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other cases the PRC has to be determined numerically (for com-
plex models) or experimentally (for real neurons). In this work, 
we review fi ve methods for determining PRCs and compare their 
performance on data sets containing modeled data and experi-
mental data. We identify pitfalls in estimating the PRC, lay out 
guidelines for approximating the PRC, and assess the reliability 
of the resulting PRCs.

MATERIALS AND METHODS
Here we concisely outline fi ve methods to estimate PRCs, describe 
the data sets used in the comparison, and describe how we will 
compare the outcomes. In addition, we describe the direct method 
which is used to benchmark the performance of the other fi ve 
methods. In the direct method, the PRC is constructed by injecting 
excitatory pulses at different phases of the inter-spike interval and 
measuring the resulting phase shift of the next spike. The PRC is 
produced directly by plotting the phase of the pulse on the x-axis 
and the resulting phase shift on the y-axis. In a noise-free case, such 
as a deterministic simulation, a fi ne-grained PRC can be generated 
by injecting pulses at many different phases.

FIVE METHODS TO DETERMINE A PRC
In the case of experimental data or stochastic simulations, the data 
points resulting from applying the direct method will be jittered, 
and it is necessary to either fi t a curve to these points (Galán et al., 
2005; Tsubo et al., 2007) or bin them (Reyes and Fetz, 1993; Stiefel 
et al., 2009). We include one such method in our review of methods 
(Galan’s method, see below). Due to the often quite signifi cant jitter, 
it is required to measure the spike time shift in hundreds of ISIs 
at randomized phases. Furthermore, it is necessary to intersperse 
them with inter-spike intervals without perturbing pulses to avoid 
entrainment of spiking and to have an unperturbed baseline to 
compare them to. Thus, large amounts of data are necessary to 
determine the PRC with the direct method.

INTRODUCTION
The phase-response curve (PRC) of a regularly fi ring neuron 
quantifi es the shift in the next spike time as a function of the 
timing of a small perturbation delivered to that neuron. The PRC 
is an important measure for several reasons. First, the ability of 
neurons to synchronize in excitatory coupled pairs, chains or 
networks can be predicted from the PRC: type-I PRCs (purely 
positive, all excitatory perturbations lead to an acceleration of spik-
ing) do not allow synchronization while type-II PRCs (biphasic, 
acceleration or delay of spiking depending on the phase of the 
perturbation) allow synchronization with excitatory connections 
and short delays (Hansel et al., 1995). Furthermore, the PRC is 
informative about the type of bifurcation leading from rest to 
spiking (Izhikevich, 2007), thus constraining quantitative models 
of the neuron under investigation. Also, the PRC is correlated with 
the type of excitability of a neuron (Hodgkin and Huxley, 1952; 
Marella and Ermentrout, 2008).

More precisely, a regular fi ring neuron can be seen as a sta-
ble oscillator with period T and only the phase φ to describe its 
state. T results from the characteristic angular velocity ω of the 
oscillator, thus dφ/dt = ω. In the absence of inputs a regularly fi r-
ing neuron fi res exactly when φ = kT (with k an integer and T 
corresponding the average ISI, ISI� ). Now suppose an input to 
that neuron with a small amplitude at phase φ, Π(φ). Then, the 
infl uence of this perturbation on the next spike time is described 
by dφ/dt = ω + Π(φ)Z(φ) where Z(φ) is the PRC. In other words, 
the time required to reach the next spike deviates from T accord-
ing to the perturbation and the PRC. Since the exact spike times, 
perturbations Π(φ) and ω (i.e.,2π/T) are known, we can estimate 
the PRC Z(φ) from these data.

Several methods have been proposed to compute the PRC from 
experimental or modeled data. For basic neuronal models, the 
PRC can be directly computed from the underlying differential 
equations by the adjoint method (Ermentrout, 1996), but for all 
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To alleviate this problem, novel methods have been proposed 
that use predictions of how spike times will be altered by incom-
ing pulses, and, methods that use continuous fl uctuation signals 
to obtain a more robust PRC measurement based on less spikes. 
The fi ve reviewed methods consist of one variation of the direct 
method (Galan’s method), two methods that use spike-time pre-
dictions to reconstruct the PRC [the modifi ed-Izhikevich method 
and the standardized error prediction (STEP) method], and two 
methods that derive the PRC from the incoming continuous fl uc-
tuating signal [the spike-triggered average (STA) and weighted 
spike- triggered average (WSTA) method]. The different methods 
are outlined below and illustrated in Figure 1.

Galan’s method
Galan’s method (Galán et al., 2005) uses pulses as perturba-
tions (see the top panel of Figure 1), and fits the PRC to the 
spike time shifts as a function of the phase of the perturbation. 
This is one of the methods which is an extension of the direct 
method for noisy data (Reyes and Fetz, 1993; Tsubo et al., 2007; 
Stiefel et al., 2009). The PRC Z(φ) is substituted by a truncated 
Fourier series, i.e., Z n nn( ) ( ) ( )φ φ φ≈ ∑ +0 a bsin cos  and the param-
eters describing the curve (a and b) are optimized using the 
Euclidean distance between the data points and the curve as 
an error signal. The resulting curve is the best approximation 
of the PRC (only constrained by the length of the expansion of 
the Fourier series).

Modifi ed-Izhikevich method
Izhikevich proposed an inverse solution to compute the PRC in 
Izhikevich (2007). The method relies on predicting the next spike 
time and minimizing the error between the predicted spike time 
and the true next spike time. The prediction is based on the sum 
of the phase shifts that a small perturbation (part of a continuous 
fl uctuation) would cause. However, the proposed method does not 
converge to a correct solution after a reasonable number of fi tting 
rounds (e.g., in about 2–3 h of computation while other methods 
converge within minutes). Therefore, we modifi ed the method 
and used it with less complex perturbation data. In the modifi ed-
Izhikevich method, one pulse x(t) is injected per phase and the next 
spike is predicted according to a candidate PRC, i.e., �s x zt c+ =1 ( ) ( )φ φ  
in which z

c
(φ) is the candidate PRC. Then, the candidate PRC is 

optimized to match the spiking data by computing an error signal 
proportional to the difference between the predicted next spike time 
and the actual next spike time, e.g., Errφ = −( )+ +sn ns1 1� .

Spike-triggered average method
In the STA method (Ermentrout et al., 2007) the STA is com-
puted from continuous low amplitude current fl uctuations (see 
Figure 1). Then, this STA is numerically integrated to produce 
the PRC. The connection between the integral of the STA and 
the PRC is proven for regularly fi ring neurons and small pertur-
bations in Ermentrout et al. (2007). Formally, this method uses 
the fact that with STA( )s = −( )−x s sn n 1  (which is on the interval 
[0,ISI

max
] with ISI

max
 being the largest ISI of s), the relationship 

PRC STA
ISImax≡ −∫ ( )s

0
 holds. In contrast to both Galan’s method 

and the modifi ed-Izhikevich method, only a single pass over the 

complete noise signal and the voltage trace is required because there 
is no optimization step. From this single pass, the STA is computed 
and subsequently integrated.

Weighted spike-triggered average method
The WSTA method devised in Ota et al. (2009a) is an extension 
of the STA method and also integrates the continuous low ampli-
tude current fl uctuations to derive the PRC. However, in the WSTA 
method, the fl uctuations in between the different spike times are 
normalized to the average ISI ISI�( )  of all spikes in s (� �s ti i≡ [ / ] ,ISI τ  
with instantaneous ISI τ

i
). Then, as Ota et al. (2009a) prove, with an 

appropriate weighting function the weighted sum of these normal-
ized stretches of current fl uctuations constitutes the PRC (for regu-
larly fi ring neurons). The weighing function is α τ τ= −( )ISI�

i i/ .  
Therefore, PRC WSTA≈ ≡( ) ( )� �s αx si .

Standardized error prediction method
The STEP method (Torben-Nielsen et al., 2010) is an extension 
of the modifi ed-Izhikevich method to work with continuous 
fl uctuation data (in a different way than originally proposed by 
Izhikevich). In this method, instead of using a prediction error 
averaged over all ISIs and all phases, the temporal information in 
the error is preserved by binning the errors of all ISIs independ-
ently per phase.

The fl uctuations are binned equidistantly on ISI�  (i.e., normal-
ized) and are treated as if they were independent, i.e., for each 
phase bin of each ISI, the predicted next spike time is computed 
and the mismatch with the true next spike time is used to optimize 
the parameters of a curve representing the PRC. More precisely, all 
inter-spike intervals are normalized to [0,2π] and discretized into 
N bins. For each bin, an independent prediction is made about the 
next spike time: �s x zi j j c, ( ) ( )= + ⎡⎣ ⎤⎦ω φbin , where φ corresponds to 
phase of binj. Subsequently, one obtains a two-dimensional array 
with the dimensions given by N bins and M spikes. Finally, a least-
squares fi tting algorithm is used to minimize the 2-D prediction 
error array and obtain a PRC that predicts the recorded spike time 
shifts (Torben-Nielsen et al., 2010).

Table 1 summarizes the fi ve implemented methods (plus the 
direct method) and how they relate to each other. In addition to 
the reviewed methods, there are several other published methods 
which we omitted because they proved impractical (with respect 
to experimental demands), e.g., the MAP-estimation algorithm 
(Ota et al., 2009b) and the post-stimulus time histogram method 
(Gutkin et al., 2005).

DATA SETS
We tested the fi ve methods (and the direct method) with three 
different data sets whenever possible. The fi rst two data sets con-
tain model data while the third set contains experimental data. We 
used the single-compartmental model as developed by Golomb and 
Amitai (1997) and modifi ed by Stiefel et al. (2009) to generate the 
data. This model uses a Hodgkin–Huxley-type formalism to model 
neural spiking behavior:

C
dV

dt
m hg V E ng V E

sg V E g V E

M K

K

= − −( ) − −( )
− −( ) − −(

3
Na Na KDR

Ks leak leak )) − Iinj
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FIGURE 1 | Schematic overview of the reviewed methods. Two methods use pulsed-perturbation data and three methods use continuous fl uctuation data. More 
details in the main text and Table 1.

and dx/dt = τ(V)[x−x∞(V)], where V is the membrane potential, g x 
the maximum conductance for ion x and E

x
 the reversal potential 

for ion x. The parameter values can be found in Golomb and Amitai 

(1997) and Stiefel et al. (2009). By turning the adaptation current 
on or off, this model switches between type-II or type-I excitability 
(Stiefel et al., 2009), respectively.
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The fi rst data set contains noise-free model data in which a 
single compartmental model neuron (see below) is perturbed at 
different phases. This set contains 128 pulses evenly spaced over 
[0,2π]. The second data set contains modeled data from the same 
single-compartmental model but with an additionally injected 
fl uctuating current. The fl uctuations are generated through a sta-
tionary Ornstein–Uhlenbeck process around a given mean value 
and parameterized by the reversion rate (g = 0.1) and four dif-
ferent volatility levels (D = 1e−4,5e−4,1e−5,5e−5). The advantage of 
the noisy modeled data is that the excitability type is known with 
certainty because small perturbations do not change the PRC type 
(Izhikevich, 2007). The injected fl uctuating current and the result-
ing spike trains are illustrated in Figure 2. The different noise levels 
result in four groups of data each containing approximately 950 
spikes. The noise and the resulting spike trains are illustrated in 
Figure 2. The last data set contains experimental data recorded 
from a layer 3/4 pyramidal cell of the mouse visual cortex with the 
whole cell patch-clamp technique in vitro. Standard patch-clamp 

techniques as in Stiefel et al. (2008) were used. Membrane potential 
voltage data and the injected fl uctuations were digitized at 40 kHz, 
and two levels of current (µ = 50 and 100 pA) were injected as 
fl uctuations. The fl uctuations consisted of white-noise low-pass 
fi ltered at 200 Hz. In both the model data and experimental data, 
the fl uctuations are on top of a step current (I

s
) which is required 

to get the model/cell into a regime of regular fi ring.

QUANTITATIVE COMPARISON
To investigate which method produces the most reliable result, we 
compared the different methods with the calibrated PRC result-
ing from the direct method. The difference resulting from the 
fi ve implemented methods with the directly observed PRC can 
be quantifi ed by examining the Euclidean distance (by taking the 
mean-squared error, MSE) and correlation (with the Pearson cor-
relation) between the obtained PRCs.

It is important to note that Galan’s method and the modifi ed-
Izhikevich method cannot be used with continuous fl uctuating data 
because they are designed to work solely with pulsed perturbation 
data. However, the methods intended for continuous fl uctuation 
data (e.g., STA, WSTA and STEP) can be used to compute the PRC 
from both perturbation data and fl uctuation data because the former 
is a simplifi ed case of the latter: instead of a continuous stream of 
fl uctuations only a single fl uctuation per period is injected. Hence, we 
can compare the PRCs resulting from the fi ve implemented method 
with the directly observed PRC on the perturbation data, but only the 
STA, WSTA and STEP on the more complex continuous fl uctuation 
data (i.e., noisy model data set and experimental data set).

Table 1 | Comparison of the implemented methods in terms of the 

required data and the requirement to optimize the outcome.

 No optimization Optimization

Perturbation data (Direct method) Galan’s method

  Izhikevich-derived method

Continuous fl uctuation STA STEP

data WSTA 

NL = 1

NL = 2

NL = 3

NL = 4

1 s

100 mV
50 pA

FIGURE 2 | Noise and the resulting spike trains as generated by our model neurons. The four noise levels have increasing amplitudes around the same mean 
and are generated by an Ornstein–Uhlenbeck process. The noise has a profound infl uence on the regularity of the spikes.
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To compare the methods with each other, we normalize the PRCs 
in a post-processing step. All but the STA method are defi ned (along 
the x-axis) over [0,2π]. We scale the time of the STA produced 
PRC to the same interval. Along the y-axis we normalize the PRC 
so that the (positive) peaks are equal to 1. Since most researchers 
are primarily interested in the type of the PRC (type-I vs. type-II), 
and because the normalization does not affect qualitative features 
of the PRC such as the slope and the positive and negative areas, 
the normalization of the results is valid.

IMPLEMENTATION DETAILS
We implemented the different methods in Python in combination 
with the Numpy/Scipy and Matplotlib1. In three methods (Galan’s 
method, modifi ed-Izhikevich and STEP) a curve is optimized to fi t 
the data. Any smooth curve such as a polynomial or a Fourier series 
can be used for this purpose. To be consistent with the implementa-
tion in previously published studies (Galán et al., 2005; Izhikevich, 
2007) we use the third expansion of the Fourier series (n = 3) in 
the remainder of this manuscript. Larger expansion would pro-
vide better fi ts in some cases (when there is a steep slope in the 
PRC) but it would also be more prone to overfi tting and hence the 
third expansion seems suitable. Moreover, Galan’s method and (the 
original) Izhikevich method do not prescribe a particular optimiza-
tion algorithm although Galan uses least-squares optimization. We 
follow his work and also use least-squares optimization in Galan’s 
method, the modifi ed-Izhikevich method and STEP method.

For the WSTA method, the authors suggest to fi t a polynomial to 
the raw outcome of their algorithm because this raw output is noisy 
with a smaller number of spikes. For the sake of clarity we show the 
raw outcome to illustrate the true capabilities of this method.

All methods require confi guration of the estimated inter-spike inter-
val ISI� 2

. In our implementation of the different methods, the ISI�  can 
be given as an argument to the algorithm or automatically  computed. 

The automatic computation straightforwardly takes the mean and, 
therefore, works only for highly regular fi ring neurons. In addition we 
exclude ISIs that do not satisfy 0.1 ISI ISI ISI× ≤ ≤ ×� � �2  because larger 
spread of ISIs generally causes the methods to fail (remember that the 
PRC is a characteristic of regularly fi ring neurons).

RESULTS
PERFORMANCE ON NOISE-FREE MODEL PERTURBATION DATA
Figure 3 illustrates the PRCs as computed by all implemented 
methods for noise-free model data with both type-I and type-II 
parameters. Table 2 quantifi es the difference between each PRC 
and the directly observed PRC by means of the MSE and Pearson 
correlation. For brevity, the modifi ed-Izhikevich method is labeled 
as ‘IzhiLQ’ and Galan’s method is referred to as ‘GalanLQ’; in both 
cases the LQ suffi x indicates the use of least-squares optimization. 
The PRCs resulting from the direct method is plotted as a dashed 
line and serves to calibrate the results. It can easily be verifi ed from 
Figure 3 that the fi ve methods compare qualitatively; it can be veri-
fi ed from Table 2 that they are also quantitatively similar.

The best results using this type of data are obtained by the meth-
ods designed to work with pulse-perturbation data only, namely 
Galan’s method and the modifi ed-Izhikevich method. The results of 
these two methods are better in terms of the MSE and the Pearson 
correlation compared to the results of the methods intended for con-
tinuous fl uctuating data. Moreover, the quantitative analysis shows 
equal results of the modifi ed-Izhikevich and Galan’s method on 
type-I data. This result is due to the simplicity of the curve to fi t and 
the low dimension of the search space (i.e., three values for a and b of 
the Fourier series). On type-II data, the modifi ed-Izhikevich method 
performs best. From methods intended for continuous fl uctuating 
data, the STEP method has the best performance on both the type-
I and type-II model data set as the MSE and Pearson correlation 
indicate closest resemblance to the directly obtained PRC.

PERFORMANCE ON NOISY MODEL DATA
The noisy model data are obtained by continuous fl uctuating current 
injection. Here we compare the three methods designed to analyze 
such data. We used four different noise levels for the  comparison. 
Each noise level has the same mean and only differs in the variance 

FIGURE 3 | Comparison of all PRC estimation methods on noise-free model data. The dotted black line is the directly observed PRC. The PRCs from all fi ve 
methods agree on the PRC type, have a similar shape, and resemble the directly determined PRC.

1The code is developed for scientifi c use and can be obtained from http://www.irp.
oist.jp/tenu/btn/Tools.html
2In theory, the average inter-spike interval ISI�  is required. However, in most cases 
when fi ring is not regular and the ISI histogram mildly skewed, we have to estimate 
the ‘average’ inter-spike interval ISI� . In the remainder of this manuscript, ISI�  and 
ISI�  are used as synonyms.

http://www.irp.oist.jp/tenu/btn/Tools.html
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Table 2 | Quantitative performance of the different methods to estimate 

the PRC.

Method Type-I Type-II

 Pearson  MSE Pearson MSE

STA 0.691571 199.188386 0.833662 218.912789

STEP 0.951353 67.878615 0.939346 130.261712

WSTA 0.959762 76.051482 0.760755 235.848697

IzhiLQ 0.961458 66.999838 0.991354 54.368821

GalanLQ 0.961458 66.999838 0.988336 59.415021

The mean-squared error (MSE) and the Pearson correlation with respect to the 
directly observed PRC are used for the quantifi cation. For both type-I and type-II data, 
the modifi ed-Izhikevich method performs best both in terms of MSE and Pearson 
correlation. On the type-I data set, the modifi ed-Izhikevich and Galan’s method obtain 
the same performance (and hence perform equal) due to the low degree of freedom 
(six parameters to be optimized for the Fourier series). Of the methods designed to 
work with continuous data, the STEP method performs the best.

around the mean3. Figure 4 illustrates the PRCs produced by the STA, 
WSTA and STEP method at the four levels of fl uctuations. From this 
fi gure it is clear that for low noise levels all methods agree qualitatively 

on the PRC type as all methods correctly indicate type-II PRC in the 
model. However, for the two higher noise levels, the WSTA method 
results in a (mostly) nonnegative, type-I, PRC while the two other 
methods correctly assess the neuron as type-II. Hence, we can say that 
the STA and STEP method cope better with high amplitude fl uctua-
tions. Table 3 quantifi es the difference between the computed PRCs 
and the directly observed PRC. In contrast to the qualitative observa-
tion that STA and STEP perform better with fl uctuation, the WSTA 
method has the highest resemblance to the directly observed PRC in 
terms of MSE and Pearson correlation (except at the highest fl uctua-
tion level where the STEP method obtains the best Pearson correla-
tion). We explain this observation as follows: with higher amplitude 
fl uctuations, the regularity of the spikes decreases. As a result, the 
PRC as computed from this less regularly fi ring data is different 
than the PRC from the noise-free data (Tateno and Robinson, 2007; 
Tsubo et al., 2007). However, the PRC is a quantitative measurement 
of regular fi ring neurons and hence, the true PRC of a neuron is the 
PRC measured from spikes in the regular fi ring regime. Therefore, 
we compare the PRCs always to the PRC directly observed in the 
noise-free case although the shape of the PRC at higher fl uctuation 
levels might look different. The PRC produced by the WSTA method 
has more resemblance to the directly observed PRC although is does 
provide a wrong categorization of the PRC type at higher amplitudes. 
For low-amplitude fl uctuations we conclude that the WSTA method 

FIGURE 4 | Comparison of PRC methods on noisy model data. The four panels illustrate the resulting PRCs at different noise levels (NL = 1,2,3,4).

3The reversion rate in the Ornstein–Uhlenbeck noise was kept constant while the 
volatility was increased.
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produces the most reliable PRC, but for higher amplitude-fl uctua-
tions (NL = 3,4) the STEP and especially the STA method produce 
more reliable results (Figure 4).

The reliability of the STA method has to be inferred from a visual 
inspection of the produced PRC and knowledge of the noise-free, 
directly observed PRC because the quantitative analysis always indi-
cates low similarity between the PRC produced by the STA method 
and the noise-free, directly observed PRC. This phenomenon is due 
to the fact that the STA method is computed on the interval [0,ISI

max
] 

and only afterwards scaled to 0,ISI�⎡⎣ ⎤⎦. As a consequence, the STA is 
always relatively fl at at the beginning of the normalized interval and 
the PRC is shifted to later phases. Even though the interpretation 
of the PRC is beyond the scope of this review, the shift to higher 
phases does not matter for the reliability as the shift is consistent and 
proportional to increasing irregularity of the spike times.

PERFORMANCE ON EXPERIMENTAL DATA
The most interesting test case is the comparison of different PRC 
methods applied to real, experimental data. We compare the STA, 
WSTA and STEP method on data from layer 2/3 neurons. Figure 5 
illustrates the results with two different noise levels. With 650 spikes 
and considerable spread of ISIs, the WSTA method produces a noisy 
outcome while the STA and STEP result in smooth PRCs (as they 
are optimized Fourier series of small expansion). The two noise 
levels produce PRCs that very similar; all three methods indicate a 
type-II PRC although at both noise levels the WSTA produced PRC 

is rather noisy. In the case of experimental data, there is no calibrated 
data to test against and hence we only look at the Pearson correla-
tions between the different methods to assess the level of agreement 
between the different methods (Table 4). For the lower noise level, the 
Pearson correlation between the three methods is always higher than 
0.85, indicating good correspondence between the three methods. 
Also, for the higher noise level, the correlations stay above 0.73 which 
still indicates good agreement between the different methods. The 
STEP method has the highest Pearson correlation with the other two 
outcomes and can therefore be seen as a sort of ‘average’ of the other 
two methods. Additionally, the high resemblance between the three 
methods corroborates that these PRCs are reliable.

RELIABILITY AND PARAMETER SENSITIVITY
Here we address the reliability of the various methods for estimating 
the PRC. Moreover, we investigate how the reliability is affected by 
parameter sensitivity in the algorithm.

The reliability of the estimated PRC depends strongly on the 
number of spikes available for analysis. The data used to obtain 
the PRCs in Figures 3, 4 and 5 contain a reasonable number of 
spikes4, and the results indicate that all three methods are – to a 
certain extent – capable of producing reliable PRCs even under the 
presence of higher-amplitude fl uctuations and more diverse ISIs. 

Table 3 | Quantitative performance of the different methods to estimate the PRC using noisy, continuously fl uctuating data.

Method NL = 1 NL = 2 NL = 3 NL = 4

 PC MSE PC MSE PC MSE PC MSE

STA −0.089941 514 −0.252694 562 −0.191698 541 0.279241 410

STEP 0.751355 343 0.702422 544 0.671676 336 0.551901 387

WSTA 0.847633 212 0.776861 282 0.815145 318 0.788307 459

The WSTA performs the best on most noise levels in terms of both the MSE and Pearson correlation (PC) when compared to the directly observed PRC. An interpre-
tation of these results is in the main text.

FIGURE 5 | Comparison of different PRC methods on experimental data. Two noise levels were tested and the three methods show a fair agreement on the 
type (type-II) of the PRC curve.

4‘Reasonable’ is here used to denote the number of spikes from experimental data 
(at least 650) or higher.
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However, the number of spikes available for analysis can be limited 
in experimental data because the experimental protocol is often not 
exclusively used to gather data to determine a PRC but for other 
scientifi c goals. Therefore, we examined the performance of the 
STA, WSTA and STEP method with less spikes, namely 50, 100 and 
500 spikes. Figure 6 illustrates these results. The columns illustrate 
the PRC with (from left to right) 50, 100 and 500 spikes (the spikes 
are the fi rst 50, 100 and 500 of the available spikes in the data set). 
The PRCs from the top row use spikes from the continuous fl uc-
tuating data set at the lowest fl uctuation level. The PRCs from the 
bottom row use experimental data at the second fl uctuation level. 

For the model data, the WSTA and STEP methods give a fair result 
when using as little as 50 spikes while the STA method produces no 
usable PRC5. With 100 spikes and more, all three methods produce 
a reliable PRC on this set of model data with little variance in the 
ISIs. For the experimental data, a different view emerges. For both 
50 and 100 spikes, the WSTA output is useless because of the high 
noise. Moreover, the STEP method wrongly classifi es the PRC as 
type-I with only 50 spikes; a negative part in the STEP-produced 
PRC using 100 or 500 spikes correctly indicates type-II PRC. With 
500 spikes, all three method provide a reliable PRC. In contrast to 
the PRCs from the modeled data, the STA method produces fair 
PRC with as little as 50 spikes. This result demonstrates that the 
produced PRCs are infl uenced by regularity of the data and the 
number of spikes, rather than claiming superiority of any method 
of the other. With a different combination of spike times (i.e., not 
the initial 50, 100, or 500) the results look slightly different (not 
shown).

The results presented in this paper demonstrate that all methods 
are capable of producing reliable PRC on pulsed-perturbation data. 
Moreover, provided a suffi cient number of spikes are available, the 
STA, WSTA and STEP methods also work well with continuous 
fl uctuating data. This result might be, however, misleading since the 
reliability of the tested methods is sensitive to algorithm parameters 
such as the a priori estimated ISI ISI�( ) and the estimated injected 

Table 4 | Agreement between different PRCs on the experimental data.

 STA STEP WSTA

NOISE 1

STA 1.000000 0.872780 0.852972

STEP  1.000000 0.887956

WSTA   1.000000

NOISE 2

STA 1.000000 0.794771 0.737648

STEP  1.000000 0.837448

WSTA   1.000000

Shown are the Pearson correlation between the PRCs generated by three 
different methods. All show strong correlation indicating similar trends in the 
three curves. 

FIGURE 6 | The infl uence of the number of spikes on the reliability of the 

produced PRCs. The top and bottom row represent noisy modeled data and 
experimental data, respectively. We tested 50, 100 and 500 spikes and observe 
that the PRC type is correctly assessed by the STEP and STA method for data 

sets containing more than 100 spikes. The reliability increases for higher number 
of spikes but with 500 spikes the STA and STEP methods seem to converge on 
both modeled data and experimental data while the WSTA method is still very 
noisy on the experimental data set with 500 spikes.

5If the spike-triggered average is purely positive, the STA-produced PRC will steeply 
go negative as illustrated in the top left panel of Figure 6.
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step current I
s
 (on top of which the fl uctuations are modulated). 

These parameters can be set manually or computed by the algo-
rithm itself. Below we describe the effects of these two parameters 
on the different methods to estimate a PRC.

We observed that the STA method is highly sensitive to a correct 
estimation of the current step, i.e., I

s
 the injected current to make the 

neuron fi re regularly. Figure 7 (top left) illustrates this effect. With 
a very small deviation of the estimated mean from the real injected 
DC the outcome becomes unstable. In most cases, this effect will be 
evident to the researcher: when the amplitude of the STA (in the 
STA method) is close to 0, minor offsets in the estimated DC may 
shift the STA (to either all positive or all negative), and, in turn, 
shift the PRC resulting in a wrong indication of the PRC type. The 
top left panel in Figure 6 also clearly demonstrates this effect: the 
PRC drops steeply (which is accentuated by the normalizing of the 
positive peak to 1). However, when the STA is further away from 0, 
or when the STA crosses 0, a faulty PRC is hard to observe because 
the resulting PRC will resemble a PRC but will not be representa-
tive of the data. Hence, a few different settings for the estimated 
mean (for instance, the calculated mean from the injected signal 
in simulations, or, straightforwardly the injected current from the 
experimental setup) should be used and the resulting PRCs should 

be compared to PRCs produced by the other methods. In addition, 
we observed that the PRC produced by the STA is diffi cult to inter-
pret for two reasons. First the PRC is always shifted on the x-axis 
towards later phases because it is computed on the interval [0,ISI

max
] 

and later normalized to 0,ISI�⎡⎣ ⎤⎦. Second, the y-axis provides the 
integral of the STA; it is not obvious how this relates to the exact 
delay or advance in spike times. Unfortunately, this second diffi culty 
also arises for the WSTA method where the y-axis is defi ned by the 
non-symmetric (see below), weighted sum of the input fl uctua-
tions. The STEP method has a straightforward interpretation of 
the y-axis as it stands for the phase shift.

We observed that the WSTA method is highly sensitive to the 
estimated ISI (see Figure 7, top right). In effect, the ISI�  shifts the 
resulting PRC along the y-axis. This observation can be explained 
as follows: spikes with relatively short ISIs compared to the ISI�  (i) 
are stretched to the ISI�  and become straight lines with little varia-
tion, and (ii) receive a high weight in the weighted sum (Figure 7, 
bottom left). These two effects combined lead to shorter ISIs pulling 
the PRC upwards. On the other hand, relatively long ISIs compared 
to the ISI�  make the PRC resulting from the WSTA method noisy 
because they are compressed to fi t on the normalized interval; 
during this compression smooth fl uctuations become steep and 

FIGURE 7 | Infl uence of confi guration settings in different PRC methods. All 
PRCs are generated from noisy modeled data with NL = 2. Top left: the STA 
method is highly sensitive to errors in the estimated current step (Is). Top right: 
the WSTA method is sensitive to estimates of the ISI� . Bottom left: the WSTA 
weighing function is not symmetric and non-symmetric distributions of ISIs will 

lead to upward and downward drifts of the PRC. Bottom right: 
different outcomes of the WSTA method depend on a combination 
of the estimated ISI�  and the step current which can be either manually 
specifi ed as the predetermined mean (man) or computed from the input 
fl uctuations (set).
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are added up to the PRC. For highly regularly fi ring neurons, the 
estimated ISI ISI�( ) is simply the mean of the ISIs ISI�( ). However, 
in the more realistic cases with more variation and a skewed ISI 
histogram, it becomes less clear what the ‘best’ a priori estimated 
ISI�  should be: mean, median, or mode of the ISIs? In type-II cases 
this estimation might cause unreliable results because the crossing 
point (i.e., the point where the curve changes sign) can be shifted 
along the x-axis and the ratio of positive to negative surface will 
clearly be modifi ed, even up to the point that the negative part 
may became insignifi cant. In addition, Figure 7 (bottom right) 
illustrates the accumulated effect of different settings for the ISI� and 
the step current I

s
. One problem is that all of the PRCs produced by 

the WSTA method shown in that panel resemble what a researcher 
might anticipate: some PRC estimates are of type-II while others are 
of type-I. The difference is caused by changing two confi guration 
options in the algorithm.

In general, the fact that one can configure two settings 
ISI and� I s( ) opens a possibility for a bias in the resulting PRC: 

as we just illustrated a PRC can be easily ‘tuned’ under the pres-
ence of considerable fluctuations to a particular PRC type by 
changing ISI and� Is( ). Therefore, one might tune the settings in 
a way as to prove a particular PRC type. Moreover, even without 
predispositions about the PRC type, all of the PRC methods 
(and especially the methods that optimize a smooth curve) can 
produce PRCs that appear realistic without being representa-
tive of the data.

DISCUSSION
We reviewed fi ve different methods to determine the PRC from 
experimental or modeled data. Two methods are variations of 
the direct method and require the perturbation-stimulation pro-
tocol to gather data. The three other methods use continuous 
fl uctuation data, which requires the continuous injection of (a 
step current and) a fl uctuation into a regularly fi ring neuron. We 
found that on noise-free modeled perturbation data, all meth-
ods worked well and showed little difference. Moreover, the two 
methods requiring pulse perturbation data produced the best 
results, but this comes at the cost of a specialized stimulation 
protocol and the requirement of a large number of spikes in order 
to cover all the phases. In contrast, the methods that can use the 
continuous fl uctuation data use all available data effi ciently as 
random fl uctuations are by defi nition delivered at every phase 
and thus require less spikes. For instance, one study (Galán et al., 
2005) uses 7000 (highly regular) spikes while we show that the 
continuous fl uctuation methods provide reliable results after a 
few hundreds spikes (e.g., 500). Hence, for experimental situa-
tions where little time is available it is best to use the continu-
ous fl uctuation protocol. When an experiment is done solely for 
the purpose of determining a PRC, the perturbation protocol 
should be used.

However, we also demonstrated that the estimated PRC not 
only depends on the method employed, but also on the settings of 
the method I s and ISI�( ) and the regularity of the spikes (as altered 
by the amplitude of the fl uctuations). Moreover, we demonstrated 
that the different techniques might generate PRC curves that appear 
plausible but are not representative for the data. A ‘panel of experts’ 
strategy can be applied to enhance the reliability: one can run all 
the different methods (that are appropriate for the given data set) 
with slightly different confi gurations. A stable PRC for the widest 
range of settings can be considered the most correct. And, pitfalls 
such as upward or downward shifts in the PRC can be detected by 
trying several settings. W also suggest researchers dealing with PRC 
to inspect carefully the spiking data and obtain good estimates for 
the ISI�  and the DC step current before running the analysis and 
using any of the PRC estimation methods.

Interpretation of the PRCs is beyond the scope of this review. 
Briefl y, however, different criteria are used to classify PRC curves 
into type-I curves and type-II curves. For instance, the ratio 
between the negative amplitude and the positive amplitude 
(Tateno and Robinson, 2007) or the ratio between the positive 
and negative surface (Tsubo et al., 2007) have been proposed as 
PRC categorization criteria. Moreover, some reports suggest that 
the exact shape of the PRC, skewness, zero-crossings and other 
features contain information about the underlying system (e.g., 
Gutkin et al., 2005; Tateno and Robinson, 2007). These features 
can only be reliably interpreted after obtaining a PRC in a reli-
able manner following guidelines and avoiding potential pitfalls 
as outlined above.

We hope that this review of methods for determining the PRC 
will motivate researchers to determine this measure of spiking 
behavior for the neural cell types they investigate. The PRC is a 
measure with considerable predictive power for the behavior of a 
single neuron in a network (Ermentrout, 1996). Given knowledge 
of a neuron’s PRC and its synaptic connections (excitatory/inhibi-
tory, waveform duration, and delay), it is possible to analytically 
determine its participation in population activities such as syn-
chronization, asynchrony and beating. Specifi cally, pairs, chains 
or networks of neurons with a type-I PRC will synchronize when 
coupled by fast inhibitory synapses. For type-II neurons, synchrony 
ensues with excitatory synapses. Strictly speaking, these predictions 
only hold for homogeneous networks of regularly spiking neurons 
perturbed by small synaptic potentials. Nevertheless, they allow 
for insights about network activity emerging from single neuron 
properties in many activity regimes. Thus, reliable knowledge of 
PRCs from more neural cell types will aid the understanding of 
how single neurons contribute to brain function.

ACKNOWLEDGMENTS
The authors thank Drs. Yasuhiro Tsubo and Stijn Vanderlooy for 
fruitful discussions.

REFERENCES
Ermentrout, G. B. (1996). Type I mem-

branes, phase resetting curves, 
and synchrony. Neural. Comput. 8, 
979–1001.

Ermentrout, G. B., Galan, R. F., and 
Urban, N. N. (2007). Relating neural 

 dynamics to neural coding. Phys. Rev. 
Lett. 99, 248103.

Galán, R. F., Ermentrout, G. B., and Urban, 
N. N. (2005). Effi cient estimation of 
phase-resetting curves in real neurons 
and its signifi cance for neural-network 
modeling. Phys. Rev. Lett. 94, 158101.

Golomb, D., and Amitai, Y. (1997). 
Propagating neuronal discharges in 
neocortical slices: computational and 
experimental study. J. Neurophysiol. 
78, 1199–1211.

Gutkin, B. S., Ermentrout, G. B., and 
Reyes, A. D. (2005). Phase-response 

curves give the responses of neurons 
to transient inputs. J. Neurophysiol. 94, 
1623–1635.

Hansel, D., Mato, G., and Meunier, C. 
(1995). Synchrony in excitatory 
neural networks. Neural. Comput. 7, 
307–337.



Frontiers in Neuroinformatics www.frontiersin.org March 2010 | Volume 4 | Article 6 | 11

Torben-Nielsen et al. Comparison of PRC estimation methods

or financial relationships that could 
be construed as a potential conflict of 
interest.

Received: 08 January 2010; paper pending 
published: 18 February 2010; accepted: 03 
March 2010; published online: 22 March 
2010.
Citation: Torben-Nielsen B, Uusisaari M 
and Stiefel KM (2010) A comparison of 
methods to determine neuronal phase-
response curves. Front. Neuroinform. 4:6. 
doi: 10.3389/fninf.2010.00006
Copyright © 2010 Torben-Nielsen, 
Uusisaari and Stiefel. This is an open-
access article subject to an exclusive license 
agreement between the authors and the 
Frontiers Research Foundation, which 
permits unrestricted use, distribution, and 
reproduction in any medium, provided the 
original authors and source are credited.

Ota, K., Omori, T., and Aonishi, T. 
(2009b). Map estimation algorithm 
for phase response curves based on 
analysis of the observation process. J. 
Comput. Neurosci. 26, 185–202.

Reyes, A. D., and Fetz, E. E. (1993). Two 
modes of interspike interval short-
ening by brief transient depolariza-
tions in cat neocortical neurons. J. 
Neurophysiol. 69, 1661–1672.

Stiefel, K. M., Gutkin, B. S., and 
Sejnowski, T. J. (2008). Cholinergic 
neuromodulation changes phase 
response curve shape and type in 
cortical pyramidal neurons. PLoS 
ONE 3, e3947. doi:10.1371/journal.
pone.0003947.

Stiefel, K. M., Gutkin, B. S., and Sejnowski, 
T. J. (2009). The effects of cholinergic 
neuromodulation on neuronal phase-
response curves of modeled cortical 

Hodgkin, A., and Huxley, A. (1952). A 
quantitative description of membrane 
current and its application to conduc-
tion and excitation in nerve. J. Physiol. 
117, 500–544.

I z h i k e v i c h ,  E .  M .  ( E d . )  ( 2 0 0 7 ) . 
Synchronization. In Dynamical 
Systems in Neuroscience: The Geometry 
of Excitability and Bursting. Cambridge, 
MA: MIT Press.

Marella, S., and Ermentrout, G. B. (2008). 
Class-II neurons display a higher 
degree of stochastic synchronization 
than class-I neurons. Phys. Rev. E Stat. 
Nonlin. Soft Matter Phys. 77(Pt. 1), 
041918.1–041918.12.

Ota, K., Nomura, M., and Aoyagi, T. 
(2009a). Weighted spike-triggered 
average of a fluctuating stimulus 
yielding the phase response curve. 
Phys. Rev. Lett. 103, 024101.

neurons. J. Comput. Neurosci. 26, 
289–301.

Tateno, T., and Robinson, H. P. C. (2007). 
Phase resetting curves and oscillatory 
stability in interneurons of rat somato-
sensory cortex. Biophys. J. 92, 683–695.

Torben-Nielsen, B., Uusisari, M., and 
Stiefel, K. M. (2010). A novel method 
for determining the phase-response 
curves of neurons based on minimiz-
ing spike-time prediction error. http://
arxiv.org/abs/1001.0446.

Tsubo, Y., Takada, M., Reyes, A. D., and 
Fukai, T. (2007). Layer and frequency 
dependencies of phase response proper-
ties of pyramidal neurons in rat motor 
cortex. Eur. J. Neurosci. 25, 3429–3441.

Conflict of Interest Statement: The 
authors declare that the research was con-
ducted in the absence of any  commercial 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages false
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages false
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages false
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


