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Introduction: Schizophrenia is extremely heterogenous, and the underlying 
brain mechanisms are not fully understood. Many attempts have been made to 
substantiate and delineate the relationship between schizophrenia and the brain 
through unbiased exploratory investigations of resting-state functional magnetic 
resonance imaging (rs-fMRI). The results of numerous data-driven rs-fMRI studies 
have converged in support of the disconnection hypothesis framework, reporting 
aberrant connectivity in cortical–subcortical-cerebellar circuitry. However, 
this model is vague and underspecified, encompassing a vast array of findings 
across studies. It is necessary to further refine this model to identify consistent 
patterns and establish stable imaging markers of schizophrenia and psychosis. 
The organizational structure of the NeuroMark atlas is especially well-equipped 
for describing functional units derived through independent component analysis 
(ICA) and uniting findings across studies utilizing data-driven whole-brain 
functional connectivity (FC) to characterize schizophrenia and psychosis.
Methods: Toward this goal, a systematic literature review was conducted on primary 
empirical articles published in English in peer-reviewed journals between January 
2019–February 2025 which utilized cortical–subcortical-cerebellar terminology 
to describe schizophrenia-control comparisons of whole-brain FC in human rs-
fMRI. The electronic databases utilized included Google scholar, PubMed, and APA 
PsycInfo, and search terms included (“schizophrenia” OR “psychosis”) AND “resting-
state fMRI” AND (“cortical–subcortical-cerebellar” OR “cerebello-thalamo-cortical”).
Results: Ten studies were identified and NeuroMark nomenclature was utilized 
to describe findings within a common reference space. The most consistent 
patterns included cerebellar-thalamic hypoconnectivity, cerebellar-cortical 
(sensorimotor & insular-temporal) hyperconnectivity, subcortical (basal ganglia 
and thalamic)—cortical (sensorimotor, temporoparietal, insular-temporal, 
occipitotemporal, and occipital) hyperconnectivity, and cortical–cortical 
(insular-temporal and occipitotemporal) hypoconnectivity.
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Discussion: Patterns implicating prefrontal cortex are largely inconsistent across 
studies and may not be effective targets for establishing stable imaging markers 
based on static FC in rs-fMRI. Instead, adapting new analytical strategies, or 
focusing on nodes in the cerebellum, thalamus, and primary motor and sensory 
cortex may prove to be a more effective approach.
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Introduction

Schizophrenia is a severe psychiatric disorder and major cause of 
disability worldwide (Theodoridou and Rössler, 2010). While much 
progress has been made over the last few decades to establish the 
biological profile of schizophrenia and understand the underlying 
neural mechanisms (Dabiri et al., 2022; Meyer-Lindenberg, 2010), 
much work is still needed to establish stable imaging markers with 
clinical applications (Insel and Cuthbert, 2015; Jablensky, 2010; Morris 
et  al., 2022). The clinical presentation of schizophrenia is highly 
heterogenous, with a great amount of variability across individuals 
(Wolfers et  al., 2018), although psychosis (e.g., hallucinations, 
delusions, and disorganized behavior and speech) is generally 
considered the most characteristic feature, and is consequently the 
focus of much research.

Aberrant cortical–subcortical-cerebellar 
connectivity

Many researchers have utilized neuroimaging methods such as 
resting state functional magnetic resonance imaging (rs-fMRI) as a 
promising method for the development of reliable markers of 
schizophrenia. rs-fMRI has proven to be useful for this purpose as it 
avoids bias linked to specific tasks and is non-invasive and less 
intensive than modalities involving experimental tasks, making it ideal 
for clinical populations (Fu et  al., 2024). These approaches have 
experienced rapid growth in recent years, reaching a record high in 
2019 with more than 100 peer-reviewed articles published utilizing 
rs-fMRI to examine schizophrenia populations (Fu et  al., 2024). 
However, like individual symptom profiles, the reported patterns of 
aberrant functional connectivity (FC) derived from rs-fMRI are also 
heterogenous (Jiang et al., 2013). The disconnection hypothesis of 
schizophrenia (Friston, 1998) has been widely applied to help interpret 
these findings, postulating that schizophrenia reflects a dysfunctional 
integration of neuronal activity. The specific patterns of 
dysconnectivity have often been characterized by Andreasen et al. 
(1998) theory of cognitive dysmetria which poses that symptoms of 
schizophrenia arise from disruptions in cortical–subcortical-
cerebellar circuitry. In the last 20–30 years this framework has become 
more established, supported by a wide body of research (Bernard and 
Mittal, 2015; Friston et al., 2016; Harikumar et al., 2023; Hwang et al., 
2022; Li et al., 2019; Wei et al., 2025).

Although Andreasen et  al. (1998) originally emphasized 
disruptions in circuitry between the cerebellum, thalamus, and 
prefrontal cortex, this framework has become somewhat of an 
underspecified umbrella term encompassing many different findings 
spanning the whole brain. For example, Matsuo et al. (2013) reports 

reduced activation in the inferior frontal gyrus, thalamus, and 
cerebellum, while Walther et  al. (2017) reports hyperconnectivity 
between the motor cortex and thalamus, between the motor cortex 
and cerebellum, and between the subthalamic nucleus and anterior 
cingulate and dorsolateral prefrontal cortex. Yao et al. (2025) uses a 
slightly more specific variation of the term, “cerebello-thalamo-
cortical,” to describe disruptions in circuitry between the cerebellum 
and postcentral gyrus, between the thalamus and middle temporal 
gyrus, and between the thalamus and middle and inferior occipital 
gyri. “Cerebello-thalamo-cortical” centers the model specifically on 
the thalamus and emphasizes its modulatory role (Harikumar et al., 
2023; Hwang et al., 2022), however, this model still lacks specificity as 
the thalamus is a central hub in many brain networks (Hwang et al., 
2017). Importantly, the findings of these three studies are largely 
non-overlapping, and yet they all use variations of “cortical–
subcortical-cerebellar” to describe their findings. While this 
framework has proven to be useful in helping to overcome cortico-
centric bias (Parvizi, 2009) by incorporating subcortical and cerebellar 
structures into pathological models of schizophrenia and psychosis, 
these heuristics overly generalize findings and should be supplemented 
with more descriptive terms, such as directionality and specific 
subcortical and cortical structures, if the field is to establish stable and 
reliable imaging markers. This lack of specificity may be reflective of 
a broader challenge facing the field of neuroscience, which is a lack of 
standardization for describing brain networks.

Addressing inconsistency and 
heterogeneity with NeuroMark

Perhaps due to the highly interdisciplinary nature of the field, or 
because it is a relatively young branch of science, a disinclination to 
articulate findings through clear and consistent nomenclature has 
been identified as a major weakness within the field of neuroscience 
(Uddin et al., 2019, 2023). While there are many factors potentially 
contributing to these inconsistencies, individual subject variability 
across subjects within the same study (see Figure 1 in Jensen et al., 
2024b) as well as within a single subject over the course of an fMRI 
scan (Iraji et al., 2019) only complicates the issue further. Thus, there 
is great benefit in efforts toward standardization, such as those 
employed by the NeuroMark approach (Du et al., 2020; Iraji et al., 
2023; Jensen et al., 2024b), which employs spatially-constrained (Lin 
et al., 2010) independent component analysis (ICA; Calhoun et al., 
2001) to incorporate spatial priors or templates derived from large 
datasets to identify functional units known as intrinsic connectivity 
networks (ICNs). These ICNs are sensitive to subject, dataset, and 
study level differences and have been adapted into a common 
reference space known as the NeuroMark 2.2 atlas (Jensen et  al., 
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2024b). The NeuroMark 2.2 atlas has further improved the accessibility 
and interpretability of findings across studies by describing ICNs in 
terms familiar to the fields of cognitive and affective neuroscience 
(Jensen et al., 2024b). This template consists of 105 ICNs which cover 
the whole brain (see Table 1 and Figure 2 in Jensen et al., 2024b), 
incorporate information from multiple spatial scales, and have 
demonstrated reliability across the lifespan (Bajracharya et al., 2024).

Whole-brain data-driven functional connectivity methods, such 
as those utilizing group ICA (Calhoun et al., 2001), allow for unbiased 
exploratory approaches which yield rich and comprehensive results 
(Calhoun et al., 2009). However, the large amount of information 
produced by data-driven approaches such as these can be a double-
edged sword. While they have great potential to facilitate valuable new 
discoveries, one of the challenges inherent with data-driven 
approaches lies in tasks of organizing, summarizing, and synthesizing 
vast amounts of information (Calhoun et al., 2021; Hutchison et al., 
2013). Unfortunately, the challenge of interpreting these findings is a 
burden which is often placed on the reader (Allen et  al., 2012). 
Furthermore, it can be difficult to compare findings across studies 
employing blind ICA due to variations in the identified ICNs (Abou-
Elseoud et  al., 2010; Du et  al., 2020). Such inconsistencies across 
studies contribute to the heterogeneity currently hindering the 
development of a coherent biologically-informed model 
of schizophrenia.

The objective of the current review was to identify a collection of 
data-driven whole-brain studies within recent rs-fMRI literature 
which examine and describe group differences between individuals 
with schizophrenia or psychosis and controls within a cortical–
subcortical-cerebellar framework and then translate their findings 
into a common reference space. The review focused on studies which 
utilized ICA in delineating their regions of interest (ROIs) and which 
were published within the last 5 years (2019-present) to capture 
studies published within approximately the same time frame since the 
NeuroMark approach was first developed and implemented, as 
comparability with the NeuroMark framework was an integral part of 
the review. By comparing findings across studies within the unifying 
framework of NeuroMark 2.2, the review aimed to inform the 
development of stable imaging markers of schizophrenia by 
determining which specific patterns of dysconnectivity were most 
consistent in studies referencing the cortical–subcortical-cerebellar 
and cerebello-thalamo-cortical framework. The review also sought to 
compare potentially relevant features which may help to explain 
inconsistencies across studies.

Methods

This systematic review was conducted according to the Preferred 
Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) 
(Page et al., 2021).

Eligibility criteria

The review sought to include primary empirical articles published 
in English in peer-reviewed journals in the last 5 years reporting 
analyses of human resting-state fMRI and utilizing cortical–
subcortical-cerebellar terminology to describe schizophrenia or 

psychosis. All studies were required to include schizophrenia subjects 
in their clinical sample as that was the primary interest of the current 
review, however, other clinical profiles were included in the final 
article selection if they were part of a larger psychosis sample because 
much of the schizophrenia literature is confounded with psychosis. In 
addition, to maximize the comparability of findings, this review only 
included studies with data-driven case–control comparisons of whole-
brain functional connectivity. The review sought to further refine its 
inclusion of data-driven approaches by only including studies which 
implemented ICA in delineating their ROIs.

Information sources, search strategy, and 
data extraction

Included articles were identified using PubMed, APA PsycInfo, 
and Google Scholar. The search was restricted to a five-year period 
spanning January 1, 2019 to February 4, 2025. Search terms included: 
(“schizophrenia” OR “psychosis”) AND “resting-state fMRI” AND 
(“cortical–subcortical-cerebellar” OR “cerebello-thalamo-cortical”). 
The titles and abstracts of 683 identified records were screened for 
basic criteria (see Figure 1). A secondary screening was performed, 
reviewing the method sections for the remaining 112 studies for 
analysis-specific requirements. Articles meeting all criteria were 
retained for final review. From each article, information was extracted 
pertaining to publication, acquisition details for the dataset(s) 
examined, demographics, clinical features, preprocessing, 
implementation of ICA, statistical approach, the results of analyses 
investigating associations between clinical variables and functional 
connectivity, and the results of case–control functional connectivity 
comparisons. To more accurately compare the results across studies 
within a unified framework, the results of the functional connectivity 
analyses were translated into the 14 subdomains from the NeuroMark 
2.2 template (Jensen et al., 2024b) based on ROI descriptions provided 
within each article.1 The assignment of each ROI to a corresponding 
NeuroMark subdomain was done manually by visually inspecting 
spatial maps, entering peak coordinates into Neurosynth (Yarkoni 
et al., 2011),2 and considering the anatomical labels and descriptions 
provided in the article. Following an initial assignment by first-author 
KJ, 5% of the ROIs were randomly selected for review and label 
assignment by senior-author AI following the same procedure. The 
two expert raters were in 100% agreement. Therefore, despite the 
possibility of bias which is inherent in the process of network labeling 
(see Uddin et al., 2023), the categorical assignments into these 14 
subdomains were adapted for the purposes of the current 
literature review.

Synthesis, relevance, and risk of Bias

The results of case–control functional connectivity comparisons 
were recorded for each pair of the 14 functional subdomains [e.g., 

1  Referenced articles were utilized when pre-existing templates were 

employed.

2  http://neurosynth.org/
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Cerebellar (CB)-Occipitotemporal (OT)]. Specifically, the 
directionality of case–control group differences was recorded with +1 
representing hyperconnectivity, 0 representing no significant 
difference, −1 representing hypoconnectivity, and NA used to indicate 
that the given comparisons were not made.3 Definitions of 
dysconnectivity differ across studies, however, to harmonize and aid 
in interpretation of the results in the current review, hyperconnectivity 
was defined as an increase in positive directionality (or a decrease in 
negative directionality) of FC in schizophrenia/psychosis relative to 
controls and hypoconnectivity was defined as an increase in negative 
directionality (or a decrease in positive directionality) of FC in 
schizophrenia/psychosis relative to controls. Static FC was used when 

3  Fewer FC pairs are possible in studies constrained to larger spatial scales, 

for example, extended thalamic subdomain (ET) – basal ganglia subdomain 

(BG) FC cannot be calculated if both of those subdomains are represented by 

a single ROI.

available, but dynamic FC was used as an alternative if static FC was 
not available. When dynamic FC was used, results were recorded for 
all reported states and directionality was reported according to the 
same system if all states were in agreement, or based on the 
directionality of the sum of all states if they differed. A similar winner-
take-all approach to recording was applied if the results of multiple 
datasets were reported separately or if the results within a given 
subdomain were mixed (e.g., some Cerebellar-Subcortical FC pairs are 
hyperconnected, while some are hypoconnected), in which case the 
directionality of significant results were tallied, and the result of the 
majority was recorded.

Considering the varying degree of similarity between ROIs 
across studies and the intrinsic connectivity networks (ICNs) 
defined in the NeuroMark atlas, and also the varying levels of 
detail articles include when describing ROIs, each study was 
evaluated to determine the relevance of its results when interpreted 
within this framework (see Table 1). Five questions were developed 
to assess the level of detail provided in describing ROIs (i.e., peak 
coordinates, spatial maps, anatomical labels), the comparability of 

FIGURE 1

Flow diagram displaying the identification, screening, and selection of articles for the current review. Modeled after the PRISMA 2020 template (Page 
et al., 2021).
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the ROIs (e.g., a priori seed v. ICA-derived), and whether the 
functional connectivity analyses were comprehensive of the whole 
brain (e.g., comparisons between all pairs of ROIs). If the relevance 
was lower, then the study results may be less likely to accurately 
translate, making them less comparable to other studies in the 
current review. Responses to each were recorded as “Yes” (1) or 
“No/Unclear” (0). The overall relevance of the findings for each 
study were described by the sum of all items, with the possible total 
ranging from 0 to 5, with higher scores indicating that more 
criteria were met and therefore had higher relevance to the current 
review. For ease of interpretation, each study’s relevance was 
categorized as “High relevance” (score of 5), “Moderate Relevance” 
(scores ranging from 3 to 4), or “Low Relevance” (scores ranging 
from 0 to 2).

In addition, an optimized rating system was developed to assess 
risk of bias for each article in the current review (see Table 2). The JBI 
critical appraisal checklist for case control studies,4 as well as risk of 
bias measures used in previous literature reviews (Ailion et al., 2017; 
Aleksonis and King, 2023; Steinberg and King, 2024) were referenced 
in developing an optimized rating system to assess each article 
identified for the current review. Thirteen questions were developed 
regarding study recruitment and inclusion criteria, the description, 
definition, and comparability of case/control samples, data acquisition 
and preprocessing, confounds addressed, and whether they corrected 
for multiple comparisons. Responses to each were recorded as “Yes” 
(1) or “No/Unclear” (0). For studies using datasets reported in 
previous studies (e.g., FBIRN) information provided previously (e.g., 
description of imaging acquisition) was considered. The overall bias 
assessment of each study was determined based on the sum of all 

4  https://jbi.global/critical-appraisal-tools

items, with totals ranging from 0 to 13, with lower scores indicating 
that fewer criteria were met and therefore had a higher risk of bias. For 
ease of interpretation, each study’s risk of bias was categorized as “Low 
Risk” (scores ranging from 11 to 13), “Moderate Risk” (scores ranging 
from 7 to 10), or “High Risk” (scores ranging from 0 to 6).

Results

Study selection and sample characteristics

Initial searches on PubMed, APA PsychInfo, and Google Scholar 
identified 683 records. After screening, 10 articles were determined 
to be  eligible for inclusion in the final review. The reasons for 
exclusion are reported in Figure 1. Notably, 253 articles were excluded 
because they did not include a schizophrenia or psychosis sample 
(see Figure 2). Even within the final selection of articles, the sample 
types varied across studies (see Table 3), with two studies examining 
transdiagnostic early psychosis samples (Jensen et al., 2024a; Kwak 
et al., 2021), one study investigating comparisons with an early-onset 
schizophrenia sample (Cai et  al., 2024), and a majority of seven 
studies investigating comparisons with chronic schizophrenia. Six 
studies utilized a single dataset, one study utilized two datasets but 
reported analyses of each separately (Du et  al., 2020), one study 
utilized two datasets combined into one for its analyses (Jensen et al., 
2024a), one study utilized three datasets combined (Iraji et al., 2024), 
and one study utilized five datasets combined (Yan et al., 2024). Four 
studies utilized overlapping datasets, each with unique combinations 
of COBRE (Iraji et al., 2024; Yan et al., 2024; Zarghami et al., 2023), 
FBIRN (Du et al., 2020; Iraji et al., 2024; Yan et al., 2024), and MPRC 
(Du et al., 2020; Iraji et al., 2024; Yan et al., 2024). The sample sizes 
ranged from 76 (35 schizophrenia)—2,615 (1,302 schizophrenia). Cai 
et al. (2024) utilized an early-onset schizophrenia sample with a mean 

TABLE 1  Relevance assessment.

1. Were peak coordinates provided for ROI/networks?

2. Were spatial maps plotted for ROI/networks?

3. Were anatomical descriptions/labels provided for ROI/networks?

4. Were all ROI/networks derived through ICA (e.g., IC × IC)?

5. Were all pairs of cortical (C), subcortical (SC), and cerebellar (CB) structures reflected in the ROI/Networks included in the analysis (e.g., C × SC, C × CB, C × C)?

Criteria Q1 Q2 Q3 Q4 Q5 Overall assessment

Cai et al. (2024) 1 0 1 0 0 Low relevance

Du et al. (2020) 1 1 1 1 1 High relevance

Forlim et al. (2020) 1 1 1 0 0 Moderate relevance

Gong et al. (2019) 1 1 1 0 0 Moderate relevance

Iraji et al. (2024) 0 1 0 1 1 Moderate relevance

Jensen et al. (2024a) 1 1 1 1 1 High relevance

Kwak et al. (2021) 0 1 1 1 0 Moderate relevance

Rong et al. (2023) 1 1 1 0 0 Moderate relevance

Yan et al. (2024) 1 1 1 1 1 High relevance

Zarghami et al. (2023) 1 1 1 1 1 High relevance

The relevance of each study included in the review was rated with the following criteria evaluating the attributes which enable study results to be accurately translated into the NeuroMark 2.2 
reference space. If the relevance is lower, then the study results may be less likely to accurately translate, making them less comparable to other studies in the current review. The responses were 
recorded as follows: Yes = 1, No/Unclear = 0. The overall relevance of each study was determined based on the sum of all items: High Relevance = 5, Moderate Relevance = 3–4, Low 
Relevance = 0–2.
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age of 15. The early psychosis studies examined slightly older samples 
with a mean age around 23 (Jensen et al., 2024a; Kwak et al., 2021). 
Rong et  al. (2023) also utilized a relatively young chronic 
schizophrenia sample with a mean age of 25. The remaining six 
studies examined chronic schizophrenia samples with mean ages 
ranging from 35 to 39.

Clinical characteristics and associations 
with FC

Clinical characteristics are summarized in Table 4. The clinical 
samples in all studies were diagnosed using DSM-IV or DSM-IV-TR 
criteria, except for the sample in Forlim et al. (2020) which was 
diagnosed based on ICD-10 criteria. Six of the studies utilized the 
positive and negative syndrome scale (PANSS; Kay et al., 1987) for 
schizophrenia, with four of them reporting associations between 
symptom severity and FC (Cai et al., 2024; Du et al., 2020; Gong 
et al., 2019; Rong et al., 2023). However, these findings were mixed, 
with no consistent patterns (see Supplementary Appendix 1). The 
early-onset schizophrenia sample in Cai et al. (2024) had relatively 
high symptom severity with a mean PANSS total of 78.5 and was 
also characterized by a relatively short duration of illness 
(DOI < 1 year) and lower antipsychotic use (average 
chlorpromazine equivalence of 140.7 milligrams per day). Symptom 

severity was not as severe in the early psychosis samples (Jensen 
et al., 2024a; Kwak et al., 2021), and both had a much shorter DOI 
than the chronic schizophrenia samples. The sample reported in 
Jensen et  al. (2024a) also had relatively low average 
antipsychotic use.

Case–control group differences in FC

The results of case–control functional connectivity for each pair 
of the 14 functional subdomains is summarized in Figures  3, 4. 
Figure 3A displays the number of studies reporting hyperconnectivity 
across NeuroMark subdomains in schizophrenia/psychosis relative to 
controls, Figure  3B displays the number of studies reporting 
hypoconnectivity, and Figure 3C displays the net study count with 
hyperconnectivity represented as +1 and hypoconnectivity 
represented as −1. The most consistently reported patterns of 
dysconnectivity (net study count ≥ 5) are portrayed in Figure 4, with 
red arrows representing hyperconnectivity in schizophrenia/psychosis 
relative to controls and blue arrows representing hypoconnectivity. 
Although many notable patterns were observed, the most prevalent 
were cerebellar-cortical [CB-Sensorimotor (SM) and CB-Insular-
Temporal (IT)] hyperconnectivity, cerebellar-subcortical 
[CB-Extended Thalamic (ET)] hypoconnectivity, subcortical–cortical 
[ET-SM, ET-OT, ET-Occipital (OC), ET-IT, Basal Ganglia (BG)-SM, 

TABLE 2  Risk of bias assessment.

	1.	 Were the inclusion criteria clearly described?

	2.	 Was the sample clearly described (demographics and recruitment)?

	3.	 Were case/control groups well-defined (screening and Dx)?

	4.	 Were case/control groups matched?

	5.	 Were case/control samples sufficiently large (N ≥30)?

	6.	 Were acquisition methods clearly described?

	7.	 Was the preprocessing clearly described?

	8.	 Did they correct for head motion (preprocessing and accounted for in analysis)?

	9.	 Did they correct for age?

	10.	Did they correct for sex?

	11.	Did they correct for race (if applicable/racially diverse sample)?

	12.	Did they correct for multiple imaging sites (if applicable)?

	13.	Did the analysis correct for multiple comparisons?

Criteria Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Overall 
assessment

Cai et al. (2024) 1 1 1 1 1 1 1 1 1 1 0 1 1 Low risk

Du et al. (2020) 1 1 1 1 1 1 1 1 1 1 0 1 1 Low risk

Forlim et al. (2020) 1 1 1 1 1 1 1 1 1 1 0 1 1 Low risk

Gong et al. (2019) 1 1 1 1 1 0 1 1 1 1 0 1 1 Low risk

Iraji et al. (2024) 1 1 1 1 1 1 1 1 1 1 0 1 0 Low risk

Jensen et al. (2024a) 1 1 1 1 1 0 1 1 1 1 1 1 1 Low risk

Kwak et al. (2021) 1 1 1 1 1 1 1 1 1 1 0 1 1 Low risk

Rong et al. (2023) 1 1 1 1 1 1 1 1 1 1 1 1 1 Low risk

Yan et al. (2024) 1 1 1 0 1 1 1 1 1 1 0 1 0 Moderate risk

Zarghami et al. (2023) 1 1 1 1 1 1 1 1 1 1 0 1 1 Low risk

The risk of bias for each study was rated with the following criteria. The responses were recorded as follows: Yes = 1, No/Unclear = 0. For studies using datasets reported in previous studies 
(e.g., FBIRN), information provided in the original study was considered. The overall bias assessment of each study was determined based on the sum of all items: Low Risk = 11–13, Moderate 
Risk = 7–10, High Risk = 0–6.
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BG-Temporoparietal (TP), and BG-IT] hyperconnectivity, and 
cortico-cortical (IT-OT) hypoconnectivity.

Consistency, risk of bias, and certainty of 
evidence

To further evaluate the consistency of the FC case–control 
comparison results across studies, a Pearson correlation between the 
extracted FC results was calculated between studies (see Figure 5). 
While seven of the 10 studies demonstrated relatively high similarity 
of results, Rong et al. (2023) displayed weaker correlations and Cai 
et  al. (2024) and Forlim et  al. (2020) appeared to be  weakly 
anticorrelated with the common patterns.

Nine of the 10 studies were assessed as having low risk of bias, 
demonstrating that in general samples were carefully considered 
and appropriately matched, acquisition and preprocessing were 
clearly described, applicable confounds were controlled for, and 
analyses corrected for multiple comparisons. One notable 
exception is that only two studies (Jensen et al., 2024a; Rong et al., 
2023) took race and ethnicity into consideration in their analyses. 
One study (Yan et al., 2024) was assessed as having moderate risk 
of bias, because they did not correct for multiple comparisons as 

only schizophrenia minus control FC differences were provided 
(i.e., no test statistics were provided as these results were only 
supplementary to the primary analyses). In addition, it appears 
that the schizophrenia and control samples in Yan et al. (2024) 
were not matched by sex, although this was controlled for in 
the analysis.

The studies varied considerably in their implementation of ICA (see 
Table 5). The ROIs in three of the studies (Du et al., 2020; Jensen et al., 
2024a; Yan et  al., 2024) represented ICNs delineated through ICA 
spatially constrained to the NeuroMark 1.0 template (Du et al., 2020) 
which includes 53 optimized ICNs selected from a model order of 100. 
Although not identical, the ROIs utilized in Zarghami et al. (2023) were 
very similar, delineated through ICA spatially constrained to a 50 ICN 
template from Allen et al. (2014) which also used a model order of 100. 
Notably, these four studies were assessed as highly relevant (see Table 1) 
to the current review because they were evaluated to more accurately 
translate into the NeuroMark 2.2 reference space due to attributes of 
how the networks were delineated and described. Iraji et al. (2024) 
utilized the Group ICA of fMRI Toolbox (GIFT)5 to perform 

5  http://trendscenter.org/software/gift

FIGURE 2

A total of 253 articles using the term “Cortical–Subcortical-Cerebellar” to describe their findings were excluded from the current literature review 
because they did not include schizophrenia or psychosis samples. The bar chart above displays a wide range of study samples and the number of 
articles for each. Movement disorders include Parkinson’s Disease, Tourette’s syndrome, tremors, dystonia, chorea, ataxia, myoclonus, epilepsy, and 
lateral sclerosis. OCD, Obsessive Compulsive Disorder; MDD, Major Depressive Disorder; ADHD, Attention Deficit and Hyperactivity Disorder; MCI, Mild 
Cognitive Impairment.
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group-level spatially-constrained ICA similar to the previous four 
studies, however, they utilized only 14 ICNs selected from a model order 
of 20. Lower model orders of ICA tend to be less granular which may 
limit the study’s ability to isolate effects and translate into the NeuroMark 
reference space which incorporates higher model orders (see Abou-
Elseoud et al., 2010; Mirzaeian et al., 2025). Furthermore, this study was 
assessed as having moderate relevance, because the ICNs were described 
with limited detail, lowering the confidence in the accuracy of their 
assignment into NeuroMark 2.2 subdomains.

Forlim et  al. (2020) differed more in their approach, using 
GIFT to perform blind ICA with a model order of 21. They also 
differed in that they selected only a single ICN to represent the 
DMN, which was the focus of their primary analyses (i.e., 
DMN-DMN FC). They also performed limited exploratory analyses 
with an additional six ICNs they selected from the 21. In both 
primary and exploratory analyses, however, the ICNs were used to 
perform cluster-based analyses which differed from the whole-
brain FC comparisons made in the previous five studies which 
compared the correlation between the time courses of other ICNs. 
This study was assessed as having moderate relevance to the 
current review due to these key differences in analytical approach. 

Rong et  al. (2023) also differed in that it used ICA-derived 
templates to select 32 ROIs. The FC from these ROIs was calculated 
from the average of all voxels within each seed rather than 
correlations between ICN time courses. Furthermore, they did not 
include any subcortical ROIs in their analyses and were assessed as 
having only moderate relevance to the current review. The 
remaining three studies (Cai et al., 2024; Gong et al., 2019; Kwak 
et al., 2021) differed considerably from the previously mentioned 
studies in that ICA was performed only on the thalamus. 
Specifically, Kwak et  al. (2021) identified 20 thalamus-related 
network ROIs spanning across the brain and examined seed-based 
functional connectivity between them. The relevance of this study 
was limited (assessed as moderate) due to a limited description of 
these networks as well as limited comparisons made between these 
networks. Cai et al. (2024) and Gong et al. (2019) used ICA to 
parcellate the thalamus into five and six thalamic ROIs, respectively. 
In both studies, FC represented the correlation between thalamic 
subdivisions and whole-brain voxel-level analyses. Due to this 
limitation, Gong et al. (2019) was assessed as having only moderate 
relevance. Cai et al. (2024) was further limited to low relevance as 
spatial maps were not provided for all the relevant ROIs, making it 

TABLE 3  Demographic characteristics of the studies included in the review.

Study Dataset(s) Sample type Total N Case N
(male/
female)

Control N
(male/
female)

Case agej

mean ± SD
Control age 
mean ± SD

Cai et al. (2024) West China Hospital 

Sichuan University

Early-Onset SZf 160 97 (34/63) 63 (27/36) 15.1 ± 1.6 14.3 ± 2.9

Du et al. (2020) FBIRNa; MPRCb Chronic SZ 281; 388i 137 (103/34);  

150 (98/52)

144 (104/40);  

238 (94/144)

39.0 ± 11.4; 

38.7 ± 14.1

37.2 ± 11.0; 

40.2 ± 15.2

Forlim et al. 

(2020)

St. Hedwig Hospital 

(Erlangen, Germany)

Chronic SZ 76 35 (21/14) 41 (24/17) 35.3 ± 10.8 35.2 ± 11.0

Gong et al. 

(2019)

University of 

Electronic Science 

and Technology of 

China

Chronic SZ 96 54 (34/20) 42 (24/18) 38.1 ± 12.6 39.6 ± 11.8

Iraji et al. (2024) FBIRN; COBREc; 

MPRC

Chronic SZ 508 193 (154/39) 315 (185/130) 38.6 ± 13.3 38.4 ± 12.7

Jensen et al. 

(2024a)

University of 

Pittsburgh; Johns 

Hopkins

Early psychosisg 247 117 (81/36) 130 (71/59) 23.2 ± 4.4 23.3 ± 4.0

Kwak et al. 

(2021)

Seoul National 

University

Early psychosish 80 40 (18/22) 40 (20/20) 22.9 ± 5.6 22.6 ± 3.9

Rong et al. 

(2023)

Wuhan University Chronic SZ 365 196 (98/98) 169 (85/84) 25.4 ± 5.6 25.0 ± 4.9

Yan et al. (2024) BSNIPd; COBRE; 

FBIRN; MPRC; 754 

Chinese Han sample 

(7 sites)e

Chronic SZ 2,615 1,302 (815/487) 1,313 (634/679) 35.8 ± 12.6 34.2 ± 11.7

Zarghami et al. 

(2023)

COBRE Chronic SZ 140 66 (53/13) 74 (51/23) 38.3 ± 14.2 35.8 ± 11.6

aFBIRN: Function Biomedical Informatics Research Network data repository (Keator et al., 2016). bMPRC: Maryland Psychiatric Research Center (Adhikari et al., 2019). cCOBRE: Center for 
Biomedical Research Excellence (Aine et al., 2017). dBSNIP: Bipolar-Schizophrenia Network on Intermediate Phenotypes (Tamminga et al., 2013). e754-Chinese Han Sample (7 sites): Peking 
University Sixth Hospital, Beijing Huilongguan Hospital, XinXiang Hospital Simens, Xinxiang Hospital GE, Xijing Hospital, Renmin Hospital of Wuhan University, Zhumadian Psychiatric 
Hospital (Yan et al., 2019). fThe early-onset schizophrenia sample consists of individuals diagnosed with schizophrenia before age 18. gThe early psychosis sample is transdiagnostic including 
individuals with schizophrenia, schizoaffective disorder, schizophreniform, bipolar disorder, major depressive disorder, and others within 2 years of first psychosis onset. hThe early psychosis 
sample is transdiagnostic including individuals with schizophrenia, schizophreniform, and schizoaffective disorder within 2 years of first psychosis onset. iDemographics are reported 
separately for the two datasets in Du et al. (2020) because the analyses and results are reported for each dataset separately. jAge is reported in years. SZ, schizophrenia.
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TABLE 4  Characteristics of the clinical samples included in the review.

Study Diagnostic 
criteria

Symptom 
scale

Symptom score 
mean ± SD

DOId mean ± SD CPZe  
mean ± SD

Findings related to 
symptom severity, 
DOI, CPZ, and 
cognitive 
impairmenth

Cai et al. (2024) DSM-IV PANSS 78.5 ± 24 PANSS total 8.7 ± 13.2 months 140.7 ± 210.5f DM-ET FC positively 

correlated w/PANSS general; 

SOC positively correlated with 

FR-ET FC (did not survive 

FDR)

Du et al. (2020) DSM-IV-TR; DSM-

IV

PANSS – – – CB-ET FC negatively correlated 

w/PANSS negative

Forlim et al. 

(2020)

ICD-10 SANS; SAPS ~13.9a PANSS 

negative; ~15.1 PANSS 

positive

9.4 ± 8.8 years 317.1 ± 221.6 DM-DM FC negatively 

correlated w/SANS composite 

and apathy; CPZ did not 

correlate w/DM-DM FC, it also 

had no impact as a covariate

Gong et al. 

(2019)

DSM-IV PANSS ~63.2b PANSS total 13.9 ± 10.6 years 281.6 ± 122.7 ET-SM FC positively 

correlated w/PANSS total, 

PANSS general, and PANSS 

negative; ET-IT and ET-OT FC 

positively correlated w/PANSS 

negative; ET-ET FC negatively 

correlated w/PANSS negative; 

ET-ET FC negatively 

correlated w/DOI; CPZ 

negatively correlated w/ET-CB 

FC and positively correlated 

w/OT-ET, SM-ET FC

Iraji et al. (2024) DSM-IV-TR; DSM-

IV-TR; DSM-IV

PANSS 61.1 ± 15.4 PANSS 

total

– 344.8 ± 274.1 CPZ did not correlate w/IT/

TP-SM, SA-DM FC

Jensen et al. 

(2024a)

DSM-IV SANS; SAPS ~16c PANSS negative; 

~15 PANSS positive

11 (median) months 210.5 ± 220.9 Nothing survived FDR; SANS 

positively correlated w/BG-FR 

FC, SM-EH FC; SANS 

negatively correlated w/IT-OT 

FC, IT-FR FC, OC-FR FC, 

CB-CB FC; SAPS positively 

correlated w/BG-FR FC; SAPS 

negatively correlated w/ET-CB 

FC, EH-CB FC

Kwak et al. 

(2021)

DSM-IV PANSS 69.0 ± 14.3 PANSS 

total

5.7 ± 3.8 months 378.5 ± 296.0g –

Rong et al. 

(2023)

DSM-IV PANSS; SANS; 

SAPS

82.7 ± 11.6 PANSS 

total

46.2 ± 54.1 months 373.8 ± 283.7 Nothing survived FDR; FR × 

SM FC positively correlated w/

PANSS total and negative; DM 

× DM FC negatively correlated 

w/PANSS general; FR × SM FC 

positively correlated w/PANSS 

positive; IT-SM FC negatively 

correlated with DOI; CPZ 

positively correlated w/TP-SM 

FC

(Continued)
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more difficult to accurately translate the results into the NeuroMark 
reference space.

Discussion

Cortical–subcortical-cerebellar 
terminology

Many articles in the initial search were excluded because they did 
not include a schizophrenia or psychosis sample (see Figure  2). 
Movement disorders were the largest contributor, composing 122 of 
these articles. Interestingly, the initial search identified nearly as many 
studies examining samples with movement disorders as those 
examining schizophrenia or psychosis. It is possible that this finding 
may be  due to overlapping affected brain circuitry between 
schizophrenia and movement disorders (Andreasen et  al., 1998). 
Indeed, some of the most prevalent patterns reported in the current 
review were dysconnectivity in motor pathways (see Figure  4). 
Regardless of the reason, it is apparent that not only is the term 
“cortical–subcortical-cerebellar” frequently used to describe a 
prominent category of pathology unrelated to schizophrenia and 
psychosis, but it is also used to describe a wide range of disorders and 
even non-clinical samples. This undermines the usefulness of the term 
for characterizing the biological profiles of schizophrenia and psychosis 
and further demonstrates the need for more precise language in defining 
the key alterations in rs-fMRI in individuals with these clinical profiles.

Aberrant connectivity in schizophrenia and 
psychosis

The primary objective of the current review was to delineate and 
describe in greater detail the most prevalent patterns of dysconnectivity 

observed in schizophrenia and psychosis with data-driven ICA 
approaches. The most prominent patterns observed in schizophrenia 
and psychosis can be  summarized as hypoconnectivity between 
cerebellar and subcortical structures, specifically between the 
cerebellum and thalamus, with hyperconnectivity between cerebellar 
and cortical structures (SM and IT) as well as between subcortical (ET 
and BG) and cortical structures (SM, TP, IT, OT, and OC). Cortical–
cortical connectivity (e.g., IT-OT) was less commonly reported, but 
when it was the patterns typically reflected hypoconnectivity in 
schizophrenia and psychosis.

Consistent with Andreasen et  al. (1998) theory of cognitive 
dysmetria and the cerebello-thalamo-cortical framework (Harikumar 
et al., 2023; Hwang et al., 2022), the cerebellum and thalamus appear 
to be key nodes, and disruptions in circuitry between them and the 
cortex appear to be characteristic of schizophrenia and psychosis. 
Indeed, cerebellocortical and thalamocortical dysconnectivity have 
been suggested as a substrate of under-regulated cognitive processes 
(Andreasen et  al., 1999; Clark et  al., 2020). Notably, the most 
consistent patterns of cortical dysconnectivity were centered in 
regions associated with primary and secondary sensory and motor 
processing. Specifically, the SM spans across primary somatosensory 
and motor cortex as well as related heteromodal association areas 
(Jensen et al., 2024b). Motor-related symptoms are often experienced 
in schizophrenia and disruptions in sensorimotor circuitry are widely 
implicated across studies (Andreasen et al., 1998; Cattarinussi et al., 
2023; Walther et al., 2017). Neurological abnormalities in sensorimotor 
performance are sometimes referred to as neurological soft signs and 
have been suggested to be  present during the early stages of 
schizophrenia and psychosis and potentially even pre-date illness 
onset (Dazzan and Murray, 2002). Although sensorimotor symptoms 
and alterations in sensorimotor FC are frequently attributed to the 
effects of antipsychotic medication targeting the dopamine system 
(Kraguljac et al., 2013; Lerner and Miodownik, 2011; Sarpal et al., 
2015; Yu et  al., 2021), there is evidence that the relationship may 

TABLE 4  (Continued)

Study Diagnostic 
criteria

Symptom 
scale

Symptom score 
mean ± SD

DOId mean ± SD CPZe  
mean ± SD

Findings related to 
symptom severity, 
DOI, CPZ, and 
cognitive 
impairmenth

Yan et al. (2024) DSM-IV; DSM-IV-

TR; DSM-IV-TR; 

DSM-IV; DSM-IV-

TR

– – – – –

Zarghami et al. 

(2023)

DSM-IV-TR – – – 363.1 ± 305 All 7 MATRICS domains 

showed significant impairments 

in SZ; CCA top results were 

SM-SM and PL-TP EF, top 

MCCB traits were social 

cognition, reasoning/problem 

solving, working memory

aSANS and SAPS composite scores have been converted to PANSS Negative and Positive scores to make comparisons easier across studies (see van Erp et al., 2014).bThe mean PANSS total is 
not provided, however, it has been estimated as the sum of mean positive, negative, and general subscales (provided). cSANS and SAPS global scores have been converted to PANSS Negative 
and Positive scores to make comparisons easier across studies. dDOI: Duration of illness. eCPZ: Chlorpromazine equivalence in milligrams per day. f,gThe olanzapine dose reported has been 
converted to CPZ based on Leucht et al. (2015). hDM, Default Mode subdomain, ET, Extended Thalamic subdomain, FC, Functional Connectivity, CB, Cerebellar domain, SM, Sensorimotor 
domain, IT, Insular-Temporal subdomain, BG, Basal Ganglia subdomain, FR, Frontal subdomain, EH, Extended Hippocampal subdomain, OT, Occipitotemporal subdomain, OC, Occipital 
subdomain, TP, Temporoparietal subdomain, SA, Salience subdomain, PL, Paralimbic subdomain, SOC, Stockings of Cambridge from Cambridge Neuropsychological Test Automated Battery. 
SZ, schizophrenia.
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be more complex as sensorimotor symptoms and alterations in SM 
connectivity have been observed in drug-naïve schizophrenia, 
suggesting that they may also be  independently related to the 
pathophysiology of schizophrenia (Zhang et al., 2019). The reviewed 
studies further demonstrate how antipsychotic treatment may confuse 
results depending on characteristics of the sample. For example, Cai 
et  al. (2024) reported ET-SM hypoconnectivity in contrast to the 
ET-SM hyperconnectivity reported by the majority. Importantly, the 
sample in Cai et al. (2024) had the lowest antipsychotic dosage as well 
as a relatively short DOI. That being said, Jensen et al. (2024a) reported 

ET-SM hyperconnectivity in a sample with only a small increase in 
dosage and duration. Unfortunately, only four of the reviewed studies 
specifically tested for associations between medication and FC, with 
two implicating SM circuitry (Gong et al., 2019; Rong et al., 2023) and 
two reporting null results (Forlim et al., 2020; Iraji et al., 2024; see 
Supplementary Appendix 1). Consistent with these findings, Gong 
et al. (2019) and Rong et al. (2023) also identified associations between 
SM circuitry and DOI (Supplementary Appendix 1), which is 
generally associated with increased medication use. Further 
investigation, such as studies employing analyses stratified by dosage 

FIGURE 3

The number of studies reporting (A) hyperconnectivity and (B) hypoconnectivity between functional subdomains of the brain are shown above. 
Hyperconnectivity represents an increase in the positive directionality of functional connectivity (FC) in schizophrenia (SZ) relative to controls and 
hypoconnectivity represents a relative decrease (or increase in negative directionality) in SZ. (C) The overall patterns of FC are represented by net study 
count, where studies reporting hyperconnectivity are assigned +1 and studies reporting hypoconnectivity are assigned −1. The 14 subdomains are 
based on the NeuroMark 2.2 multi-scale template: cerebellar (CB), visual-occipitotemporal (OT), visual-occipital (OC), paralimbic (PL), subcortical-
extended hippocampal (EH), subcortical-extended thalamic (ET), subcortical-basal ganglia (BG), sensorimotor (SM), higher cognition-insular temporal 
(IT), higher cognition-temporoparietal (TP), higher cognition-frontal (FR), triple network-central executive (CE), triple network-default mode (DM), and 
triple network-salience (SA).
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and illness duration, are warranted to disentangle the specific effects 
of medication and chronicity on sensorimotor symptoms 
and processes.

Sensory association areas within the SM, along with the IT and 
TP, encompass key cortical regions implicated in auditory and 
language networks. Specifically, primary auditory cortex (A1) is 
located within the medial superior temporal lobe (a region with high 
spatial overlap with the IT) and the dorsal auditory stream leads from 
A1 to the parietal lobe (overlapping with the TP and SM) (Jensen 
et al., 2024b; Purves et al., 2001; Rauschecker and Tian, 2000). Prior 
studies have attributed auditory verbal hallucinations (AVHs) to 
disruptions in the processing of auditory information across these 
networks (Jardri et al., 2011; Kompus et al., 2011; Kuhn and Gallinat, 
2012). Similarly, the OT and OC encompass cortical regions primarily 
associated with visual sensory processing, including the primary 
visual cortex (V1), visual association cortex (V2–V5), and the ventral 
visual stream (Goodale and Milner, 1992; Huff et al., 2024; Jensen 
et al., 2024b). Like AVHs and auditory cortex, visual hallucinations 
(VHs) have been attributed to disruptions in processing in visual 
cortex, although the underlying mechanisms remain unclear 
(Collerton et al., 2023).

Addressing heterogenous FC across studies

There was a consensus in many of the findings across studies and 
although some of this may be driven partly by similarities in datasets 
and analytical approach, these factors cannot fully account for the 
consistent findings, as there were also many differences. For example, 
among the seven studies showing higher similarity of results, three of 
them included subjects from the FBIRN and MPRC datasets (Du 

et  al., 2020; Iraji et  al., 2024; Yan et  al., 2024) and three included 
subjects from the COBRE dataset (Iraji et al., 2024; Yan et al., 2024; 
Zarghami et  al., 2023), however, different combinations of these 
datasets enabled all of these studies to examine FC group differences 
in unique samples. Furthermore, Gong et  al. (2019), Jensen et  al. 
(2024a), and Kwak et al. (2021) demonstrated high similarity with 
these studies despite their use of completely different datasets. In order 
to further explore the impact of the sample heterogeneity across 
studies on the collective trends in reported FC group differences 
(Figure  3), we  performed a sensitivity analysis by removing two 
studies from our composite study count to eliminate overlap in 
datasets and achieve greater consistency in sample size across studies 
(see Supplementary Appendix 2). We found that the overall patterns 
remained mostly unchanged. On a similar note, Jensen et al. (2024a) 
and Kwak et al. (2021) both utilized early psychosis samples with 
mixed diagnostic groups as opposed to the schizophrenia samples 
utilized by the other eight studies, however, it appears that neither 
reduced chronicity, nor the inclusion of additional diagnostic groups 
made a substantial difference, as these two studies reflected relatively 
high similarity with most of the other studies. Although, further 
investigation into the effects of chronicity may be warranted when 
considering the divergent results of the early-onset schizophrenia 
sample observed in Cai et  al. (2024), as well as the associations 
between DOI and dysconnectivity reported by Gong et al. (2019) and 
Rong et al. (2023).

While differences in analytical approach likely contributed to 
differences in results across studies, this cannot completely account 
for the observed differences in FC and in some cases these 
methodological differences may have had minimal impact. For 
example, four of the studies were highly similar in their 
implementation of ICA (Du et al., 2020; Jensen et al., 2024a; Yan et al., 
2024; Zarghami et al., 2023), with three of them defining ROIs as ICNs 
which were spatially constrained to the same standardized network 
template (Du et  al., 2020; Jensen et  al., 2024a; Yan et  al., 2024). 
However, some of the other studies showing high similarity of results 
had fairly large differences in analytical approach, for example, Iraji 
et al. (2024) examined dynamic FC in 14 ICNs selected from a model 
order of 20 but was highly similar to many of the studies utilizing a 
model order of 100 to examine static FC, with especially high 
similarity to Yan et al. (2024). Similarly, Kwak et al. (2021) utilized a 
model order of 20 to examine thalamus by whole-brain FC and 
showed relatively high similarity with the studies utilizing ICNs from 
higher model orders. Gong et al. (2019) differed even more, using ICA 
only in its parcellation of thalamic subdivisions which were used as 
seeds in a whole-brain voxel-level analysis, yet demonstrated fairly 
high similarity of results when compared with the six studies using 
only ICA-derived ICNs as ROIs. Together, these findings suggest that 
the differences in results were not merely a product of the differences 
in samples and analytical approach but instead were likely driven by 
additional factors as well.

One possibility is that the divergent studies may be capturing 
different biological profiles of schizophrenia. Schizophrenia is likely 
biologically heterogenous and different samples may present different 
combinations of biologically different subgroups, displaying mixed 
results (Andrés-Camazón et al., 2025; Clementz et al., 2016; Feczko 
et al., 2019). There is evidence for this in the varying clinical profiles 
of the samples examined in Rong et al. (2023), Cai et al. (2024), and 
Forlim et  al. (2020; see Table  4), the three studies displaying low 

FIGURE 4

The most consistently reported patterns of dysconnectivity (with a 
net study count of 5 or more) are portrayed above. 
Hyperconnectivity in schizophrenia relative to controls is represented 
by red arrows between brain regions, with hypoconnectivity 
represented in blue. BG, Basal Ganglia.
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similarity with the majority (see Figure 5). Specifically, Rong et al. 
(2023) observed the highest symptom severity among the reviewed 
samples. Similarly, Cai et al. (2024) examined FC in an early-onset 
schizophrenia sample displaying higher symptom severity than most 
of the reviewed samples. Early-onset schizophrenia has previously 
been reported to have a different clinical profile than adult-onset 
schizophrenia (Immonen et  al., 2017; Remschmidt and Theisen, 
2012), which appears to be largely what the other studies are capturing 
in their samples although their participants are not explicitly described 
that way. Indeed, early-onset (also referred to as childhood or 
adolescent onset) schizophrenia has been suggested to reflect a 
different biological profile as well, with differences reported in genetic 
associations (Alkelai et al., 2023) and functional connectivity (Zhang 
et  al., 2021). A study examining age-related changes in FC even 
observed opposite patterns in FC directionality between younger and 
older psychosis cohorts (Passiatore et al., 2023). Similarly, Anticevic 
et al. (2015) observed hyperconnectivity in prefrontal cortex regions 
where hypoconnectivity is more commonly observed and suggested 
that some patterns of aberrant FC may be inverted in early-course 
schizophrenia, reflecting dynamic alterations in FC as individuals 
transition to chronic schizophrenia, possibly resulting from 

compensatory mechanisms. It is possible that age-related factors such 
as those described in prior work may help account for the 
anticorrelated results observed between Cai et al. (2024) and majority 
of the findings included in the current review. Future studies are 
needed to substantiate this potential reversal of dysconnectivity 
between early and adult-onset cohorts.

In contrast to Cai et al. (2024) and Rong et al. (2023), the sample 
in Forlim et  al. (2020) appeared to have relatively low symptom 
severity, although differences in reported scales makes it difficult to 
compare across studies (see van Erp et al., 2014). In addition, Forlim 
et al. (2020) utilized ICD-10 which differs from the diagnostic criteria 
of the DSM-IV and DSM-IV-TR which was utilized by the other nine 
studies. Although generally considered to be comparable, it has been 
suggested that the ICD-10 results in a broader concept of 
schizophrenia than the DSM-IV (Cheniaux et al., 2009; Lindström 
et al., 1997). Forlim et al. (2020) also had the smallest sample size with 
only 35 individuals with schizophrenia. Together, these factors may 
have resulted in a more unique clinical sample. Although the samples 
in Rong et al. (2023), Cai et al. (2024), and Forlim et al. (2020) all share 
the diagnostic label of schizophrenia, each appears to represent a 
unique clinical profile which may have contributed to its divergent 

FIGURE 5

Each study produced an array of values (i.e., +1, 0, −1, NA) representing hyper/hypoconnectivity between case/control groups for each pair of 
subdomains. The similarity (Pearson correlation coefficient r) of observed patterns of functional connectivity across studies is represented by the 
correlation matrix above. Non-significant (p > 0.05) associations have been grayed out in the upper triangle. NA values were interpreted as zero, 
therefore, a lower correlation suggests that studies had less similar results either because the observed patterns of connectivity differed between 
studies or because of differences in analytical approach (e.g., fewer comparisons were made due to differences in network definitions).
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patterns of FC. The field would benefit from approaches which 
leverage biological measures to further explore the possibility of 
unique signatures of FC among subtypes within psychosis spectrum 
disorders such as schizophrenia (Ballem et al., 2025).

The differences in terminology used to describe functional units 
across studies should also be considered. As previously mentioned, 
variability in terminology or inconsistencies in how the same 
terminology is applied to different functional entities (Uddin et al., 
2023), as well as individual variability in their spatial maps (Jensen 
et al., 2024b) may potentially confound our ability to interpret and 
compare results between studies. Furthermore, differences in each 
study’s implementation of ICA, such as higher or lower model order 
impacts key characteristics of the derived ICNs, such as their 
granularity (Mirzaeian et  al., 2025). As model order increases, 
functional units tend to branch out into smaller units (Abou-Elseoud 
et al., 2010). It is possible that FC between some ICNs derived from 
lower model orders which are spatially large, spanning multiple 
networks, may tend to zero out the effects of smaller regions within 
them as they average across a larger area and move toward a global 
baseline. For example, in Rong et al. (2023), OT and OC networks 
were combined into a single visual network, potentially weakening the 
observed effects and contributing to the null results observed in the 
visual network, which was an area with some of the most consistently 
reported aberrations across studies. Similarly, in Kwak et al. (2021), 
the cerebellum, temporal lobe, and parietal lobe were all represented 
by a single component, potentially confounding some of the 

cerebellum-related results with those of cortical regions. These 
inconsistencies in functional entities make it difficult to interpret 
results within a common framework and highlight one of the 
limitations of the current review. Indeed, Cai et al. (2024) displayed 
the greatest inconsistency with other studies in the analysis and was 
also assessed as having the lowest relevance to the current study due 
to more ambiguous reporting of ROIs as well as significant variations 
in its methodological approach. Similarly, Forlim et al. (2020) and 
Rong et al. (2023) were rated as having only moderate relevance to the 
current study because they made relatively limited comparisons which 
neglected cerebellar (Forlim et al., 2020) and subcortical (Rong et al., 
2023) regions in their analyses. It is plausible that the low similarity of 
findings in these three studies is largely reflective of a lack of 
information due to their less comprehensive analyses. This observation 
may underscore the importance of future studies focusing efforts on 
more detailed reporting of their ROIs as well as employing more 
comprehensive data-driven whole-brain approaches.

Insights, limitations, and recommendations

The current review also yielded many valuable insights into 
different subdomains within the brain. For example, the paralimbic 
subdomain (PL) was the subdomain with the most null results across 
studies, primarily because relatively few studies (Cai et al., 2024; Gong 
et al., 2019; Kwak et al., 2021; Zarghami et al., 2023) reported ROIs 

TABLE 5  Notes about the implementation of independent component analysis (ICA) in the functional connectivity analyses from each study included in 
the review.

Study Notes on implementation of ICA Model 
order

Final ICNs Labeling

Cai et al. (2024) ICA used to parcellate thalamus; FC represents thalamic subdivisions by 

whole-brain voxel-level analysis

– 5 thalamic ROIs, 

whole-brain voxel-

level

“Yeo Network” and another 

not specified for labeling 

“Regions”

Du et al. (2020) ICA spatially-constrained to NeuroMark 1.0 100 53 NeuroMark 1.0

Forlim et al. (2020) Used GIFT/ICA to extract ICNs, visually inspected and labeled ICNs, then 

compared within network connectivity between case/control; did not 

examine between network FC and did not include CB ICNs

21 main analysis included 

DMN only, but 

exploratory included 

additional 6 ICNs

“Templates in GIFT” and 

“experts”

Gong et al. (2019) ICA used to parcellate thalamus; FC represents thalamic subdivisions by 

whole-brain voxel-level analysis

– 6 thalamic ROIs, 

whole-brain voxel-

level

–

Iraji et al. (2024) Used GIFT/ICA to extract ICNs, visually inspected and labeled 14 ICNs, 4 

states of dynamic FNC reported between all 14 ICNs

20 14 Previous knowledge/

studies

Jensen et al. (2024a) ICA spatially-constrained to NeuroMark 1.0 100 53 NeuroMark 1.0

Kwak et al. (2021) ICA used on thalamus by whole-brain seed-based correlation maps to 

identify 20 thalamus-related ICNs, FC between thalamus and network ROIs

20 20 Based on networks 

reported by Yuan et al. 

(2016)

Rong et al. (2023) HCP ICA templates, 32 ROIs (avg of all voxels within seed) from 8 ICA 

derived RSNs, FC between 32×32 ROIs, no subcortical/thalamic ROIs

– ICA templates used as 

mask for ROIs

HCP ICA templates

Yan et al. (2024) ICA spatially-constrained to NeuroMark 1.0, reported difference between 

SZ-control (but no t-stats/p-values)

100 53 NeuroMark 1.0

Zarghami et al. 

(2023)

ICA spatially-constrained to Allen et al. (2014) 50 ICN template 100 50 Allen et al. (2014)

SZ, schizophrenia.
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which overlapped with these regions. Notably, the spatial area covered 
by the PL is relatively small and may require the increased granularity 
offered by higher model orders, possibly explaining why it is less 
commonly delineated in existing literature. In contrast to the PL, there 
were some networks, such as those within the triple network domain 
(TN) and frontal subdomain (FR), which were frequently implicated 
across studies and yet also seemed to yield a lower net study count (see 
Figure 4) due to inconsistent findings. One possibility is that networks 
incorporating anterior association cortex, such as these, are more 
frequently involved in higher cognitive processes and are more likely 
to vary across individuals and studies than more primal networks like 
motor and sensory cortex (e.g., visual, auditory, and somatosensory; 
Mueller et  al., 2013; Sun et  al., 2022). Indeed, higher cognitive 
networks incorporating the prefrontal cortex, such as those within TN 
and FR, may be more dynamic, with FC varying more over time (Iraji 
et al., 2019). One limitation of studies examining static FC, is that they 
may not capture the full range of variability of more dynamic brain 
networks, and as a result, findings may be less consistent for these 
networks across studies. Iraji et al. (2024) in the current review may 
lend support to this notion, as the observed group differences for the 
CE (or frontoparietal/attention networks) changed across different 
states. Unfortunately, one limitation of the current review is that it was 
not sensitive to time-varying changes such as this, but instead was 
constrained to comparisons of static FC. As dynamic FC approaches 
are more widely employed to capture these patterns, the field would 
greatly benefit from a standardized approach to summarizing and 
comparing dynamic FC across studies.

While all studies included in the review utilized reasonable 
measures to minimize the effects of head motion as much as possible 
in data collection, processing, and analysis, it should be noted that 
there are different methods for accounting for these effects and that 
none of them may fully eliminate the effects of head motion (Power 
et  al., 2012, 2014). Conversely, methods of head motion artifact 
removal may also introduce the possibility of eliminating meaningful 
signal in rs-fMRI (Bright and Murphy, 2015; Kumar et al., 2024). 
Therefore, differences in methodology for handling motion artifacts 
may further contribute to varying results reported in the current 
review and future investigations into these effects are warranted.

Another limitation of the current review was the sample 
heterogeneity across included studies. In addition, as previously 
noted, factors of medication and chronicity were largely unaccounted 
for and underexplored. Furthermore, the datasets which were utilized 
varied greatly in sample size and some were represented 
disproportionately across studies. For example, three studies utilized 
the COBRE dataset (Iraji et al., 2024; Yan et al., 2024; Zarghami et al., 
2023). Our approach to summarizing common findings does not 
fully account for the various methodological and cohort differences 
across studies, nonetheless, our sensitivity analysis 
(Supplementary Appendix 2) may suggest that differences in sample 
sizes and cohort overlap made little difference. Additionally, our 
approach does not consider the actual strength of observed patterns 
(e.g., effect size), but instead only reports the frequency with which 
the patterns were observed across studies. It is crucial for 
neuroimaging studies to provide all of the essential data needed to 
promote transparency and reproducibility of research, as well as to 
enable meta-analytic literature reviews (Nichols et  al., 2017). 
Furthermore, in order to help establish reliable imaging markers, 

future studies should seek to validate the highlighted patterns of 
dysconnectivity in large datasets as well as across different stages of 
the disease such as clinical high-risk, first-episode and early-
psychosis, and chronic schizophrenia, while accounting for the effects 
of medication. In addition, future work is needed to translate these 
findings into clinically actionable markers. Prior work has sought to 
solidify the link between functional architecture and underlying 
chemoarchitecture (Hansen et al., 2022). Following this line of work, 
it would be  useful to move beyond the circuit level and further 
explore the neurobiological mechanisms of these changes at the 
molecular and cellular levels through studies designed to identify cell 
receptors, neurotransmitters, and cytoarchitecture involved in the 
target brain circuits. The identification of new neurotransmitters 
involved in altered brain circuits in schizophrenia could inform the 
development of new treatments, for example, non-dopaminergic 
antipsychotics (Kaul et al., 2024).

Conclusion

Andreasen et al. (1998) and many others (Anticevic et al., 2015; 
Hwang et al., 2022; Menon et al., 2023; Woodward and Heckers, 2016; 
Zhou et al., 2015) have focused on the prefrontal cortex as a key node 
in the cognitive dysmetria framework, viewing schizophrenia as a 
disease of higher cognitive functions. While there is much evidence 
supporting dysconnectivity in this node and the implicated etiology 
is feasible, findings are largely inconsistent across studies. This is likely 
because the complex relationship between this node and others 
requires more sophisticated analytical approaches, for example 
dynamic FC approaches which are sensitive to time-varying changes. 
Therefore, although the prefrontal cortex remains integral to 
understanding the neurobiological substrate of schizophrenia and 
psychosis, concentrating on this node may not be  effective for 
establishing stable imaging markers, at least while employing 
analytical approaches which investigate static FC in rs-fMRI. Instead, 
adapting new analytical strategies, or focusing on nodes in the 
cerebellum, thalamus, and primary motor and sensory (e.g., SM, IT, 
and OC) or possibly more posterior association cortex (e.g., TP and 
OT) may prove to be a more effective approach. Further investigation 
is needed to explore how these patterns of dysconnectivity vary in 
relation to medication and chronicity as well as across individuals with 
unique clinical profiles within schizophrenia and psychosis 
spectrum disorders.
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