed for follow-up MRIs. This model is capable of accurately 
segmenting various GBM tumor sub-regions, including FLAIR hyperintensity 
regions, enhancing tumor areas, and non-enhancing central necrosis regions. 
By integrating uncertainty information, our model can identify and correct 
misclassifications, significantly improving segmentation accuracy. Therefore, 
the goal of this study is to provide an effective deep segmentation model for 
accurately segmenting GBM tumor sub-regions in follow-up MRIs, ultimately 
enhancing clinical decision-making and treatment evaluation.
Methods: A novel deep segmentation model was developed utilizing 311 follow-
up MRIs to segment tumor subregions. This model integrates Bayesian learning 
to assess the uncertainty of its predictions and employs transfer learning 
techniques to effectively recognize and interpret textures and spatial details of 
regions that are typically underrepresented in follow-up MRI data.
Results: The proposed model significantly outperformed existing models, 
achieving DSC scores of 0.833, 0.901, and 0.931 for fluid attenuation inversion 

OPEN ACCESS

EDITED BY

Wael El-Deredy,  
Universidad de Valparaiso, Chile

REVIEWED BY

Seyed Abolfazl Valizadeh,  
Shahid Beheshti University, Iran
Rodrigo Salas,  
Universidad de Valparaiso, Chile

*CORRESPONDENCE

Shayan Shams  
 shayan.shams@uth.tmc.edu

†These authors have contributed equally to 
this work

RECEIVED 17 May 2025
ACCEPTED 02 October 2025
PUBLISHED 23 October 2025

CITATION

Kabir T, Hsieh K-L, Nunez L, Hsu Y-C, 
Rodriguez Quintero JC, Arevalo O, Zhao K, 
Zhu J-J, Riascos RF, Madadi M, Jiang X and 
Shams S (2025) A Bayesian deep 
segmentation framework for glioblastoma 
tumor segmentation using follow-up MRIs.
Front. Neuroimaging 4:1630245.
doi: 10.3389/fnimg.2025.1630245

COPYRIGHT

© 2025 Kabir, Hsieh, Nunez, Hsu, Rodriguez 
Quintero, Arevalo, Zhao, Zhu, Riascos, 
Madadi, Jiang and Shams. This is an 
open-access article distributed under the 
terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that the 
original publication in this journal is cited, in 
accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE  Original Research
PUBLISHED  23 October 2025
DOI  10.3389/fnimg.2025.1630245

https://www.frontiersin.org/journals/neuroimaging
https://www.frontiersin.org/journals/neuroimaging
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fnimg.2025.1630245&domain=pdf&date_stamp=2025-10-23
https://www.frontiersin.org/articles/10.3389/fnimg.2025.1630245/full
https://www.frontiersin.org/articles/10.3389/fnimg.2025.1630245/full
https://www.frontiersin.org/articles/10.3389/fnimg.2025.1630245/full
https://www.frontiersin.org/articles/10.3389/fnimg.2025.1630245/full
mailto:shayan.shams@uth.tmc.edu
https://doi.org/10.3389/fnimg.2025.1630245
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroimaging#editorial-board
https://www.frontiersin.org/journals/neuroimaging#editorial-board
https://doi.org/10.3389/fnimg.2025.1630245


Kabir et al.� 10.3389/fnimg.2025.1630245

Frontiers in Neuroimaging 02 frontiersin.org

recovery hyperintensity, enhancing tumoral and non-enhancing central 
necrosis, respectively.
Conclusion: Our proposed model incorporates brain structural changes 
following surgical and therapeutic interventions and leverages uncertainty 
metrics to refine estimates of tumor, demonstrating the potential for improved 
patient management.
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1 Introduction

Glioblastoma (GBM) is the most common, aggressive, and lethal 
primary malignant brain tumor in adults, with 12,000 new cases 
diagnosed annually in the United States (Senders et al., 2020). The median 
overall survival is 14.6–20.9 months for patients enrolled in clinical trials 
and 11 months for the real-world GBM population (Hohmann et al., 
2017; Zhu et al., 2017). Magnetic resonance imaging (MRI) is the most 
common imaging modality for brain tumor patients in both standard of 
care (SOC) and clinical trials due to its wide availability and distinct 
visualization of the brain’s anatomical structures (Bernstock et al., 2022). 
Patients diagnosed with GBM receive multiple MRIs: one or more before 
craniotomy, one within the first 72 h post-operation, and multiple 
follow-up MRIs. The follow-up MRI is about 4 weeks after concomitant 
treatment with external beam radiation therapy (XRT) and temozolomide 
(TMZ). Subsequent MRIs are performed every two to 3 months for GBM 
status assessment (Stupp et al., 2017; Tan et al., 2020).

Preoperative MRIs are essential for initial diagnosis, identifying the 
tumor’s location and extent of the disease, which aids in surgical planning. 
Postoperative MRIs provide immediate feedback on the success of the 
surgical intervention, but they contain surgically induced contrast 
enhancements, which can lead to difficulties distinguishing between post-
surgical changes (such as swelling, hemorrhage, or damage to healthy 
tissue) and residual tumor tissue (Rykkje et al., 2023). Therefore, brain 
tumor-treating physicians use follow-up MRIs to measure residual 
disease, determine tumor responses to treatment, detect tumor 
recurrence, and identify treatment-associated side effects in SOC and 
clinical trials (Ellingson et al., 2017). An accurate tumor assessment in 
follow-up MRI examinations is crucial for providing optimal care to GBM 
patients and for determining the efficacy of tested drugs or devices in 
clinical trials (Delgado-López and Corrales-García, 2016).

Manual estimation of tumor sizes is difficult, time-consuming, 
operator-dependent, and error-prone due to the irregularity of tumor 
contours and the potential for tumor infiltration into complex brain 
structures. Additionally, increased T1 signal changes in the surgical bed 
and surrounding areas can be misleading, particularly in postoperative 
and post-radiation (XRT) follow-up MRIs (Shukla et al., 2018), due to the 
presence of blood products, surgical debris, or post-radiation changes. In 
addition, some tumor regions may exhibit an infiltrative growth pattern 
that is not initially enhancing on MRIs (Zinn et al., 2011; Rao et al., 2016). 
Moreover, the tumors’ irregular shape, heterogeneous structure, tumor 
progression, and pseudo-progression (including craniotomy-related 
ischemic changes and radiation necrosis) complicate GBM evaluation, 

even for experienced neuro-radiologists (Arevalo et  al., 2019). This 
challenge is particularly critical in patients with high-grade gliomas, as 
residual areas of enhancement have been shown to correlate with survival 
(Molinaro et al., 2020). Furthermore, intra- and inter-rater variability in 
glioma tumor boundary estimation has been reported as 20 and 28%, 
respectively (Mazzara et al., 2004). This variability underscores the need 
for automated segmentation models in clinical settings, an ongoing 
unmet need in the neuro-oncology community.

Accurate segmentation of GBM is essential for effective treatment 
planning, monitoring, and prognosis. Precise delineation of tumor 
boundaries enables targeted surgical resection, maximizing tumor 
removal while preserving healthy tissue—an essential factor in 
maintaining neurological function. Segmentation also plays a critical role 
in assessing treatment response and detecting recurrence on follow-up 
MRIs, allowing clinicians to identify subtle changes in tumor size or 
characteristics over time (BRATS, 2015). Additionally, it provides valuable 
insights into tumor shape, size, and subregions, which are important 
predictors of patient survival and increasingly inform personalized 
treatment strategies (Kickingereder et al., 2016).

In the past few decades, several deep learning models have 
demonstrated exemplary performance in the medical domain, leading 
to a growing research trend in brain tumor segmentation. However, 
most of these models have focused primarily on preoperative MRIs, and 
their performance has not been evaluated on follow-up MRIs (Akkus 
et  al., 2015; Ghaffari et  al., 2020). Helland et  al. developed a deep 
segmentation model for early postoperative MRIs, but their Dice 
similarity score was lower than that of the standard preoperative 
segmentation models (Helland et  al., 2023). Only one software, 
BraTumIA, was trained and tested on a combination of preoperative, 
postoperative, and follow-up MRIs. However, its performance on 
postoperative and follow-up MRIs was inferior to its performance on 
preoperative MRIs (Meier et al., 2016). The only FDA-approved deep 
segmentation model, VBrain Longitudinal, was trained and tested on 
brain metastases using both MRI and computed tomography (CT), but 
its performance on follow-up MRIs has not been reported (Hu et al., 
2019). Additionally, Khalaf et al. highlighted reproducibility issues with 
the BraTumIA software, showing that it failed to accurately measure the 
enhancement region from MRIs acquired just 2 days apart (Abu Khalaf 
et  al., 2021). Despite the lack of scientific evaluation regarding the 
generalizability and performance of these models on follow-up MRIs, 
some automated preoperative MRI-based segmentation software is still 
used for tumor measurements and treatment effect assessments in 
clinical research settings (Zhu et al., 2012; Porz et al., 2014; Fyllingen 
et al., 2016).

Deep segmentation models typically produce point-based 
predictions without accounting for the associated uncertainty. 
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This lack of uncertainty awareness presents a significant 
challenge, as it can lead to models making overly confident, yet 
potentially incorrect, predictions on unseen data. Such 
confidence overlooks uncertainties arising from noisy data 
collection or those introduced during the modeling phase 
(Gawlikowski et al., 2021). In the context of GBM assessment, the 
model is likely to encounter test examples that differ substantially 
from the training data, which can result in unreliable predictions 
in certain cases. Incorporating uncertainty into the model’s 
outputs can help neuro-radiologists make more informed 
decisions regarding the reliability of these predictions. Among 
the various methods for estimating uncertainty, Bayesian learning 
is a well-established and effective approach for quantifying 
uncertainty mathematically (Gal and Ghahramani, 2016).

In this study, we have developed a comprehensive segmentation 
model named GBSUN (GlioBlastoma Segmentation and Uncertainty 
EstimatioN), specifically designed to delineate various GBM tumor 
subregions using follow-up MRI scans based on their distinct imaging 
characteristics. The GBSUN model accurately identifies different 
tumor areas, such as Fluid Attenuation Inversion Recovery (FLAIR) 
Hyperintensity Regions (FHR), Enhancing Tumor Regions (ER), and 
Non-Enhancing Central Necrosis Regions (NENR), while accounting 
for changes in brain and tumor structure post-surgery. Our framework 
builds on the original 3D U-Net model, enhanced with transfer 
learning and uncertainty estimation to improve performance.

GBM patients typically experience tumor recurrence during SOC 
treatment, with a median time of 7 months from diagnosis (Roger 
Stupp et al., 2005). Accurately diagnosing GBM at recurrence is 
challenging. When abnormal enhancement occurs outside the 
radiation field, standard MRI reliably identifies it as GBM progression. 
However, standard MRI struggles to differentiate between true tumor 
progression and radiation-induced necrosis (pseudo progression) 
when new or expanding enhancement is observed within the radiation 
field. Additionally, tumor recurrence in follow-up MRIs is often 
presented as small lesions, with very few cases showing non-enhancing 
regions. In our dataset, there are 47 cases of non-enhancing regions 
among 311 total cases. Follow-up MRIs generally show fewer 
non-enhancing necrotic regions due to surgical removal and post-
surgical healing. Neurosurgeons aim to remove as much of the tumor 
and necrotic tissue as possible during surgery, ensuring maximal 
excision of pathological tissue. Non-enhancing regions, often necrotic 
parts of the tumor, are typically included in the excision. As a result, 
less necrotic tissue remains in follow-up MRIs post-surgery. 
Furthermore, after tumor resection, the brain begins to heal, and any 
remaining necrotic tissue may shrink or become less visible over time, 
further contributing to the reduction of non-enhancing regions 
(Kessler and Bhatt, 2018). To address the challenge of segmenting 
NENR regions, which are less frequently represented in follow-up 
MRI data, we employed a transfer learning approach (Torrey and 
Shavlik, 2010). Transfer learning allows the model to leverage 
knowledge from pre-trained models on preoperative images, 
enhancing its ability to detect non-enhancing regions and improving 
NENR segmentation performance in follow-up MRIs.

Additionally, we  employed Bayesian learning to refine and 
enhance the predictive confidence of the proposed model. This 
approach also provides uncertainty estimation for various segmented 
areas, particularly around the tumor boundaries, where the risk of 
misclassification is highest. By integrating uncertainty information 

with transfer learning strategies, our model is better equipped to 
navigate the complexities inherent in follow-up MRI scans.

Finally, we enhanced our method by introducing case-specific 
threshold values for uncertainty calculations to minimize false 
negatives. To establish these thresholds, we computed the mean and 
variance of the background pixels, which represent the predominant 
class in follow-up MRIs. By sampling from the posterior distribution 
of the model’s parameters through multiple runs, we calculated the 
mean and variance for the FHR, ER, NENR, and background classes 
for each pixel. We then compared the mean values to the threshold: if 
the mean value of any class exceeds the threshold, that class is assigned 
to the pixel.

To validate the superiority of the GBSUN model, we conducted 
two sets of comparative evaluations. The first analysis focused on 
benchmarking the segmentation accuracy of GBSUN against state-of-
the-art (SOTA) models. The second comparison assessed how 
GBSUN’s uncertainty estimation approach compares to the Monte 
Carlo dropout (Papadopoulos and Yeung, 2001) technique, with the 
goal of enhancing the reliability, safety, and interpretability of the 
model’s predictions. We also demonstrated that SOTA models are 
insufficient for detecting GBM tumors in follow-up MRIs, highlighting 
the need for an improved model for follow-up evaluation.

Our contributions in this study can be summarized as follows:

	•	 Development of a novel Bayesian 3D U-Net model to improve 
predictive confidence and capture uncertainty.

	•	 Overcoming data limitations and enhancing model performance 
through transfer learning.

	•	 Leveraging uncertainty information to identify and correct 
potential misclassification areas.

	•	 Introducing case-specific threshold values for uncertainty 
calculations to minimize false negatives.

	•	 Accounting for changes in brain and tumor morphology when 
detecting tumor subregions by capturing spatial relationships 
between tumor subregions and surrounding brain structures.

	•	 Creation of the largest follow-up MRI dataset for GBM 
tumor detection.

2 Materials and methods

2.1 Dataset description

This study was approved by the institutional review board (HSC-
MS-17-0047). Informed consent was waived, and data collection and 
storage followed local guidance. The current study focused on a 
prospectively maintained institutional database with more than 500 
subjects with high-grade glial neoplasms. Patients with the following 
criteria were included in this study.

	•	 A confirmed diagnosis of glioblastoma IDH-wildtype (Wild 
type—270, Mutant—19, Missing—22)

	•	 Only adult subjects (≥18 years)
	•	 All scans included four MRI sequences: T1-WI (T1), 

T1-WI + gadolinium (T1-Gd), T2-WI (T2), and T2-Fluid 
Attenuated Inversion Recovery (T2-FLAIR)

	•	 Available pathology reports in the electronic medical 
record system
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	•	 Diagnosed between 2005 and 2022.

A total of 311 follow-up MRI scans were utilized in this study. 
These follow-up MRIs were acquired 4 weeks post-XRT and TMZ and 
every 2 months afterward. The initial, immediate postoperative MRIs 
were not used. We selected only one scan per subject, specifically the 
earliest scan after XRT-TMZ that met the inclusion criteria.

The dataset was randomly divided into 80, 10, and 10% for 
training, validation, and testing, respectively. Additionally, the cross-
validation technique (e.g., 5-fold cross-validation) was utilized to 
ensure robust performance evaluation across multiple subsets of the 
data. This approach helps mitigate the risk of overfitting and ensures 
that the model’s performance is not dependent on a single train-test 
split. The 10% test set is randomly sampled to ensure it adequately 
reflects the diversity of the entire dataset. The age distribution across 
the training, validation, and test sets is consistent. The patients’ 
demographic information and age distribution are summarized in 
Supplementary Tables 1, 2.

2.2 Image acquisition, preprocessing, and 
annotation process

MRIs were acquired following an institutionally standardized 
brain tumor protocol using a 1.5 T or a 3.0 T scanner. The 
isovolumetric MPRAGE 3D T1-weighted images of the brain were 
acquired in the axial plane after intravenous administration of 
contrast. Multiplanar reformats with a slice thickness of 1 mm were 
obtained. Detailed information about the MRI acquisition parameters 
is provided below in Supplementary Tables 3A,B.

The following steps—skull stripping, image registration, and bias 
correction—were performed to minimize the effects of varying 
magnetic fields and image resolution, as illustrated in Figures 1a–d.

	•	 Skull stripping: The Simple Skull Stripping (S3) (Roy and Maji, 
2015) method was used to remove the skull from all four MRI 
modalities. The S3 method uses the SRI24 template (Rohlfing 
et al., 2010) to estimate the brain area and create a mask to extract 
brain tissue.

	•	 Image registration: FreeSurfer (Fischl, 2012) was employed to 
register the MRI scans using the SRI24 template, ensuring the 
data were geometrically aligned (Toga and Thompson, 2001). 
This step facilitates consistent anatomical alignment across the 
different imaging modalities. We  employed FreeSurfer’s 
MRICoreg with a 12-degree-of-freedom affine transform to align 
each MRI scan to the SRI24 template. This configuration 
accounts for translations, rotations, scaling, and shear, thereby 
ensuring geometric consistency across subjects and scanners. 
Registration was performed with the following parameter 
settings: spatial scales of 2 and 4 voxels, a maximum of 4 
iterations, function tolerance of 1.0e-07, line minimization 
tolerance of 1.0e-03, and a saturation threshold of 9.999e+01. The 
estimated transforms (.lta files) were subsequently applied using 
FreeSurfer’s ApplyVolTransform, which by default performs 
resampling with trilinear interpolation into the template space.

	•	 Bias correction: N4 Bias Field Correction (Tustison et al., 2010) 
(SimpleITK) was applied to mitigate low-frequency intensity 
inhomogeneities introduced by scanner hardware and acquisition 

protocols. The N4 algorithm iteratively estimates a smooth 
multiplicative bias field and normalizes image intensities, thereby 
improving uniformity and enhancing the reliability of intensity-
based feature learning. We used the default parameter settings of 
the N4BiasFieldCorrection function in SimpleITK: input pixel 
type = sitkFloat64, maximum number of iterations = 50 (per 
level), bias field full width at half maximum = 0.15, number of 
histogram bins = 200, mask label = 1, shrink factor = 4, and 
convergence threshold = 0.0.

Together, these steps harmonized data acquired on different MRI 
platforms and replicated the preprocessing philosophy of BraTS, 
ensuring comparability with benchmark datasets and reproducibility 
of our results.

In our study, we  utilized the BraTS 2023 Adult Glioma 
dataset, which comprises clinically acquired, multi-institutional 
mpMRI scans across four sequences (T1, T1 + Gd, T2, and 
T2-FLAIR). For public release, all images are distributed as 
preprocessed NIfTI volumes, which have been co-registered to 
the SRI24 template, resampled to isotropic 1 mm3 resolution, and 
skull-stripped. As part of this preprocessing and de-identification 
pipeline, the original DICOM metadata are not available; 
therefore, scanner-specific acquisition parameters (e.g., field 
strength, TR, TE, flip angle) cannot be reported.

After image preprocessing, the MRIs were transferred to the 
neuro-radiology workstation for semi-automatic volumetric 
analysis and tumor segmentation. This analysis was conducted by a 
neuro-radiology researcher and a clinical fellow, with each case 
meticulously supervised by a board-certified neuroradiologist. 
ITK-SNAP (2019, version 3.8) was used to generate segmentation 
ground truth. Segmentation was carried out using an automatic 
region of interest (ROI) tool, which selects pixels within a specified 
signal intensity range. Once the automatic ROI was generated, the 
neuro-radiologists manually refined the ROIs, excluding areas 
incorrectly included in the volumetric analysis. Segmentation was 
performed across four MR sequences simultaneously. T1 and 
T1 + gadolinium (Gd) were used to segment the NENR and ER. T2 
and T2-FLAIR were used to identify FHR. Each scan labeled three 
tumoral regions: FHR, ER, and NENR. Figure 1e illustrates a sample 
image with labeled regions.

We were not able to differentiate between pre- and post-treatment 
enhancement due to the diverse etiologies within each classification. 
Pre-treatment enhancement could be attributed to tumor, infection, 
or inflammation, whereas post-treatment enhancement could result 
from tumor progression, perioperative ischemic changes, and 
radiation necrosis.

2.3 Proposed follow-up model description

2.3.1 Model overview
Figure 2 illustrates the high-level architecture of the proposed 

framework, which aims to achieve high segmentation accuracy while 
maintaining interpretability. As shown, the segmentation model takes 
four preprocessed MRI sequences as input and generates an initial 
prediction. Transfer learning was utilized to further enhance model 
performance, particularly in the NENR region. Finally, misclassified 
pixels are corrected using uncertainty information.
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2.3.2 3D-Unet model architecture and input 
formats

The proposed GBSUN model was developed based on the 3D 
U-Net (Wang et al., 2019). Figure 3A illustrates the basic structure of 
the model, comprising three major components: the encoder, decoder, 
and classification layer. The encoder extracts features from the input 
data, and the decoder projects the embedded features extracted by the 
encoder onto the pixel space to produce the classification results. The 
classification layer assigns classes to each pixel. The encoder is 

composed of 3D convolution layers with a kernel size of 3, a stride of 
1, and a dilation set to 1, along with max-pooling layers with a kernel 
size of 2. The decoder mirrors the encoder’s architecture, featuring 
upsampling and convolutional layers with the same parameter 
settings. (IntelLabs/bayesian-torch, 2022; Wen et al., 2018). The final 
classification layer has a kernel, stride, and dilation size of 1.

Both the pre-trained and follow-up models use an identical 3D 
U-Net encoder–decoder backbone, where the encoder channel 
progression is [4, 8, 16, 32]. Each encoder block expands the number 

FIGURE 1

Step-by-step preprocessing pipeline for multi-modal brain MRI data. Columns display four MRI sequences: T2-FLAIR, T2-weighted, T1-weighted, and 
T1-weighted with gadolinium contrast enhancement (T1 + Gd). Rows illustrate sequential preprocessing steps: (a) Raw Images—original MRI scans 
acquired directly from the scanner; (b) Skull-Stripped Images—removal of non-brain tissues to isolate intracranial structures; (c) Registered Images—
alignment of all modalities to a common spatial reference frame for voxel-wise correspondence; (d) Bias-Corrected Images—correction of intensity 
inhomogeneities to improve image uniformity and facilitate analysis; (e) Annotated Images—expert tumor labels overlaid on bias-corrected images, 
where Fluid Attenuation Inversion Recovery (FLAIR) Hyperintensity Regions (red), Enhancing Tumor Regions (green), and Non-Enhancing Central 
Necrosis Regions (blue).
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of channels by a factor of four, resulting in a bottleneck embedding 
dimension of 128 channels in both models. Consequently, the output 
embeddings from the two models are already of the same 
dimensionality and can be  fused directly without the need for 
additional projection layers. This design eliminates the risk of 
mismatched feature sizes during blending and ensures that the 
combined representation is well-defined.

Each MRI sequence is input into a separate CNN channel, as each 
sequence captures different tissue properties and provides unique, 
complementary information. This approach enhances feature 
representation, leading to more accurate diagnoses. Instead of relying 
on pre-extracted or manually defined features or patches, the model 
uses the entire MRI scan as input. This allows the model to process the 
full-resolution image, learning both spatial and contextual information 
necessary for accurate pixel-level classification. Furthermore, by 
processing the entire image, the model can capture the broader 
context and relationships between different regions, which is crucial 
for precise segmentation. This approach also preserves the spatial 
relationships between objects and features, which is essential for 
understanding how different areas of the image relate to one another.

2.3.3 Loss function
Unlike standard deep neural networks that generate single-point 

estimates, Bayesian learning quantifies both epistemic and aleatoric 
uncertainty (Gal and Ghahramani, 2016; Kendall and Gal, 2017). 
Aleatoric uncertainty arises from inherent noise in the data, such as 
sensor artifacts or patient motion, and reflects variability in the 
observations that cannot be reduced even with more data. In contrast, 
epistemic uncertainty stems from limited knowledge of the model 
parameters; it is high when the training data are sparse or 
unrepresentative and decreases as more data are incorporated. 
Bayesian methods capture epistemic uncertainty by maintaining a 
posterior probability distribution over model parameters, rather than 
relying on a single fixed set, thereby enabling the model to express 

confidence that adapts with data availability. At the same time, 
aleatoric uncertainty is captured through the probabilistic likelihood 
function, which models the inherent randomness in the data by 
representing outputs as distributions rather than deterministic values. 
By jointly modeling these two types of uncertainty, Bayesian learning 
not only improves prediction reliability but also provides calibrated 
confidence estimates, helping to highlight regions of low reliability 
and enhancing interpretability for clinical tasks.

To build the Bayesian U-Net, all 3D convolutional layers in the 
decoder were replaced with Flipout 3D convolutional layers 
(IntelLabs/bayesian-torch, 2022; Wen et al., 2018). The Flipout 3D 
convolutional layer is an efficient method that decorrelates gradients 
by implicitly sampling pseudo-independent weight perturbations for 
each example’s latent space. The prior mean and variance for the 
Flipout layers were set to zero and one, respectively, while the posterior 
mean and variance were set to zero and three, respectively.

This method allows the model to simultaneously optimize two 
types of loss functions: the region-based loss (generalized dice focal 
loss) and the distribution loss (Kullback–Leibler (KL) divergence loss).

	 = +     Total Loss Generalized Dice Focal Loss KL Divergence Loss	

Generalized dice focal loss is a weighted sum of generalized dice 
loss (Sudre et al., 2017) (GDL) and focal loss (Zhu et al., 2019; Lin 
et al., 2020) (FL). For the three-class classification problem, the GDL 
can be defined as
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FIGURE 2

Overview of the proposed brain tumor segmentation framework. Preoperative BraTS’23 MRI scans are used to train a 3D U-Net, whose best weights 
initialize a pretrained model for follow-up MRI data. Follow-up scans undergo preprocessing steps before being segmented by both the pretrained and 
a newly trained 3D U-Net. Predictions from both models are combined and refined using uncertainty-based misclassification correction to generate 
the final segmentation.
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Here, nr  is the gold standard and np  is the predicted probabilistic 
map over N image elements. l 2N

ln
n 1

1w

r
=

=
 
  
 
∑

, used to provide 

invariance to different label set properties, utilizes the correlation 
between dice score and region size. In the GDL, the  
contribution of each label is corrected by the inverse of  
its volume.

FL is a dynamically scaled cross-entropy loss that can down-
weight the contribution of easy examples and put more focus on 
hard and misclassified examples automatically during model 
training. The FL is defined as

	 ( ) ( ) ( )γ= − −1 logt t tFL p p p 	

Here 0γ >  reduces the relative loss for well-classified examples 
( >tp 0.5) and puts more weight on miss-classified examples. The γ  is 
a learnable focusing parameter 0γ ≥ .

Overall, we can compute the generalized Dice focal loss as

	 λ λ= ∗ + ∗   GDL FLGeneralized Dice Focal Loss GDL FL	

GDLλ  is the weight of GDL, and FLλ  is the weight of FL.
KL divergence between the prior distribution, P and the posterior 

distribution, Q is defined as

FIGURE 3

Detailed architecture and workflow of the proposed uncertainty-based brain tumor segmentation framework. (A) 3D U-Net model: The network 
follows an encoder–decoder structure with convolutional blocks, max-pooling for downsampling, and transposed convolutions for upsampling. 
Feature maps from the encoder are concatenated with the decoder via skip connections. (B) Transfer learning process: A 3D U-Net is first trained on 
preoperative MRI scans using generalized Dice focal loss, and the best weights are saved. For follow-up MRI scans, the encoder is initialized with 
pretrained weights and fine-tuned alongside a second 3D U-Net trained from scratch. Predictions from the pretrained and newly trained models are 
combined to produce the final segmentation. (C) Pixel class revision using uncertainty information: Potential misclassifications in the FHR, ER, and 
NENR are identified by analyzing pixel-wise uncertainty distributions. Misclassified pixels are categorized into high- and low-confidence errors, and 
pixel prediction variation guides whether a voxel is reassigned to the correct class.
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Minimizing the KL divergence between P and Q ensures that Q 
approximates P.

Thus, the proposed model can estimate epistemic and aleatoric 
uncertainties of each class (FHR, ER, NENR, and background) for 
each pixel. Transfer learning and uncertainty information were 
leveraged to improve model performance. The details of each process 
are provided below:

2.3.4 Transfer learning
Transfer learning involves transferring knowledge from a related 

task to improve generalizability, especially when the available dataset 
is too small (Torrey and Shavlik, 2010). In our dataset, only 47 
follow-up MRI cases contain NENR regions, which is insufficient for 
training a complex model such as 3D-UNet. Preoperative MRIs, 
however, typically have a higher incidence of NENR regions. 
Therefore, we trained a model using preoperative MRIs to learn the 
morphology and spatial characteristics of non-enhancing regions. The 
learned information was then transferred to the follow-up model for 
detecting NENR regions. Figure 3B illustrates the transfer learning 
process in the proposed model.

The preoperative model was trained by preoperative MRIs from 
the BraTS’23 datasets (BRATS, 2015; Bakas et al., 2017, 2018) and 
optimized by generalized dice focal loss (Figure 3B). The model with 
the lowest validation loss was saved for knowledge transfer. By 
freezing these weights during follow-up training, we ensured that the 
knowledge from the preoperative data was preserved, allowing the 
model to retain critical baseline features learned from pre-operative 
MRIs, especially for NENR regions.

In parallel, another model was trained with randomly initialized 
weights using institutional follow-up MRIs and optimized with both 
generalized dice focal loss and cross-entropy for the non-enhancing 
region (Figure 3B). Training this model from scratch on follow-up 
MRIs enables it to capture features specific to the follow-up MRIs, 
enhancing its ability to identify tumor regions and other changes 
unique to the post-surgical context. Finally, the embeddings from 
both the preoperative and follow-up models were combined in the 
final classification layer. By combining the outputs of both models in 
the final prediction layer, we  leveraged the strengths of each: the 
preoperative model for baseline tumor characteristics and the 
follow-up model for post-treatment adaptations.

The epoch vs. loss graph and epoch vs. Dice similarity score curve 
for both training and validation data are provided in 
Supplementary Figures 1A,B, respectively.

2.3.5 Utilizing uncertainty information
Follow-up MRIs contain surgical-related defects of the skull and 

brain parenchyma, including burr hole and tumor tissue removal, 
which results in a cavity and bone repositioning. These anatomical 
changes of the brain increase the complexity of measuring tumor 
subregions and signals in follow-up MRIs compared to preoperative 
MRIs. Additionally, tumor subregions in follow-up MRIs are often not 
contiguous, unlike in preoperative scans, and may be surrounded by 
either normal brain tissue or surgical cavities. Both normal brain 
tissue and surgical cavities are treated as background.

As a result, the background class becomes more dominant than 
the other three classes (FHR, ER, NENR), leading to potential 
overestimation. The error-prone region for predicting background 
distribution is larger than for the other tumor regions for a given pixel, 
increasing the likelihood of misclassification between these three 
classes and the background.

To address the issue of misclassification of pixels as background, 
we utilize pixel uncertainty to improve the model’s performance. The 
following steps are employed when a pixel is misclassified as the 
background class:

	 1	 Model Outputs: From a single run of the model, each pixel 
receives four probability scores corresponding to four classes: 
fp  for FHR, ep  for ER, np  for NENR, and bp  for the background 

class. From multiple runs of the model, we gather a distribution 
( )µ σ 2,f f fd , ( )µ σ 2,e e ed , ( )µ σ 2,n n nd , and ( )µ σ 2,B B Bd . The 

uncertainty for each class is represented by the variance of its 
score distribution.

	 2	 Threshold Calculation: We compute a threshold value using the 
background class’s mean (µ )B  and variance (σ 2 )B .

	 µ λ σ= − ×B Bthreshold

		  Where λ is a hyperparameter that controls the weight assigned 
to the variance. In our analysis the optimal value λ = 0.1 was 
determined by tuning on the validation set. We have added 
Supplementary Table 5 to display different lambda values and 
their corresponding dice similarity scores.

	 3	 Misclassification Detection: If the mean (µ f , µe, µn) of any 
other three classes exceeds the threshold, we consider that the 
pixel has been misclassified as background.

	 4	 Pixel Reclassification: If only one class satisfies the condition in 
step 3, the pixel is reclassified from background to that class.

	 5	 Resolving Ambiguity: If multiple classes satisfy the condition 
in step 3, the class with the lowest variance is chosen as the 
final classification.

Figure 3C illustrates the detailed process of utilizing uncertainty 
information to improve the model performance, where ER is 
misclassified as normal brain regions.

2.3.6 Model training and hyperparameter details
To minimize domain confusion between pre- and post-operative 

MRI, we first trained on pre-operative scans, where non-enhancing 
necrotic regions (NENR) are more consistently represented, and 
then fine-tuned on post-operative scans to adapt to tissue changes 
after resection. This sequential strategy reduces overfitting to one 
domain and improves robustness in distinguishing true tumor tissue 
from post-surgical alterations. We employed the Adam optimizer 
with a learning rate of 0.001 and a weight decay of 1e-5. The batch 
size was set to 8. The details of hyperparameters are mentioned in 
Supplementary Table  4. All experiments were conducted on an 
NVIDIA Tesla A100-SXM4-40GB platform (CUDA 12.7; PyTorch 
1.14.0a0 + 44dac51). Model training required approximately 70 h for 
100 epochs with a batch size of 8. The inference time for a single 
patient is approximately 1 min for 1,000 stochastic forward path 
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using a server with 16 NVIDIA Tesla A100-SXM4-40GB GPU 
(CUDA 12.7).

2.4 Performance evaluation matrices

The Dice Similarity Coefficient (DSC) measures the spatial 
overlap between the model’s prediction and the ground truth. It is 
used to evaluate the segmentation results in terms of accuracy 
and generalizability.

	

×
=

2    
      

the Area of OverlapDSC
Total number of pixels in both images 	

The Jaccard Index (JI) is a metric used to compare the similarity 
and diversity between the predicted and ground truth segments. It is 
defined as the size of the intersection of the two sets divided by the 
size of their union.

	
=

  
  

Area of OverlapJI
Area of Union 	

Hausdorff distance (HD) is the maximum distance from any point 
in one set to the nearest point in the other set. Specifically, for two sets 
of points, X and Y , the Hausdorff distance is defined as:

	
( ) ( ) ( ){ }∈ ∈ ∈ ∈=, max max min , ,max min ,x X y Y y Y x XHD X Y d x y d x y

In addition to overlap and boundary metrics (DSC, Jaccard, 
Hausdorff), we  quantify probability calibration and uncertainty 
utility using the Expected Calibration Error (ECE), Uncertainty 
Calibration Error (UCE), Brier score, and Negative 
Log-Likelihood (NLL).

Expected Calibration Error (ECE) quantifies how closely 
predicted confidences match observed accuracy. Uncertainty 
Calibration Error (UCE) measures how well a model’s predicted 
uncertainty matches its observed error.

	
( ) ( )
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= −∑
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Here, B is used to represent “bins” and m is the bin number, while 
n represents the total number of evaluated predictions.

Brier score measures the mean squared error of predicted 
probabilities against the true outcomes.

	
( )

=
= −   ∑ 2

1

1 , 0,1
n

i i
i

Brier Score p x range
n

Here, n is the total number of evaluated predictions, ip  is predicted 
probabilities, iy  is the true outcome.

Negative Log-Likelihood (NLL) measures how much probability 
a model assigns to the true class, averaged over samples.

	
( ) ( )θ

=
− = − ∑

1

1Negative log Likelihood NLL log |
n

i i
i

P y x
n

Here, n is the total number of evaluated predictions, iy  is 
prediction, ix  is the true outcomes.

2.5 Statistical analysis

The Wilcoxon signed-rank test was selected because it is a 
non-parametric test designed for paired data, which is suitable for 
comparing segmentation performance metrics (e.g., Dice coefficients) 
of different models evaluated on the same set of subjects. Unlike 
parametric alternatives (e.g., paired t-tests), the Wilcoxon test does 
not assume normality of the performance distributions, which is 
important since metrics such as Dice coefficients and Hausdorff 
distances are often non-normally distributed and bounded. To address 
the issue of conducting multiple comparisons across different tumor 
subregions, we applied the Bonferroni correction, which provides a 
conservative adjustment to control the family-wise error rate. This 
combination ensures a robust and statistically sound evaluation of 
performance differences between models in our study.

3 Results

3.1 Follow-up MRI segmentation 
performance comparison

The GBSUN model was benchmarked against previous studies 
that performed segmentation on glioblastoma (GBM) using 
preoperative, postoperative, or follow-up MRI scans. All results are 
reported using the same test set for all models, with the exception of 
those by Helland et al. (2023) and BraTumIA (Meier et al., 2016). 
Helland et  al. did not develop a new model but assessed the 
performance of previously established nnU-Net and AGU-Net models 
using early postoperative MRIs. Additionally, we were not able to 
locate the source code or pre-trained model for the BraTumIA 
framework; however, their manuscript indicates that they evaluated 
their model on preoperative, postoperative, and follow-up MRIs. 
Consequently, we relied on the Dice Similarity Coefficients (DSC) 
reported in their respective studies for these models.

The GBSUN model achieved average DSC scores of 0.833, 0.901, 
and 0.931 for the FHR, ER, and NENR regions, respectively, in 
follow-up MRI segmentation. Our proposed model consistently 
outperformed other models, with average improvements of 14.25, 19, 
and 24.38% for FHR, ER, and NENR (Table 1). The Jaccard Index (JI) 
and Hausdorff Distance (HD) values for the GBSUN model were 0.73, 
0.85, 0.96, and 1.81, 0.56, 0.13 for FHR, ER, and NENR, respectively. 
The proposed model outperformed other models by an average of 37, 
35, and 4% for FHR, ER, and NENR in JI, and by 32, 28, and 82% in 
HD evaluation metrics.

Figure  4 illustrates the follow-up model performance on two 
cases: Case 1, a well-performing case, and Case 2, a case with 
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TABLE 1  Segmentation performance comparison with other studies using Dice similarity score, Jaccard Index, and Hausdorff distance.

Model Name MRIs were 
used in the 
original 
model 
training

Dice similarity score Jaccard index Hausdorff distance

FHR ER NENR FHR ER NENR FHR ER NENR

GBSUN Follow-up 0.833 0.901 0.931 0.76 0.85 0.96 1.81 0.56 0.13

Helland et al. (2023)
Early 

postoperative
X X X X X X X X X

BraTumIA (Meier 

et al., 2016)

Pre/postoperative, 

follow-up
X 0.23 0.63 X X X X X X

2D U-Net (Dong 

et al., 2017)
Preoperative 0.74 0.77 0.67 0.55 0.73 0.57 3.19 0.55 3.13

3D-Unet (Wang 

et al., 2019)
Preoperative 0.68 0.84 0.83 0.68 0.84 0.83 2.34 1.31 0.200

3D U-Net (self-

ensembled & deeply 

supervised) (Henry 

et al., 2021)

Preoperative 0.80 0.74 0.73 0.80 0.74 0.73 1.94 0.56 0.67

3D Dilated Multi-

Fiber Network 

(Chen et al., 2019)

Preoperative 0.79 0.89 0.82 0.79 0.89 0.82 2.32 0.53 0.55

Knowledge 

Distillation 

(Lachinov et al., 

2020)

Preoperative 0.84 0.74 0.75 0.84 0.74 0.75 1.5 0.56 0.22

ResUNet (Zhang 

et al., 2017)
Preoperative 0.51 0.73 0.54 0.51 0.73 0.54 3.02 0.85 1.70

ResNet (Zhang et al., 

2017)
Preoperative 0.71 0.55 0.57 0.71 0.55 0.57 4.56 9.32 6.98

FCNN (Zhang et al., 

2017)
Preoperative 0.58 0.66 0.51 0.58 0.66 0.51 3.56 1.26 2.63

Autoencoder 

Regularization/

NvNet (Myronenko, 

2019)

Preoperative 0.52 0.73 0.71 0.52 0.73 0.71 3.24 0.56 1.72

Inter-slice Context 

Residual Learning/

ConResNe t (Inter-

Slice Context 

Residual Learning, 

2021)

Preoperative 0.53 0.74 0.52 0.53 0.74 0.52 2.84 0.56 2.86

Cascaded 

Anisotropic CNN 

(Wang et al., 2018)

Preoperative 0.81 0.74 0.77 0.81 0.74 0.77 2.13 0.56 0.45

3D U-Net with 

Attention (Nodirov 

et al., 2022)

Preoperative 0.74 0.86 0.87 0.25 0.28 0.02 1.81 0.67 0.59

SegNet 

(Badrinarayanan 

et al., 2015)

Preoperative 0.30 0.34 0.05 0.25 0.28 0.02 4.01 4.47 8.28

nnU-ne t (Isensee 

et al., 2021)
Preoperative 0.48 0.56 0.44 0.42 0.51 0.39 3.25 1.66 3.30

(Continued)
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underperformance. The DSC for case 1 is 0.92 (FHR), 0.91 (ER), and 
0.98 (NENR). In contrast, for Case 2, the DSC values are 0.76 (FHR), 
0.82 (ER), and 0.85 (NENR). The shape and structure of the tumor 
subregions largely influence this performance variation. Case 1 
exhibits a continuous shape for tumor subregions, whereas case 2 
displays fragmented FHR and ER regions, which impact the model’s 
performance. Additionally, we report the uncertainty of the model 
prediction (Figure  3, case 3) to highlight the proposed model’s 
reliability and trustworthiness. The highest uncertainty was observed 
at the boundaries of the tumor subregions, indicating regions where 
segmentation errors are more likely to occur.

3.2 Ablation study

We conducted an ablation study to evaluate the contribution of 
each component: (i) the baseline 3D U-Net, (ii) 3D U-Net with 
transfer learning, (iii) 3D U-Net with Monte Carlo dropout, (iv) 3D 
U-Net with label smoothing, (v) 3D U-Net with test-time 
augmentation, (vi) 3D Bayesian U-Net, and (vii) the full GBSUN 
model. The results, presented in Table 2, show that transfer learning 
consistently improves segmentation performance across all tumor 
subregions. Meanwhile, the Bayesian component enhances calibration 
and robustness but yields lower Dice scores when applied in isolation 
(Table 2). Alternative uncertainty strategies, such as label smoothing 
and test-time augmentation, produced even lower DSCs, particularly 
for the enhancing and non-enhancing regions. In contrast, the full 
GBSUN model achieved the highest performance across all regions 
(0.833 ± 0.088, 0.901 ± 0.073, and 0.931 ± 0.065). The ablated version 
without bias correction, however, showed reduced performance, 
underscoring the importance of calibration. Taken together, these 
findings demonstrate that transfer learning and architectural 
refinements drive significant gains in segmentation accuracy, while 
the Bayesian component provides complementary benefits by 
enhancing reliability and interpretability when integrated into the 
full framework.

Additionally, Table 2 illustrates the comparative performance 
of the proposed GBSUN model against seven 3D U-Net baselines 
on follow-up MRIs across three glioblastoma sub-regions: FHR, 
ER, and NENR. For each method and region, we  report the 

subject-level mean ± standard deviation (SD) of DSC, a 95% bias-
corrected and accelerated (BCa) bootstrap confidence interval, 
and a bootstrap p-value for the null hypothesis that the mean 
DSC equals 0.80 (two-sided). GBSUN achieves the highest mean 
DSC in all three sub-regions: FHR 0.833, ER 0.901, NENR 0.931 
with 95% BCa CIs entirely above the 0.80 benchmark [0.806–
0.851], [0.869–0.910], [0.887–0.928] and corresponding p-values 
≤0.013, indicating performance significantly exceeding 0.80 
across the board. Relative to a plain 3D U-Net, the absolute gains 
are +0.104 (FHR), +0.049 (ER), and +0.052 (NENR). Even against 
the strongest non-GBSUN variants, GBSUN still leads. For 
instance, FHR + 0.030 over 3D U-Net + transfer learning (0.803), 
and a clear margin on the most challenging NENR class (0.931 
vs. the next best baseline 0.879). GBSUN is also more consistent 
across subjects: its standard deviations are among the smallest, 
especially for NENR (±0.065), and its CIs are relatively tight (e.g., 
NENR width ≈ 0.041). In contrast, several alternatives either fail 
to meet the 0.80 threshold (e.g., label smoothing, test-time 
augmentation, 3D Bayesian U-Net on NENR) or are inconclusive 
with CIs that cross 0.80 (e.g., MC-dropout on ER/NENR; transfer 
learning on FHR). Finally, the “GBSUN without bias correction” 
ablation shows noticeable drops in FHR and ER means, as well as 
a loss of significance, underscoring the importance of the 
intensity bias-field correction in our preprocessing pipeline. 
Overall, GBSUN is the only method that consistently meets the 
clinical quality bar across all sub-regions, with strong and well-
calibrated performance.

Figure 5 visually demonstrates the improved performance using 
transfer learning and uncertainty information for three cases. In each 
case, some regions are misclassified by either the 3D U-Net or the 3D 
U-Net with transfer learning. However, the 3D U-Net with uncertainty 
and transfer learning consistently provides more accurate 
segmentation and reduces misclassification compared to the 
other models.

Moreover, to evaluate the contribution of bias field correction, 
we compared the full GBSUN pipeline with a variant where N4 bias 
field correction was omitted (Table 2). Without bias correction, Dice 
scores decreased across tumor subregions (e.g., FHR: 0.761 vs. 0.833; 
ER: 0.854 vs. 0.901; NENR: 0.921 vs. 0.931) and showed larger 
variability, particularly in the FHR and enhancing tumor regions. This 

TABLE 1  (Continued)

Model Name MRIs were 
used in the 
original 
model 
training

Dice similarity score Jaccard index Hausdorff distance

FHR ER NENR FHR ER NENR FHR ER NENR

Swin-Unet (Cao 

et al., 2023)
Preoperative 0.67 0.81 0.56 0.64 0.79 0.46 2.67 0.55 6.01

UNETR 

(Hatamizadeh et al., 

2022)

Preoperative 0.59 0.78 0.69 0.58 0.76 0.68 3.33 0.55 6.50

nnU-net (Isensee 

et al., 2021)
Follow-up 0.80 0.76 0.29 0.77 0.71 0.22 2.24 0.55 7.56

Swin-Unet (Cao 

et al., 2023)
Follow-up 0.65 0.67 0.15 0.63 0.65 0.1 2.65 0.86 8.18

‘X’ means the model was not evaluated. Bold values: best performance.
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FIGURE 4

Brain tumor segmentation results using the proposed model. Top panel (Case 1 and Case 2): Input MRI modalities, corresponding ground truth 
annotations (red: FLAIR hyperintense region; green: enhancing tumor; blue: non-enhancing central necrosis), and model predictions. Middle panel 
(Case 3): Predictions with associated uncertainty maps for the FLAIR hyperintense region (top row) and enhancing region (bottom row), where 
uncertainty values highlight areas with a higher likelihood of misclassification. Bottom panel: Zoomed-in views of selected regions of interest (ROIs) 
demonstrate segmentation errors more clearly. In these magnified panels, overlays show mismatches between ground truth and prediction, as well as 
uncertainty contours highlighting boundaries prone to misclassification.
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demonstrates that N4 correction is especially beneficial in our multi-
scanner dataset, as it mitigates scanner-related intensity 
inhomogeneities and harmonizes tissue contrast. The improvements 

confirm that bias correction not only stabilizes performance but also 
reduces variance, supporting its inclusion as a critical preprocessing 
step for robust segmentation.

TABLE 2  GBSUN model’s improved DSC scores for tumor subregion segmentation.

Model Name Fluid attenuation inversion 
recovery region (FHR) 
(Mean ± STD), 95% CI, 

p-value

Enhancing Tumor Region 
(ER) (Mean ± STD), 95% CI, 

p-value

Non-enhancing Region 
(NENR) (Mean ± STD), 95% 

CI, p-value

GBSUN (0.833 ± 0.088), [0.806, 0.851], 0.0132 (0.901 ± 0.073), [0.869, 0.910], 0.0004 (0.931 ± 0.065), [0.887, 0.928], 0.0004

3D U-Net (0.729 ± 0.101), [0.697, 0.750], 0.0004 (0.852 ± 0.078), [0.819, 0.862], 0.0008 (0.879 ± 0.074), [0.830, 0.877], 0.0004

3D U-Net with transfer learning (0.803 ± 0.093), [0.774, 0.823], 0.9090 (0.898 ± 0.059), [0.872, 0.905], 0.0004 (0.865 ± 0.095), [0.801, 0.861], 0.0367

3D U-Net with Monte Carlo 

dropout

(0.757 ± 0.104), [0.725, 0.779], 0.0008 (0.844 ± 0.132), [0.786, 0.860], 0.2043 (0.832 ± 0.109), [0.760, 0.827], 0.740

3D U-Net with label smoothing (0.760 ± 0.134), [0.718, 0.788], 0.0079 (0.715 ± 0.221), [0.619, 0.744], 0.0004 (0.574 ± 0.494), [0.247, 0.557], 0.0004

3D U-Net with test time 

augmentation

(0.766 ± 0.145), [0.720, 0.796], 0.0307 (0.702 ± 0.209), [0.613, 0.730], 0.0004 (0.171 ± 0.254), [0.000, 0.164], 0.0004

3D Bayesian U-Net (0.752 ± 0.154), [0.703, 0.784], 0.0075 (0.860 ± 0.215), [0.664, 0.784], 0.0231 (0.532 ± 0.499), [0.204, 0.517], 0.0004

GBSUN without bias correction (0.761 ± 0.338), [0.659, 0.834], 0.2247 (0.854 ± 0.309), [0.720,0.893],0.8994 (0.921 ± 0.192), [0.794,0.913], 0.0831

3D U-Net without bias correction (0.679 ± 0.111), [0.655, 0.750], 0.0004 (0.789 ± 0.058), [0.819,0.862], 0.0023 (0.799 ± 0.084), [0.810,0.847], 0.0005

Bold values: best performance.

FIGURE 5

Comparison of 3D-UNet models for brain tumor segmentation. Columns show the original MRI, ground truth, baseline 3D-UNet, 3D-UNet with 
transfer learning (TL), and 3D-UNet with TL and uncertainty information (UI). Rows correspond to the FHR region (red), ER region (green), and NENR 
region (blue). Incorporating TL improves boundary delineation, while TL combined with UI reduces false positives and enhances agreement with 
ground truth. These results demonstrate that transfer learning and uncertainty information together yield more reliable and generalizable tumor 
segmentation across multiple patients’ MRIs.
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Finally, we assessed robustness by measuring the change in Dice 
similarity coefficient (ΔDSC) under clinically plausible bias 
perturbations to emulate distribution shift. The Bayesian model 
exhibited smaller degradation than the non-Bayesian counterpart 
(ΔDSC: FHR = 0.05, ER = 0.07, NENR = 0.14), and the complete 
GBSUN pipeline showed the smallest ΔDSC overall (FHR = 0.07, 
ER = 0.05, NENR = 0.01), indicating superior robustness to 
acquisition and preprocessing variability. As summarized in Table 2, 
we compared the full GBSUN pipeline with a 3D U-Net baseline, each 
evaluated with and without N4 bias-field correction. Omitting bias 
correction reduced Dice scores across all tumor subregions (FHR, ER, 
and NENR).

3.3 Statistical analysis

We conducted the Wilcoxon signed-rank test to compare the Dice 
Similarity Coefficient (DSC) values of different models against 
GBSUN across all test samples for various regions reported in Table 3 
(with 95% confidence interval). A p-value of less than 0.05 indicates 
that the differences in model performance are statistically significant.

In addition, we  conducted paired Wilcoxon signed-rank tests 
comparing GBSUN with each comparator model within the FHR, ER, 
and NENR regions, with Bonferroni adjustment for multiple 
comparisons (Supplementary Table 6). Adjusted p-value on the order 
of 10−14 to 10−9 provides robust evidence that the GBSUN model 
consistently and significantly outperforms the other models.

3.4 Calibration and uncertainty-aware 
performance

We further evaluated the reliability of GBSUN using 
complementary calibration and probabilistic accuracy metrics. The 
voxel-wise Uncertainty Calibration Error (UCE) was 0.007, indicating 
excellent agreement between predicted uncertainty and empirical 

error. UCE could not be computed for the 3D U-Net and its transfer-
learning variant because these models produce point estimates rather 
than probabilistic predictions. UCE requires per-sample uncertainty 
scores to compare predicted uncertainty with empirical error; in their 
absence (i.e., with hard labels only), any constant surrogate collapses 
UCE to a trivial quantity that merely reflects overall error.

The mean voxel-wise Expected Calibration Error (ECE) was 
0.007484 overall, with class-wise ECEs of 0.000434 (FHR), 0.004315 
(ER), and 0.004459 (NENR), demonstrating consistently low 
miscalibration across classes (Supplementary Table 7). Proper scoring 
rules further substantiated these findings: the average Brier score and 
Negative Log-Likelihood (NLL) were 0.002645 and 0.060173 for FHR, 
0.002499 and 0.058981 for ER, and 0.002503 and 0.037054 for NENR, 
respectively. By contrast, both the 3D U-Net and its transfer-learning 
variant yield substantially higher ECE, Brier, and NLL values, and the 
3D Bayesian U-Net likewise lags behind GBSUN by a considerable 
margin. Taken together, these low UCE/ECE values and favorable 
Brier/NLL scores indicate that GBSUN’s voxel-wise probabilities are 
both well-calibrated and informative, supporting robust, trustworthy 
inference across all evaluated classes. Additionally, Bayesian 
components reduce performance variability; for example, GBSUN 
exhibits a small NENR DSC SD (±0.065) (Table 2), indicating more 
consistent case-level behavior, which is clinically valuable.

Moreover, we also generated a reliability curve to assess probability 
calibration of the GBSUN model (Supplementary Figure 4). Across 
panels, the curves closely track the diagonal, indicating good 
agreement between predicted probabilities and observed values. 
Consistent with the visual impression, Expected Calibration Error 
(ECE) is low in all cases—Overall = 0.007484, FHR = 0.000434, 
ER = 0.004315, and NENR = 0.004459—supporting that GBSUN’s 
voxel-wise probabilities are well calibrated.

Additionally, we  evaluated “uncertainty-as-error-detector” 
performance by scoring each voxel with predictive variance/entropy 
and classifying voxels as incorrect (positive) versus correct (negative). 
Threshold-swept receiver-operating characteristics (ROCs) 
demonstrate that GBSUN consistently ranks errors more effectively 

TABLE 3  The Wilcoxon signed-rank test on the DSC values between the GBSUN model and other models.

Model Name FHR (p-value) ER (p-value) NENR (p-value)

2D U-Net 7.72e-14 1.82e-12 3.30e-19

3D-Unet 3.84e-08 2.28e-10 1.38e-34

3D U-Net (self-ensembled & deeply supervised) 3.78e-05 8.07e-12 3.95e-31

3D Dilated Multi-Fiber Network 1.15e-05 4.12e-06 2.34e-23

Knowledge Distillation 7.25e-03 8.07e-12 9.39e-30

ResUNet 8.53e-25 2.40e-12 1.04e-44

ResNet 1.00e-09 1.60e-22 7.23e-41

FCNN 9.09e-19 2.49e-16 6.51e-50

Autoencoder Regularization/NvNet 6.36e-24 2.40e-12 2.23e-32

Inter-slice Context Residual Learning/ConResNet 4.77e-23 8.07e-12 4.02e-48

Cascaded Anisotropic CNN 1.28e-04 8.07–12 3.22e-28

3D-Unet with Attention 3.84e-08 4.54e-07 1.09e-15

nnU-net 7.34e-34 5.91e-39 9.22e-35

SegNet 2.42e-27 6.17e-22 5.85e-48

The p-value shows the significance of DSC variation.
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than the non-Bayesian 3D U-Net (Supplementary Figure 5) for each 
class, the GBSUN ROC curves dominate—achieving higher true-
positive rates at comparable false-positive rates and larger areas under 
the ROC (AUROC).

Finally, we evaluated the GBSUN model using a risk–coverage 
(RC) curve to assess how effectively its uncertainty ranking enables 
selective prediction (Supplementary Figure 6). The voxel-level RC 
curve exhibited the expected monotonic behavior: risk was lowest for 
the most-confident voxels and increased as coverage expanded, then 
gradually plateaued near full coverage, indicating that errors are 
concentrated in the low-confidence tail.

4 Discussion

In this study, we developed GBSUN (GlioBlastoma Segmentation 
and Uncertainty estimatioN), designed for accurate segmentation of 
follow-up MRIs. The GBSUN model effectively identifies various 
areas, including the Fluid Attenuation Inversion Recovery (FLAIR) 
region (FHR), the Enhancing Tumor Region (ER), and the 
Non-Enhancing Central Necrosis Region (NENR).

Accurate follow-up MRI segmentation plays a crucial role in 
planning surgery and evaluating treatment in glioblastoma (GBM) 
patients. It allows clinicians to monitor tumor progression, adjust 
treatment plans, and provide reliable data for clinical trials (Olar and 
Aldape, 2014). Additionally, it facilitates optimal tumor removal 
during surgery while minimizing damage to healthy brain tissue (Liu 
et  al., 2023; Yabo and Heiland, 2024). In radiotherapy, precise 
segmentation ensures targeted radiation delivery to the tumor while 
sparing surrounding healthy tissue. However, achieving accurate 
segmentation in follow-up MRIs remains challenging due to factors 
such as 1) changes in tumor appearance over time, 2) variability in 
tumor shape and size, 3) artifacts that complicate the distinction 
between tumor and healthy tissue, and 4) partial volume effects and 
edema present in follow-up images.

Our design began from three empirical constraints of follow-up 
GBM MRI segmentation: (i) distribution shift between pre- and post-
treatment anatomy (surgical cavity, scar, radiation changes), (ii) class 
imbalance and scarcity, especially for NENR (47/311 cases), and (iii) 
volumetric inference cost (four MRI channels, 3D U-Net). 
We required a method that provides pixel-wise epistemic uncertainty 
to flag boundary errors, integrates cleanly with a 3D U-Net, and keeps 
the parameter footprint near 1 × to remain deployable.

We considered two widely used practical Bayesian approximations, 
Monte Carlo (MC) dropout, and deep ensembles, alongside a 
variational Bayesian network with Flipout convolutional layers. Deep 
ensembles generally offer strong calibration but would require 
training, storing, and serving K independent 3D models and 
performing K full 3D forward passes per case (multiplying both 
training time and memory by K). MC dropout keeps a single model, 
but its uncertainty quality is sensitive to where dropout is inserted in 
encoder/decoder skip pathways, and it can interact unfavorably with 
normalization layers in segmentation pipelines.

Given these constraints, we selected a Bayesian 3D U-Net with 
Flipout variational convolutions in the decoder, trained with a KL 
term plus generalized Dice–focal loss. This design preserves a single-
model footprint, yields posterior samples by weight perturbation at 
test time (tunable cost via T stochastic passes), and integrates naturally 

with our transfer-learning pathway for NENR. In ablations (Table 2), 
this Bayesian model outperformed the same 3D U-Net with MC 
dropout, particularly for FHR and NENR, and enabled our 
uncertainty-guided relabeling rule (case-specific threshold using 
background mean/variance, λ = 0.1) that further reduced false 
negatives. We did not train deep ensembles due to the K × compute/
storage overhead for 3D volumes.

Bayesian component using Flipout layers uses a distribution for 
each learnable parameter in the model and enables posterior sampling 
during inference. Multiple stochastic forward passes generate voxel-
wise uncertainty maps in addition to segmentation outputs. These 
maps quantify the variance of pixel-level predictions and assign 
uncertainty scores to each voxel, which significantly reduced 
misclassification rates across all tumor subregions, particularly in the 
FHR and NENR regions (Table 2), where boundaries are visually 
ambiguous. Compared with the Monte Carlo–dropout variant in 
Table 2, GBSUN outperforms across all subregions than MC dropout, 
especially in enhancing/non-enhancing regions. GBSUN’s transfer 
learning and targeted refinements, combined with a FlipOut-based 
Bayesian component, deliver both higher accuracy and calibrated, 
spatially localized uncertainty.

Our findings demonstrate significant improvements compared to 
the previous study in terms of the DSC across all evaluated regions—
FHR, ER, and NENR—illustrating the effectiveness of our approach 
in accurately delineating tumor subregions in follow-up MRIs. The 
GBSUN model achieved DSC scores of 0.833, 0.901, and 0.931, 
representing average enhancements of 14.25, 19, and 24.38%, 
respectively, over prior models. The GBSUN model achieved a UCE 
(Uncertainty Calibration Error) of 0.007, demonstrating that predicted 
uncertainties are well aligned with actual error rates. This low value 
indicates reliable calibration, enabling uncertainty maps to effectively 
highlight regions that may require additional clinical attention.

A critical advantage of the GBSUN model is its ability to integrate 
transfer learning and uncertainty information. The introduction of 
Bayesian learning for uncertainty information provides valuable 
insights into the model’s reliability, particularly in boundary regions 
where segmentation errors are likely to occur. As shown in Figure 3, 
areas of higher uncertainty align with these critical boundaries, 
underscoring the need to consider uncertainty in clinical applications 
to enhance diagnostic accuracy. Additionally, case-specific threshold 
values for uncertainty calculations help to minimize the false 
negatives. This advancement is significant, highlighting our 
framework’s capability to enhance the accuracy of medical imaging 
analysis, a crucial factor in providing patients with precise diagnostic 
assessments and optimal treatment strategies.

In our comparative analysis (Table  1), GBSUN consistently 
outperformed existing methods across all tumor subregions. It 
achieved the highest Dice scores for the enhancing region and the 
non-enhancing/necrotic region, while also yielding the lowest 
Hausdorff Distance in the NENR, reflecting superior overlap accuracy 
and boundary delineation compared to advanced models such as the 
3D Dilated Multi-Fiber Network and cascaded CNNs. Furthermore, 
transformer-based architectures, such as Swin-UNet and UNETR, as 
well as the benchmark nnU-Net, underperformed relative to GBSUN, 
particularly in capturing fine boundary details. Statistical validation 
with the Wilcoxon signed-rank test (Table 3) confirmed that these 
improvements are highly significant, with low p-values. Therefore, 
these results demonstrate that GBSUN delivers state-of-the-art 
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performance with statistically robust gains, particularly in boundary 
regions where precise delineation remains a major clinical challenge.

Finally, we used 5-fold cross-validation to minimize the risk of 
overfitting on the smaller post-operative dataset during transfer 
learning. We  utilized out-of-fold testing in this study because it 
provides a more accurate and generalizable measure for evaluating the 
performance of predictive models. By leveraging cross-validation, 
out-of-fold testing offers a more robust estimate of model 
performance, helping to mitigate overfitting. This approach ensures 
that the model is tested on different subsets of data, improving the 
reliability of the evaluation and enhancing generalization to unseen 
data. Moreover, out-of-fold testing allows for the full utilization of all 
available data for both training and testing, thereby maximizing the 
use of valuable information.

The challenges posed by small and disconnected regions, such as 
NENR, in follow-up MRIs are noteworthy. The GBSUN model’s ability 
to mitigate misclassification in these scenarios, as indicated by reduced 
DSC variation, highlights the robustness of our approach. By 
combining transfer learning with uncertainty information, we have 
improved accuracy and enhanced the model’s resilience to the unique 
challenges presented by GBM imaging. From a clinical perspective, 
the availability of uncertainty maps enhances interpretability by 
flagging regions of high uncertainty, such as tumor boundaries and 
areas with atypical tissue appearance, guiding radiologists to review 
these regions more carefully. This integration of uncertainty into 
segmentation outputs increases reliability, supports transparency in 
clinical decision-making, and enhances trust in the AI models.

A limitation of our study is that only a single follow-up scan was 
available for each patient, which precluded assessment of longitudinal 
consistency and temporal reproducibility of our method. Future studies 
incorporating multiple follow-up scans will be essential to validate the 
stability and robustness of the proposed approach over time.

We carefully searched for publicly available post-treatment glioma 
MRI datasets suitable for external validation. To the best of our knowledge, 
no such datasets with complete multi-modal MRI (FLAIR, T1, T1 + Gd, 
T2) and annotated segmentations are currently available. We therefore 
acknowledge this as a limitation of our study. Once curated, publicly 
released post-treatment datasets become available, we plan to evaluate our 
trained model on them to strengthen external generalizability.

While our findings are promising, it is essential to consider model 
performance variability and the need for further validation. Future studies 
should focus on evaluating the GBSUN model across diverse datasets, 
including a broader range of MRI modalities and tumor stages, to 
establish its generalizability. Additionally, exploring the integration of 
other imaging modalities, such as PET or CT, could provide a more 
comprehensive view of tumor biology and improve 
segmentation outcomes.

5 Conclusion

We introduced an enhanced end-to-end deep learning model, 
GBSUN, designed for follow-up MRIs, which offers more accurate 
and automated segmentation of glioblastoma (GBM) tumors. The 
model excels in measuring tumor subregions and signals while 
providing pixel-level uncertainty estimates. GBSUN represents a 
significant advancement in tumor segmentation, offering a reliable 
tool for clinicians managing GBM. By leveraging transfer learning and 

incorporating uncertainty information, our approach not only 
improves segmentation accuracy but also boosts confidence in the 
clinical utility of these models. As we continue refining these methods, 
the potential for better patient outcomes through precise imaging and 
targeted therapies becomes increasingly achievable.
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