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A necessary precondition for attaining a critical point in intricate 
neural systems, such as the mammalian cerebral cortex, is that initial 
network activations result in neuronal activation patterns that neither 
die out too quickly nor spread across the entire network. Without 
this feature, activation patterns would not be stable, or would lead to 
a pathological excitation of the whole brain. What are the essential 
structural and functional parameters that allow complex neural net-
works to maintain such a dynamic balance of sustained yet limited 
activity? Most current models of neural network dynamics focus on 
maintaining the right balance of network activation and rest through 
functional interactions among populations of inhibitory and excita-
tory nodes (Beggs and Plenz, 2003). Alternative balancing mechanisms 
may be provided by broad external input from neuromodulatory sys-
tems or self-sustained neuronal activity (Muresan and Savin, 2007). 
However, the topology of neural networks may also contribute to 
critical network dynamics, even in the absence of explicit inhibition. 
For this reason, we are particularly interested in the relationship of 
different kinds of neural network topology to the condition of limited 
sustained activation (LSA). The involvement of inhibitory neuronal 
populations and other dynamic control mechanisms may then further 
extend the parameter range for LSA that is provided by principal 
topological features of the neural network architecture.

INTRODUCTION
Complex systems operate within a critical functional range (Bak 
et al., 1987), sustaining diverse dynamical states on the basis of their 
intricate system architecture. Criticality is associated with the phase 
transition between ordered and chaotic dynamics, and systems tuned 
to the critical point produce power-law distributions in their dynam-
ics. Recent studies indicate that brain networks also operate close 
to a critical point. Evidence for this comes, for example, from the 
observation of neuronal avalanches (i.e., bursts of activity separated 
by longer periods of relative rest) with a power-law size distribution in 
cortical slices (Beggs and Plenz, 2003), and from time series analysis 
of EEG data (Freeman et al., 2000) showing that the power spectral 
density of background activity follows a power law. Critical activity 
has also been demonstrated in human brain functional networks 
(Kitzbichler et al., 2009). While its functional signifi cance is still not 
well understood, it has been suggested that critical dynamics may 
enhance information processing capabilities of neuronal networks 
(e.g., Bertschinger and Natschläger, 2004). This idea is supported 
by work showing that the dynamic range in an excitable network is 
optimized at criticality (Kinouchi and Copelli, 2006). Given these 
fi ndings, it is desirable to obtain a better understanding of the condi-
tions for criticality in complex excitable networks.
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Two central topological features of brain networks, in particular 
of the cerebral cortex, are their modular and hierarchical organi-
zation. A modular hierarchical organization of cortical architec-
ture and connections is apparent across many scales, from cellular 
microcircuits in cortical columns (Mountcastle, 1997; Binzegger 
et al., 2004) at the lowest level, via cortical areas at the mesoscopic 
scale, to clusters of highly connected brain regions at the global 
systems level (Hilgetag et al., 2000; Breakspear and Stam, 2005; 
Kaiser, 2007). The precise organization of these features at each 
level is still sketchy, and there is exists controversy about the exact 
organization or existence of modules even at the level of cortical 
columns (Rakic, 2008; Smith, 2010). Nonetheless, current data and 
concepts suggest that at each level of neural organization clusters 
arise, with denser connectivity within than between the modules. 
This means that neurons within a column, area or cluster of areas 
are more frequently linked with each other than with neurons in 
the rest of the network.

The spreading of activity has been modeled for cortical net-
works (Kötter and Sommer, 2000) and other complex networks 
with a non-random organization (Pastor-Satorras and Vespignani, 
2001). In a previous study of activity spreading through different 
topologies of excitable networks (Kaiser et al., 2007a), we showed 
that patterns of limited but sustained activity are well supported 
by the organization of hierarchical multi-modular networks, but 
not random or simple small-world networks (Watts and Strogatz, 
1998) of the same size. In addition, such properties arose without 
the need for explicit inhibitory feedback or external input, dem-
onstrating the signifi cant role of network topology in sustaining 
and limiting neural activation (Latham and Nirenberg, 2004; Roxin 
et al., 2004).

While our previous study (Kaiser et al., 2007a) demonstrated 
that a wide range of initial parameters in hierarchical modular 
networks could result in LSA, it did not clarify whether this range 
was due mainly to the multi-modular organization of the network 
or its hierarchical structure. In the present study, we investigated 
the relation of different hierarchical network confi gurations to the 
range of LSA more extensively. The principal type of  hierarchical 

structure, an interconnected set of modules with encapsulated 
sub-modules without explicit hub nodes, as well as the settings 
for the dynamic mechanisms were preserved from our previous 
model. A fi xed number of nodes was activated at the beginning of 
each dynamical simulation. Other nodes became activated when 
at least k of their directly connected node neighbors were active at 
the same time. Each active node deactivated in the following time 
step with probability v. Note that this model only assumes initial 
activation at time step 0, but no ongoing external input or internal 
random activation.

Our hierarchical topological model refl ects general features of 
brain connectivity at the large and mesoscopic scale, in particular 
the modularity of neural networks across scales. Nodes in the model 
are intended to represent cortical columns (Mountcastle, 1997) 
rather than individual neurons. Connections between columns 
are modeled as exclusively excitatory, since it is appears to hold 
that there are no long-distance inhibitory connections within the 
cerebral cortex (Latham and Nirenberg, 2004). However, nodes can 
also deactivate (controlled via the model’s deactivation probability) 
due to intrinsic inhibition or exhaustion, as observed for corti-
cal tissue after prolonged fi ring, for instance in epileptic seizures 
(Milton and Jung, 2003).

Two main parameters were explored in the hierarchical 
networks, the number of hierarchical levels and the number 
of sub-modules at each level (cf. Figure 1). These parameters 
were varied, while other topological features, such as the prob-
ability that any two nodes are connected, or alternatively, the 
average number of connections per node, were kept constant. 
We explored whether optimal hierarchical confi gurations 
existed, in which the proportion of tested cases with LSA was at 
a maximum. In addition, we tested whether the parameters for 
such optimal confi gurations changed with network size; that is, 
whether small networks, representing the approximate number 
of columns as in a small rodent (rat) brain, had different opti-
mal settings than larger cortical networks that might refl ect the 
number of column nodes in larger mammalian (cat) and primate 
(macaque) brains.

FIGURE 1 | Overview of variation of granularity and scales in the 

explored hierarchical modular networks. The plots show the outcome of 
100 realizations of networks with 128 nodes and 4,096 directed edges. Gray 
level shading of the adjacency matrix indicates the frequency with which an 
edge was established (white: never established; black: established in all 100 
generated networks). (A) Random networks without hierarchical structure, 

resulting from h = 0 (number of hierarchical levels) and m = 0 (number of sub-
modules); (B) Flat modular networks with four modules, resulting from h = 1, 
m = 4; (C) Hierarchical modular networks with h = 2, m = 4. Note that each 
hierarchical level contains the same number of edges, resulting in 16 modules 
at the lowest hierarchical level in (C), which possess the highest 
edge density.
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The network was generated beginning with the highest level 
and adding modules to the next lower level with random con-
nectivity within modules. The resulting networks were similar to 
the ones produced by an alternative procedure (Sporns, 2006), 
but differed in the generating algorithm (we present pseudocode 
here, the actual Matlab algorithm is available online at http://
www. biological- networks.org):
for i from 0 to h − 1 for all hierarchical levels

A
i
 = (m − 1)/mi+1  proportion of the adjacency 

matrix occupied by one module 
at the current hierarchical level

p
i
 = E

i
/(N2 A

i
) edge density within a module

N
i
 = N × (1/m)i number of nodes in a module

N
c
 = N/N

i
  number of modules at the current 

level
for j from 1 to N

c

c
i
 =  random graph with N

i
  random N

i
×N

i
 graph with 

and edge density p
i  

edge density p
i

r
0
 = 1 + (j − 1) N

i
 fi rst node of the module

r
1
 = r

0
 + N

i
 − 1 last node of the module

CIJ(r
0
 to r

1
, r

0
 to r

1
) = c

i
  part of the matrix CIJ is replaced 

with c
i

for i from 1 to N
CIJ(i, i) = 0  remove connections across the 

diagonal (loops)
The algorithm involves the following steps: Starting with an 

empty adjacency matrix CIJ, modules at hierarchical level i are 
added starting with modules at the hierarchical level h = 0 (global 
network). The ratio of matrix elements that represent potential 
connections within any module A

i
 depends on the hierarchical 

level i and the number of sub-modules per module m. Based 
on A

i
 and the number of edges at that hierarchical level, E

i
, we 

can determine the probability p
i
 that any two nodes within a 

module are connected (edge density within modules). Next, the 
number of nodes in each module N

i
 is calculated leading to the 

total number of modules N
c
 at that level. Then, each module 

given as a random graph with edge density p
i
 is inserted in the 

adjacency matrix CIJ. Finally, edges along the diagonal (loops) 
are removed from the network. Due to this removal, the total 
number of edges might be slightly lower than the desired number 
of edges. In these cases, additional edges are added randomly to 
the network to generate the desired total number of edges and 
edge density (not shown in the pseudocode; however, see Matlab 
routine online).

We explored hierarchical networks with different numbers 
of hierarchical levels, h (scales), and numbers of sub-modules at 
each level, m (granularity). A network without hierarchical levels 
forms a random network, with one level a “fl at” modular net-
work, two levels a network with modules and sub-modules, and 
so on (Figure 1).

SPREADING MODEL
A basic spreading model (Newman, 2005) was modifi ed to simulate 
the propagation of activity through the network. This dynamic 
model was identical to the one used in Kaiser et al. (2007a).

The simulation operated in discrete time steps, with nodes being 
in one of two states, active or inactive.

MATERIALS AND METHODS
Calculations were performed on a 16-core HP ProLiant server using 
the Linux version of Matlab R2009a (Mathworks Inc., Natick, MA, 
USA). Scripts are available at http://www. biological-networks.org 
and are part of CARMEN (http://www.carmen.org.uk).

ANATOMICAL CONSTRAINTS
We investigated if the topology of optimal hierarchical net-
works, leading to a maximum parameter range of LSA, varied 
with brain size. For this approach, the number of nodes was 
set to the number of columns estimated to exist in one cortical 
hemisphere in different species. The number of columns was 
estimated from the surface size of one cortical hemisphere in rat 
(Nieuwenhuys et al., 1998), cat (Nieuwenhuys et al., 1998), and 
macaque (Felleman and van Essen, 1991) under the assumption 
of each (macro-)column occupying 1 mm2. Real columns might 
be smaller and we elaborate on the role of column size differ-
ences across areas and species in the Section “Discussion”. We 
explored three networks with different surface sizes for one hemi-
sphere, rat-like (300 nodes; 3 cm2 surface), cat-like (4,150 nodes; 
41.5 cm2 surface), and macaque-like (11,000 nodes; 110 cm2 sur-
face). Note that these are very simple estimates based on the 
assumption that columns in different species are comparable 
in the basic circuit layout even though the absolute number of 
neurons may vary (Herculano-Houzel et al., 2008). Either edge 
density or average number of edges per node (average degree 
〈k〉) was kept constant across network sizes. The edge density 
was set to 1.2%, corresponding to the one chosen in a previous 
study (Kaiser et al., 2007a) and is close to values of 0.48% for a 
model of the rat cortex.

The constraint of a constant average node degree was motivated 
by comparative studies showing largely constant numbers of con-
nections per neuron across many species (Hellwig, 2000; Schüz and 
Braitenberg, 2002; Binzegger et al., 2004; Striedter, 2004; Changizi 
and Shimojo, 2005; Schüz et al., 2006). At the column level, it can 
also be reasoned that columns are mostly connected with adjacent 
columns on the cortical surface (short-distance; intra-areal) and 
only a few columns in different areas (long-distance; inter-areal 
connections). Due to this presumed homogenous arrangement of 
cortical networks, the number of connections per column should 
be independent of the total number of columns in the network. 
The average degree was set to the arbitrary but fi xed number of 50. 
Note that the actual values for edge density or average degree might 
differ from the ones chosen here without changing the principal 
conclusions of this study, as results across different networks were 
compared qualitatively.

GENERATING HIERARCHICAL NETWORKS
Alternative approaches exist for generating a hierarchical net-
work with m sub-modules per module and a total number of 
levels h. As a default, we settled on a strategy in which the total 
number of edges E was distributed to the different levels (see 
Figure 1) with E

i
 edges on level i, so that each level received 

the same number of edges: E
i
 = E/(h + 1). This model, which 

was used throughout the study, preserved a constant number of 
edges when the number of levels or sub-modules within modules 
was varied.

http://www.biological-networks.org
http://www.biological-networks.org
http://www.carmen.org.uk
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We used a simple threshold model for activity spreading where 
a number i of randomly selected nodes was activated in the fi rst 
step. At each subsequent time step, inactive nodes became acti-
vated if at least k neighbors were currently active (neighbors of a 
node are nodes to which direct connections exist). Activated nodes 
could become inactive with probability v in the next time step, or 
otherwise stayed active.

An additional parameter was the extent of localization of the ini-
tial activation, i

0
. For initialization, i (i ≤ i

0
) nodes among the nodes 

1 to i
0
 were selected randomly and activated in the fi rst time step. 

The networks nodes were numbered consecutively. For instance, for 
a network where the largest modules at the highest level contained 
100 nodes and where each module contained 10 sub-modules with 
10 nodes each, by setting i

0
 to 10, 20 or 100, the fi rst sub-module, the 

fi rst two sub-modules, or the fi rst module, respectively, were activated 
during initialization. Thus, i determined the number of initially active 
nodes while i

0
 controlled the localization of initial activations, with 

smaller values resulting in more localized initial activity.

CALCULATING THE AVERAGE RANGE OF LIMITED SUSTAINED ACTIVITY
We systematically explored the network activation resulting from 
different settings of the initial node activation and localization 
parameters. Persistent contained activity in hierarchical networks 
(e.g., intermediate-level trace in Figure 2A) existed for a wide range 
of initial localization and activation parameters (indicated by gray 
fi lled circles in Figure 2B).

We also explored if the results were robust for variations in 
the dynamic model parameters k and v, by using a Monte Carlo 
approach in which, for each pair of k and v, spreading simulations 
with randomly chosen parameters i (number of initially activated 
nodes) and i

0
 (localization) were tested (Figure 2B). A trial was 

considered to show sustained activity if at least one but at most 50% 
of the nodes were activated at the end of the simulation (after 200 
steps). In our experience, activity did not further die out or spread 
through the whole network if such an activity level was reached at 
the end of the simulation. For each pair of spreading parameters k 

and v, the average proportion of cases for which sustained activity 
occurred was charted (Figure 2C). This proportion is specifi ed by 
the ratio of gray fi lled circles relative to all data points in Figure 2B. 
The threshold k ranged from 1 to 9 (step size 2), while the deactiva-
tion probability v ranged from 10 to 90% (step size 20%). Therefore, 
the average ratio over all entries in Figure 2C refl ected the size of 
the parameter space for a given network topology which could give 
rise to LSA, taking into account the initialization parameters i and 
i

0
 as well as the dynamic model parameters v and k.

We tested the proportion of cases with sustained activity for 
different hierarchical confi gurations. These confi gurations varied 
in the number of hierarchical levels, from 0 for random networks 
to 4, and the number of sub-modules into which each module 
was divided for creating the next-lower hierarchical level. For each 
confi guration, different values for the threshold k and the deactiva-
tion probability v were tested, in that for each (k, v) pair, 200 runs 
were performed and the network state was observed after 200 time 
steps leading to a classifi cation as dying-out, sustained, or spreading 
activity. For these 200 runs, the number of initially activated nodes 
i and the localization parameter i

0
 was chosen randomly (see range 

in Figure 2B). The average proportion of sustained activity cases 
for each confi guration was plotted as gray-scale value for Figure 4 
and the subsequent fi gures.

INACCESSIBLE PARAMETER RANGE
For all network sizes, a variety of hierarchical confi gurations could 
not be realized, due to the limited network size (regions indicated by 
horizontal lines in Figure 3 and subsequent fi gures). Inadmissible 
confi gurations were those where the smallest module at the bottom 
level would have contained more edges than there were edges possible 
between module members; that means where N

c
 (N

c
 − 1) < E

c
 (N

c
: 

number of nodes; E
c
: number of edges in the smallest module). Note 

that the number of sub-modules per module was varied in steps of 
two (2, 4, 6, 8,…). Variations by a different step size might have pro-
duced more clearly apparent differences in inaccessible confi gurations 
between small (300 nodes) and large (11,000 nodes) networks.

FIGURE 2 | Determining the parameter range of limited sustained activity 

(schematic overview). (A) For several trials (shown here: 30 runs), it was tested 
whether activity spread through the whole network (here: activating 80% of all 
nodes), died out (all nodes becoming inactive), or was sustained at an 
intermediate level (here: activating 10 or 20% of all nodes). Note that even 
during complete spreading, not all the nodes were constantly active, due to the 
inactivation probability v specifi ed in the dynamic model. (B) Simulations were 
run for different combinations of the number of initially activated nodes i and the 
localization parameter i0. For each run, the simulated activity died out (•), spread 

through the whole network (o) or was sustained within a limited compartment 
of the network (•). (C) The parameter space of simulations was further explored 
for different combinations of deactivation probability v and activation threshold k. 
Gray levels for each parameter combination in the diagram refl ect the 
percentage of cases giving rise to LSA (from subplot B). The average value 
across all entries was taken as the fi nal measure of the parameter range of LSA 
for a particular network topology. It refl ects the average proportion of limited 
sustained activation cases obtained across all parameter settings for a given 
hierarchical modular network.



Frontiers in Neuroinformatics www.frontiersin.org May 2010 | Volume 4 | Article 8 | 5

Kaiser and Hilgetag Optimal hierarchical networks for functional criticality

RESULTS
EXPIRING, LIMITED SUSTAINED AND COMPLETELY SPREADING 
ACTIVITY PATTERNS
How does activity change over time for different parameter settings? 
In Figure 3 we give examples for different outcomes in a network 
with 512 nodes, two hierarchical levels, and eight modules with 
eight sub-modules per module. Each sub-module contains eight 
nodes. Modules are represented by gray shading where the indi-
vidual gray levels represent sub-modules. Blue dots indicate that a 
node is active at a certain time step.

For expiring activity (Figure 3A), initial activity quickly died out 
as active nodes became de-activated and not enough active neighbors 
existed to sustain the activity. For LSA (Figure 3B), modules and 
sub-modules became activated indicating that a critical number of 
neighbors of a node were active and able to (re-) activate a node. For 
completely spreading activity (Figure 3C), activity that was initially 
contained in one module or several sub-modules managed to spread 
to other parts of the network and quickly led to complete network 
activation. This time-course of an early focus of activity with a rapid 
spread to the whole network may be compared to the generalizations 
of seizures in epilepsy patients. Note that the blue lines in Figure 3A as 
well as the large blue areas in Figures 3B,C also contain nodes which 
are not active (see inset of Figure 3B); however, these nodes are not 
visible in the fi gure due to the dot size and image resolution.

TOPOLOGICAL AND SMALL-WORLD PROPERTIES OF HIERARCHICAL 
NETWORKS
For all tested network sizes, the generated hierarchical networks 
(h ≥ 1) possessed characteristics of small-world networks (Watts 
and Strogatz, 1998), in that the clustering coeffi cients (the average 
frequency with which neighbors of a node are directly connected) 
were much higher than for same-size Erdös–Rényi random networks 
(Erdös and Rényi, 1960), whereas the characteristic path lengths (the 
average number of connections on the shortest path between any two 
nodes) remained comparable to those for random networks of the 
same size (Tables 1 and 2). Note that networks with only one hierar-
chical level represent the special case of simple modular networks.

The characteristic path length for the case of constant edge 
density (Table 1) was particularly high for the 300-node network. 
This is due to the low edge density of 1.2%; small networks 
with low edge density exhibit fewer alternative pathways than 
larger random networks with the same edge density. Therefore, 
the path length decreases when more edges are added, as for 

FIGURE 3 | Examples of neural dynamics for different simulation outcomes. 

Gray shading represents modules and individual gray levels represent different 
sub-modules. Nodes which are active at a time step are represented as blue dots. 

(A) Expiring (dying-out) activity. (B) Limited sustained activity. Although some 
modules appear completely activated, nodes can be inactive at various time steps 
due to the inactivation probability (inset). (C) Completely spreading activity.

Table 1 | Graph and small-world characteristics of hierarchical networks 

with constant edge density.

N E C C
rand

 L L
rand

 SW

300 1,080 0.025 0.012 23.6 25.0 2.21

512 3,146 0.024 0.012 5.1 4.6 1.80

4,150 206,670 0.023 0.012 2.6 2.5 1.84

11,000  1,452,000 0.023 0.012 2.3 2.2 1.83

The number of edges E for a given number of nodes N was chosen such that 
the edge density remained 1.2%. Networks with two hierarchical levels and 
four sub-modules per module are shown (cf. Figure 1C). C and Crand: clustering 
coeffi cients of the hierarchical and random networks. L and Lrand: Characteristic 
path lengths of the hierarchical and random networks. SW: small-world index 
(C/Crand)/(L/Lrand).

Table 2 | Graph and small-world characteristics of hierarchical networks 

with constant node degree.

N E C C
rand

 L L
rand

 SW

300 15,000 0.227 0.167 1.8 1.8 1.36

512 25,600 0.163 0.098 1.9 1.9 1.66

4,150 207,500 0.023 0.012 2.6 2.5 1.84

11,000 550,000 0.009 0.005 2.8 2.8 1.80

The number of edges E for a given number of nodes N was chosen such that 
the average number of connections (node degree) was 50. C and Crand: clustering 
coeffi cients of the hierarchical and random networks. L and Lrand: Characteristic 
path lengths of the hierarchical and random networks. SW: small-world index 
(C/Crand)/(L/Lrand).
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the larger  networks. This behavior resembles the behavior of 
random networks where the characteristic path length L ∼ ln 
N/ln 〈k〉, where N is the number of nodes and 〈k〉 is the aver-
age node degree (Albert and Barabási, 2002; Costa et al., 2007). 
All networks, however, show features of small-world networks 
(Watts and Strogatz, 1998). The clustering coeffi cient for random 
networks, C

rand
, was the same for all network sizes. For random 

networks, the clustering coeffi cient is the same as the edge den-
sity; that means, the probability that neighbors of a node are 
connected is the same as the probability that any two nodes are 
connected. As the edge density is kept constant for all network 
sizes, C

rand
 remains constant at that value as well. The extent of 

a small-world organization can be characterized by the small-
world coeffi cient SW = (C/C

rand
)/(L/L

rand
) (Humphries et al., 

2006; Humphries and Gurney, 2008). The index SW is around 2 
indicating a small-world organization of these networks. Whereas 
SW is 2.2 for a small network size of 300 nodes, it remains at a 
lower level of 1.8 for larger networks.

For constant average node degree 〈k〉 (Table 2), the average path 
length increases with network size. Smaller networks with 300 and 
512 nodes show a considerably lower path length compared to 
constant edge density. Again, all networks displayed features of 
small-world networks (Watts and Strogatz, 1998). The small-world 
index SW, however, was lower for small network sizes of 300 and 
512 nodes compared with the scenario of constant edge density.

OPTIMAL HIERARCHICAL CONFIGURATIONS FOR LSA IN 
A SMALL NETWORK
Variation of sustained activity and topological measures
As a fi rst test, we explored the link between hierarchical organiza-
tion and the parameter range of LSA for different confi gurations 
of a network with 512 nodes and, on average, 50 connections per 
node (Figure 4A). The parameter range for LSA tended to increase 
with the number of sub-modules at each hierarchical level (along 
rows in Figure 4A). The maximum range of LSA occurred for one 
hierarchical level and the largest possible number of sub-modules 
per module.

In this and all following plots (Figures 5 and 6), regions with 
horizontal lines indicate hierarchical confi gurations that cannot 
be realized, as some modules would need to contain more edges 
than can be fi tted between members of that module. These cases 
were detected whenever N

c
 (N

c
 − 1) < E

c
 (N

c
: number of nodes; E

c
: 

number of edges in the smallest module); that means the number E
c
 

of edges that needed to be established was higher than the number 
of possible edges in a module, N

c
 (N

c
 − 1). Note also that the gray 

levels indicating proportion of cases were normalized so that white 
regions represent the minimum and black regions the maximum 
value for each plot.

Due to the network generation algorithm, modules at the low-
est level of the hierarchy had the largest edge density (cf. Figure 1). 
We used this effect to test if LSA patterns were facilitated by more 
densely connected bottom modules in the network (Figure 3B). 
Interestingly, there existed no clear relation of the density with 
sustained activation: whereas both maximum edge density and 
sustained activity probability increased with the number of sub-
 modules for a network with two hierarchical levels (Figures 4A,B), 
the relation was less clear for larger numbers of hierarchical levels.

How are small-world properties linked to the different hierar-
chical confi gurations? The characteristic path length (Figure 4C) 
appeared to show lower values when two or more hierarchical 
levels existed in the network, but the values were in a narrow 
range of 1.91–1.92 for one hierarchical level. The clustering coef-
fi cient (Figure 4D) increased with the number of levels and the 
number of sub-modules per module. The characteristic path 
lengths of the hierarchical networks were comparable to those of 
Erdös–Rényi random networks (Figure 4E) whereas the cluster-
ing coeffi cient was higher than in random networks (Figure 4F). 
As the normalized path length is around 1, the SW index has 
a similar value as the normalized clustering coeffi cient. Given 
large SW indices, the networks possessed features of small-world 
networks (Watts and Strogatz, 1998).

FIGURE 4 | Range of limited sustained activity for different hierarchical 

confi gurations of a small network. Shown is the parameter range of limited 
sustained activation and of topological features for a network with 512 nodes 
and average node degree of 50. Regions blocked by horizontal lines indicate 
confi gurations that were not admissible (see Materials and Methods). 
Parameters were explored for 1,000 runs of each set of spreading parameters 
k and v, while the number of initially activated nodes i and the localization 
parameter i0 varied for each run. (A) Average of the number of parameter 
settings leading to LSA. (B) Maximum edge density based on the most highly 
connected modules (modules at the lowest level of the respective hierarchy). 
(C) Characteristic path length of the networks. (D) Average clustering 
coeffi cient of the networks. (E) Normalized characteristic path length (divided 
by the value for Erdös–Rényi random networks). (F) Normalized average 
clustering coeffi cient (divided by the value for Erdös–Rényi random 
networks).



Frontiers in Neuroinformatics www.frontiersin.org May 2010 | Volume 4 | Article 8 | 7

Kaiser and Hilgetag Optimal hierarchical networks for functional criticality

higher  hierarchical levels (“decreasing parcellation”) or (b)  creating 
more sub- modules for higher hierarchical levels (“increasing par-
cellation”). Confi gurations with a high proportion of LSA cases for 
decreased as well as increased numbers of sub-modules for each 
hierarchical level remained comparable with the original calcula-
tion. However, for the “increasing parcellation” type, the overall 
proportion of LSA cases increased, extending the maximum prob-
ability of sustained activity from 0.23 to 0.42 (cf. Figure 8).

Number of cases close to 50% activation threshold for classifi ca-
tion as sustained. In additional simulations, we tested how close the 
fi nal activity was to the threshold used for classifi cation as a case of 
LSA. Indeed, fi nal activity levels close to the 50% threshold could 
occur. However, fi nal activity levels were around 10–20% for most 
confi gurations producing a high number of LSA cases. This indi-
cates that confi gurations leading to a high proportion of LSA cases 
were not substantially affected by the threshold (cf. Figure 9).

Topologies leading to expiring, limited sustained, and completely 
spreading activity. As a default, we investigated the distribution 
of LSA cases depending on the hierarchical network organization. 
In additional simulations, we also explored the distribution of the 
other two possible simulation outcomes: activity dying out before 

Control calculations
We tested several parameters that were used for generating hierar-
chical networks. Networks consisted of 512 nodes and, on average, 
50 connections per node. The Appendix contains a full description 
of these control calculations including additional fi gures.

Varying the number of edges for different hierarchical levels. By 
default, the number of edges for each hierarchical level was set to 
be equal, that means, E

i
 was the same for each hierarchical level 

i. Here, we tested sustained activity patterns for varying numbers 
of edges per level. We considered two cases: (a) a decrease of the 
number of edges with each hierarchical level or (b) an increase of 
the number of edges with each hierarchical level. The absolute level 
of sustained activity was lower in case (a) and higher in case (b) 
compared to the original setting (cf. Figure 7).

Varying the parcellation for different hierarchical levels. By 
default, we used the same parcellation of modules at each level; 
that means if a module consisted of two sub-modules for the 
highest level, this condition would be the same for all other lev-
els of the network hierarchy as well. Here, we also tested varying 
the parcellation into sub-modules depending on the hierarchical 
level. Again, we tested two cases: (a) creating fewer sub-modules for 

FIGURE 5 | Scaling of optimal confi gurations with network size for constant global edge density. Proportion of cases showing LSA (averaged over 200 
generated networks for each confi guration) in (A) “rat-size” networks with 300 columns, (B) “cat-size” networks with 4,150 columns, (C) “macaque-size” networks 
with 11,000 columns.

FIGURE 6 | Scaling of optimal confi gurations with network size for constant average node degree (〈k 〉 = 50). Proportion of cases showing LSA (averaged over 
200 networks generated for each confi guration) in (A) “rat-size” networks with 300 columns, (B) “cat-size” networks with 4,150 columns, and (C) “macaque-size” 
networks with 11,000 columns.
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FIGURE 7 | Varying the number of edges per hierarchical level. (A) Decreasing number of edges for higher hierarchical levels [Ei ∼ (2/3)i]. (B) Number of edges 
independent from hierarchical level (Ei = const.). (C) Increasing number of edges for higher hierarchical levels [Ei ∼  (3/2)i].

FIGURE 8 | Varying the parcellation (number of sub-modules per module) for hierarchical levels. (A) Decreasing number of sub-modules mi for higher 
hierarchical levels (mi ∼ 0.9i). (B) Parcellation into sub-modules independent from hierarchical level (mi = m = const.; see main text). (C) Increasing number of sub-
modules mi for higher hierarchical levels (mi ∼ 1.1i).

FIGURE 9 | Final activity for n = 20 runs classifi ed as sustained activity. (A) Minimal fi nal activity level. (B) Average fi nal activity level. (C) Maximum fi nal 
activity level.
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the end of the simulation and fi nal activation of more than 50% 
of the nodes, which was classifi ed as complete spreading. For a 
random network (zero hierarchical levels), both dying-out and 
complete spreading occurred in 50% of the cases. However, when 
more than one hierarchical level was present, complete spreading 
activity occurred more often than dying-out. For one hierarchical 
level, outcomes depended strongly on the number of sub-modules 
per module. The cases with expiring activity formed 50% of the 
cases for two sub-modules, but decreased with the number of sub-
modules (cf. Figure 10).

Varying the edge density. The pattern of sustained activity remained 
comparable to the default settings even when the edge density dif-
fered from the original value of 10% for a network with 512 nodes 
and an average node degree of 50. The maximum proportion of 
cases with LSA varied between 0.172 for decreased edge density 
(5%) to 0.238 for increased edge density (20%). The relative distri-
bution of case for networks with one hierarchical level was similar 
across edge densities (cf. Figure 11).

SCALING OF OPTIMAL HIERARCHICAL CONFIGURATIONS FOR LSA WITH 
NETWORK SIZE
Two different scaling scenarios were explored. In the fi rst one, the 
global edge density of the networks was kept constant (at 1.2%) 
while the average number of connections per node varied; in the 
second scenario, the average node degree was kept constant (at 50 
connections per node) while the networks’ edge density varied.

Constant edge density
In the fi rst approach, the probability that any two nodes (represent-
ing cortical columns) in the network were connected was, on aver-
age, 1.2%. Connection density was larger within modules and lower 
between modules; however the global average remained constant, 
independent of the hierarchical confi guration.

Given a constant setting for testing neural activation across 
network sizes, the “rat-size” network showed sustained activ-
ity for a wide variety of hierarchical confi gurations (Figure 5A). 
Surprisingly, for the larger “cat-size” network, a smaller variety of 
hierarchies existed that could generate LSA (Figure 5B). However, 

FIGURE 10 | Proportion of cases resulting in one of three scenarios of fi nal activity level. (A) Activity dying out. (B) Limited sustained activity. (C) Activity 
spreading through the network (above 50% activation threshold).

FIGURE 11 | Varying the edge density in a network with 512 nodes. (A) Decreased edge density d = 5%, average node degree 〈k〉 = 25. (B) Original edge 
density d = 10%, average node degree 〈k〉 = 50. (C) Increased edge density d = 20%, average node degree 〈k〉 = 100.
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for these confi gurations, sustained activity occurred in up to 25% 
of the explored parameter settings, whereas it occurred only in up 
to 3% of the tested settings for the rat-like network (cf. scale of 
activation range). For the even larger “macaque-size” network, the 
maximum range of LSA (up to 4% of tested parameter settings) 
was as low as for the “rat-size” network (Figure 5C), while overall, 
the variety of hierarchical confi gurations that resulted in LSA was 
also lowest for the macaque-like network.

These results indicate that the number of possible hierarchi-
cal confi gurations (resulting from combinations of the number 
of levels and number of sub-modules) leading to LSA decreased 
with increasing network size. Only a few hierarchical confi gura-
tions appeared suitable for producing LSA in all network sizes. 
Such confi gurations typically combined an intermediate number 
of levels with a large number of sub-modules (Figures 4C and 5B). 
Interestingly, the combination of a large number of hierarchical 
levels with a small number of sub-modules proved ineffective for 
supporting LSA in the larger-size network (Figure 5C). For large 
networks the best strategy for achieving sustained activity was pro-
vided by an arrangement of two hierarchical levels containing the 
largest possible number of modules and sub-modules.

Constant average node degree
The results obtained under the constraint of a constant edge density 
(see section Constant edge density) suggested that confi gurations 
for LSA were harder to attain in large as well as small networks. 
Only networks of an intermediate size appeared to result in a large 
variety of hierarchical networks possessing a wide parameter range 
for LSA. In an alternative approach, we also tested optimal con-
fi gurations of networks of different sizes under the constraint that 
the average number of connections per column, rather than the 
probability that any two columns are connected (edge density), was 
kept constant. For this approach, the number of edges was set to 50 
times the number of nodes, leading to an average node degree of 50 
in all networks, albeit with variation for individual nodes.

Under these conditions, LSA in the “rat-size” networks arose 
mostly in networks with one hierarchical level, and for an increasing 
number of sub-modules (Figure 6A). Both the “cat-size” and the 
“macaque-size” networks possessed a similar, large range of hier-
archical confi gurations showing sustained activity (Figures 6B,C). 
All networks demonstrated that cases of LSA increased with the 
number of sub-modules per module. Whereas the range of hier-
archical confi gurations differed between the “rat-size” and the 
“cat-size” or “macaque-size” networks, the maximum range of 
sustained activity was comparable for all sizes with 15–30%. A 
constant number of connections per node, therefore, permitted a 
wide range of optimal hierarchical confi gurations for LSA even if 
the network size increased.

DISCUSSION
This study investigated an essential precondition of criticality 
in neural systems, the capability of neural networks to produce 
LSA patterns following an initial activation. We addressed this 
question by simulating the spreading of neural activity and sys-
tematically varying model parameters and network topology in 
hierarchical modular networks, which are inspired by the organi-
zation of biological neural networks across scales. Our previous 

study (Kaiser et al., 2007a) demonstrated that hierarchical cluster 
 networks  possess a large parameter range leading to LSA, in con-
trast to random and non-hierarchical small-world networks. Here 
we expanded this analysis by varying the number of levels and 
sub-modules in hierarchical networks and scaling their size within 
two alternative scenarios, constant edge density or constant aver-
age node degree. This study demonstrated, fi rst, that LSA patterns 
are supported by a variety of parameter settings for hierarchical 
modular networks, combining different numbers of hierarchical 
levels with varying numbers of sub-modules per level; second, that 
for the same network size and the same number of sub-modules, 
networks with a larger number of levels resulted in a wider range 
of LSA, while for the same number of hierarchical levels a larger 
activity parameter range was produced by increasing the number 
of sub-modules; and third, that a high level of sustained activity 
was attainable across network sizes for a constant average node 
degree, but not for constant edge density.

The present results provide a proof of concept for three points. 
First, hierarchical network confi gurations lead to different levels 
of sustained activity independent of global topological proper-
ties, such as characteristic path length or clustering coeffi cient. 
Therefore, the identifi cation of an optimal network confi guration 
associated with a maximum level of LSA is a suitable target for 
evolutionary graph optimization. Second, only specifi c hierarchi-
cal network arrangements can be realized for a limited network 
size. Even for the human brain with an estimated number of 
125,000 columns per hemisphere (Jones and Peters, 1984) under 
the assumptions made in section “Anatomical constraints”, only a 
small fraction of potential hierarchies can be realized within the 
current framework. For the “human-size” network, three hierarchi-
cal levels with up to 18 sub-modules and four levels with up to 8 
sub-modules are possible. These limits are beyond the ones of the 
“macaque-size” network which maximally allowed six and four 
sub-modules for three and four hierarchical levels, respectively. 
Therefore, simple combinatorics suggest that it is easier to vary 
the number of modules at each level than to increase the number 
of levels for larger brains. Third, the number of confi gurations 
which lead to sustained activity decreases with network size if the 
edge density remains constant, but remains large even for large 
network sizes if the average number of connections per node is kept 
constant. This model fi nding corresponds to the observation from 
comparative studies that the number of connections of a neural 
node (e.g., the number of synapses of a neuron) rather than the 
ratio of connections (e.g., being connected to 10% of all neighbors) 
largely remains constant across species with different brain sizes 
(Ringo, 1991; Schüz and Demianenko, 1995; Zhang and Sejnowski, 
2000; Striedter, 2004). Moreover, for constant average node degree, 
the optimal confi gurations in larger networks tended to possess 
more hierarchical levels, suggesting a benefi cial contribution of 
the more intricately structured topology in larger neural networks 
to dynamical stability. There are indications from compilations of 
biological neural connectivity (e.g., www.cocomac.org) that sup-
port this model fi nding. For example, cluster analyses suggest that 
primate cortical connectivity is structured on more levels than con-
nectivity in smaller brains, if one considers that there exist primate 
visual “streams” (Young, 1992; Hilgetag et al., 2000), that is, sub-
divisions of the visual network module that are apparently absent 
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2008), potentially leading to additional constraints on  hierarchical 
network organization. Moreover, the internal organization of 
 columns (self-loops) was not explicitly part of the modeled net-
works. However, it was represented through the node activation 
rule: an active node could remain active for the following time 
step given a suffi cient number of active neighbors and poten-
tial collaterals going back to the neuron itself. For each time 
step, the deactivation probability determined whether an active 
node became inactive. The strength of self-loops was therefore 
implicitly represented in this deactivation probability with lower 
likelihood of deactivation for more frequent self-loops. Second, 
specifi cally organized populations of inhibitory neurons within 
columns might additionally infl uence global network dynamics. 
Thus, future models could incorporate more detailed biologically 
realistic mechanisms for reducing activity at the neuronal level, 
instead of the presently employed phenomenological deactivation 
probability. Third, the parcellation of modules into sub-modules 
for each level was treated as symmetric, that means, when a mod-
ule is split into sub-modules, each module has the same size. It 
will be important to test asymmetric parcellation of a module 
into smaller and larger sub-modules in future studies. Finally, 
the model considered neural network behavior in the absence of 
external inputs, except for the initial activation. Therefore, the 
current fi ndings may particularly apply to situations where there 
is limited external input to the brain, such as during sleep or early 
development. The results also relate to the organization of neural 
dynamics associated with the “default mode” or “resting state” of 
the brain (e.g., Raichle and Snyder, 2007). The role of external 
inputs should be addressed in future studies, which could also 
investigate if there is a difference in the processing of external 
stimuli by networks that are optimal for LSA and those that are 
not. In addition, the edge density at the lowest level (Figure 4B) 
could in some cases be higher than 50% which is unlikely in 
biological neuronal networks.

In this study, we varied the network size to represent networks 
of columns of a hemisphere in a “rat-size” (300 nodes), “cat-size” 
(4,150 nodes), and “macaque-size” brain (11,000 nodes). For large 
networks and constant edge density, two hierarchical levels with the 
maximum possible number of sub-modules per module appeared 
to provide the best strategy for achieving sustained activity (cf. 
Figure 5). These multi-level confi gurations often resulted in a high 
density of connectivity within modules at the lowest level. Such high 
edge densities are theoretically possible, but only realized to some 
extent in biological neural systems. At the global level of human 
fi ber tract connectivity between brain regions, for example, edge 
densities around 46% can be reached (Honey et al., 2007). Within 
columns, the connection frequency between any two neurons is 
around 16% (Douglas and Martin, 2007) but around 35% for neu-
rons from the same cell lineage (Yu et al., 2009). Given constant 
edge density, the range of feasible hierarchical confi gurations – that 
is, the degrees of freedom for evolving neural network architec-
tures – appeared to decrease with larger network sizes. This was 
due to the fact that the number of neighbors of a node increased 
with network size. Since the probability for connecting a node to 
other nodes (the edge density) remained constant, nodes were con-
nected to a larger number of nodes when the number of poten-
tial neighbors increased with network size. The larger number of 

in the rat (Burns and Young, 2000) or cat network (Scannell et al., 
1999; Zamora-López et al., 2010) Moreover, there are generally 
more modules in larger brains, if cortical areas can be considered 
as modules.

The fi nding of increased hierarchical structure in larger net-
works may appear counterintuitive given that there are limits on 
the number of hierarchical levels even in large networks, as dis-
cussed above. However, an appropriately large number of levels may 
be a necessary constraint for sustaining activity. If the number of 
modules in a large network was increased without increasing the 
number of levels, then, in principle, it would be easy to activate 
each module. However, activation of the global network may be 
prevented by dispersion of the activity across the entire network, 
which means that there may not exist enough projections into each 
of the individual modules to activate them. Similarly, if there are 
few large modules, activity may be dispersed within the modules. 
In order to establish a balance between the number and size of 
modules in large networks, additional levels need to be created, as 
confi rmed by the modeling results.

The hierarchical network topology we explored refl ects the 
distributed multi-level modularity that is considered a central 
feature of biological neural networks. Neural networks show 
strong modularity across many levels of scale, ranging from 
cellular neuronal circuits and neural populations organized in 
cortical columns (Mountcastle, 1997) to communities of closely 
linked areas at the systems level (Hilgetag et al., 2000; Breakspear 
and Stam, 2005). Smaller modules are nested within larger ones, 
such as columns within an area, which itself is a module in a 
large-scale brain division, such as the visual system. Another 
important feature of complex networks that has been discussed 
widely is the existence of hub, that is, nodes possessing a sig-
nifi cantly larger number of links than the majority of nodes 
in a network (Albert and Barabási, 2002; Ravasz et al., 2002). 
However, it is diffi cult to identify nodes in the brain that integrate 
modules across scales (with the potential exception of unspecifi c 
neuromodulatory systems, such as the serotonergic system) and 
act as global hubs. While there are hub-like nodes in neural net-
works (Kaiser et al., 2007b; Sporns et al., 2007), they may not 
act globally, such that most projections in the network originate 
from, or converge on, a central node. This topology is differ-
ent from “centralistic” networks where most nodes are linked 
to hubs (Ravasz et al., 2002) and which may be more suitable 
for representing large-scale biochemical networks. However, the 
detailed investigation of biological neural topologies needs to be 
continued, since modeling studies have shown a strong impact 
of topology on network dynamics. For instance, networks which 
contain hubs may support different modes of activity propaga-
tion than hub-less modular networks (Müller-Linow et al., 2008; 
Hütt and Lesne, 2009).

The present study was set up under several simplifying assump-
tions, in order to provide general insights into the relationship 
between hierarchical neural topology and activation patterns. 
This approach resulted in a number of model limitations. First, 
nodes representing columns were assumed to be uniform build-
ing blocks, whereas actual column organization (layer structure 
and number of neurons) in the brain might differ across regions 
(Hutsler et al., 2005) as well as species (Herculano-Houzel et al., 
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 connected  neighbors in larger networks also meant that the (abso-
lute)  threshold for activating a node was more easily reached. In 
such cases, activity was harder to contain and more likely spread 
through the whole network.

Using the constraint of a constant average degree, on the other 
hand, enabled a wider range of hierarchical confi gurations with up 
to 30% sustained activity cases across network sizes (cf. Figure 6). 
Such scalability with network size might be benefi cial both for 
ontogenetic and phylogenetic development. Using a constant 
number of connections per node, rather than a constant edge 
ratio, across species appears to have several benefi ts (Changizi, 
2001). First, reducing edge density is necessary due to the limited 
volume available for white matter fi ber tracts (Ebbesson, 1980; 
Karbowski, 2001; Striedter and Northcutt, 2006). For constant edge 
density, a brain with two times as many columns would contain 
four times as many connections, quickly increasing brain volume. 
Second, the setting of a constant number of connections per node 
provided a setup for sustained activity in different brain network 
sizes. This might mean that sustained activity can occur for differ-
ent brain sizes during evolution, if they are appropriately hierarchi-
cally structured. Third, hierarchical structuring may also provide 
the functional stability of LSA in the developing brain. At early 
stages of ontogenetic development, neural networks generally have 
few modules and few nodes. During development, more modules, 
nodes, and hierarchical levels are established (Robinson et al., 2009). 
Therefore, sustained activity can occur continuously through dif-
ferent stages of development and brain network growth. However, 
the hierarchical organization is not the only mechanism that can 
sustain activity during development; early neuronal mechanisms 
include, for example, spontaneous activity such as retinal waves 
(Sernagor et al., 2006; Hennig et al., 2009) or the early excitatory 
function of  gamma aminobutyric acid (GABA).

Finally, whereas several earlier studies have explored spatial 
(e.g., brain volume) or topological (e.g., characteristic path length, 
Kaiser and Hilgetag, 2006) constraints on brain organization, the 
present study focused on dynamic constraints, specifi cally the 
necessity of brain dynamics to subsist at a sustained yet limited 
level of activity. Alternative or additional dynamic constraints 
that may be relevant for this phenomenon could be synchro-
nous activity (König et al., 1995; von der Malsburg, 1995; Masuda 
and Aihara, 2004), or functional attributes such as multi-modal 
integration, functional complexity (Sporns et al., 2000), informa-
tion propagation, or processing speed. An accessible parameter 
range for sustained limited activity is a necessary condition for 
criticality, but does not in itself guarantee it. Criticality has been 
interpreted as an abolishing of length scales, that is, the coexist-
ence of dynamical processes at all scales. We saw examples for 
this phenomenon in activation patterns at LSA where modules 
and sub-modules of different sizes were activated together. Non-
LSA conditions, by contrast, produced only the trivial states of 
activating all or none of the network nodes. It will be particularly 
interesting to see how networks optimized with respect to func-
tional diversity are related to networks having optimal range for 
LSA. A possible link between these two properties was suggested 
by an earlier analysis showing that the number of signifi cantly 
repeating activation patterns is maximized at the critical point 
(Haldeman and Beggs, 2005).

APPENDIX
CONTROL EXPERIMENTS
We tested several additional simulation parameters in the follow-
ing sections. As in section “Optimal hierarchical confi gurations for 
LSA in a small network”, networks consisted of 512 nodes and 50 
connections per node.

Varying the number of edges for different hierarchical levels
In the default settings, the number of edges E

i
 was set to be the 

same for each hierarchical level i. Additionally, we tested sustained 
activity patterns where the number varied. We considered two cases: 
(a) a decrease of the number of edges with each hierarchical level 
or (b) an increase of the number of edges with each hierarchical 
level. The change followed a function where the number of E

i
 at 

level i was given by E
i
 = si E

c
/C, where s is a scaling factor of 2/3 

for decreased and 3/2 for increased number of edges per level. The 
parameter E

c
 = E/L is the number of edges in a network with E 

edges and L levels, which was used for the original calculation and 
C = L (sL+1 − s)/(s − 1) is a normalization factor to ensure that the 
total number of edges remains E.

As shown in Figure 7, confi gurations with a high proportion of 
LSA for decreased as well as increased numbers of edges per hier-
archical level remained comparable with the original calculation. 
The absolute level of sustained activity was lower in case (a) and 
higher in case (b) compared to the original settings. In addition, 
sustained activity cases also occurred for two or more hierarchical 
levels when the number of edges was increased (Figure 7C).

Varying the parcellation for different hierarchical levels
In the default settings, we used the same split-up of modules for 
each level; that means, if a module consisted of two sub-modules at 
the highest network level, this condition would be the same for all 
other levels of the network hierarchy as well. Here, we tested varying 
the parcellation into sub-modules depending on the hierarchical 
level. Again, we tested two cases: (a) creating fewer sub-modules for 
higher hierarchical levels (“decreasing parcellation”) or (b) creat-
ing more sub-modules for higher hierarchical levels (“increasing 
parcellation”). The change followed a function where the number 
of parcellations, sub-modules per module, m

i
 at level i was given 

by m
i
 = si m where s is a scaling factor of 0.9 for decreased and 1.1 

for increased parcellation. The parameter m was the same as for 
the original calculation.

As can be seen from Figure 8, confi gurations with a high prob-
ability of sustained activity for decreased as well as increased 
number of sub-modules for each hierarchical level remained 
comparable with the original calculations. However, whereas the 
absolute proportions for decreased parcellation were similar, for 
increased parcellation the overall probabilities increased, extending 
the maximum proportion of sustained activity cases from 0.23 to 
0.42. Therefore, the absolute parameter range of sustained activ-
ity was the same for case (a) and almost twice as high for case (b), 
compared to the original setting.

Note that both an increased parcellation and a larger number 
of edges led to a higher edge density of modules at the highest 
(fi ne-grained) level (maximum edge density, Figure 3B). This could 
explain why the ratio of sustained activity cases was higher for 
these confi gurations.
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Number of cases close to 50% activation threshold for classifi cation 
as sustained
In these simulations, we tested how close the fi nal activity after 200 
time steps came to the threshold used for classifi cation as sustained 
activity case.

As seen in Figure 9, levels close to the 50% threshold did occur. 
However, fi nal activity levels were around 10–20% in all cases for 
which a high number of sustained activity cases was reported. This 
observation indicates that confi gurations with high proportions of 
sustained activity cases were not affected by the threshold. On the 
other hand, confi gurations with a high proportion of cases with 
complete spreading only had few cases of sustained activity. Due 
to higher activity levels for such confi gurations, sustained activ-
ity cases were close to the 50% threshold for classifying sustained 
activity (black regions in Figure 9).

Topologies leading to expiring, limited sustained and completely 
spreading activity patterns
The main simulations of this project investigated the proportion of 
LSA cases depending on hierarchical network organization. Here, 
we also considered the distribution of the other two possible simu-
lation outcomes: activity dying out before the end of the simulation 
and fi nal activity in more than 50% of the nodes, which was classi-
fi ed as complete spreading. Figure 10 shows the dependence of all 
three outcomes on hierarchical network organization.

For confi gurations resulting in a small number of LSA cases 
(white regions in Figure 10B), both dying-out and complete spread-
ing occurred in 50% of the cases (note the different gray level setting 
due to re-scaling). However, when more than one hierarchical level 
was present, complete spreading occurred more often than dying-
out. For one hierarchical level, outcomes depended strongly on the 
number of sub-modules per module. The cases in which activity 
expired formed 50% of cases for two sub-modules, but decreased 

with the number of sub-modules. The maximum proportion of 
complete spreading, around 70% of the cases, occurred for 4–10 
sub-modules per module. The maximum values for LSA occurred 
for 12–20 sub-modules per module.

Varying the edge density
In the main simulations, the edge density for a network with 
N = 512 nodes and an average node degree 〈k〉 of 50 was 0.098, 
that means, around 10%. Both parameters, edge density and aver-
age node degree are related: the edge density in a directed network 
is given by d = E/[N (N − 1)] whereas the average node degree is 
〈k〉 = E/N, meaning that d = 〈k〉/(N − 1). How does variation of edge 
density for the same network size infl uence the range of LSA? To 
answer this question, we compared edge densities which were half 
(5%) of or twice (20%) of the value of the original calculations.

As shown in Figure 11, the pattern of sustained activity 
remained comparable to the original calculations even when the 
edge density varied. The maximum level of LSA varied between 
0.172 (for decreased edge density) to 0.238 (for increased edge 
density; original maximum level: 0.238). The relative distribution 
for one hierarchical level was similar across different edge densities. 
For two and three hierarchical levels, two additional confi gura-
tions with high levels of sustained activity occurred for decreased 
edge density. These additional confi gurations were impossible for 
higher numbers of edges to be realized when edge densities were 
around 10% or above.
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